Synthesizing information from multivariate data: Inference methods for global and local questions

Arne Bathke Arne.Bathke@sbg.ac.at

Universität Salzburg, Austria

Wien, 28 May 2021

Thanks to: Solomon W. Harrar, Yvonne Höller, Robert Knapp, Frank Konietschke, Markus Pauly, Sarah Friedrich

Global View

- Interesting data are multivariate
- Here: multivariate = multiple endpoints

Strategies

Strategies for inference

- One response variable at a time
 - parametric / semi- / nonparametric
 - adjusting for multiple testing
 - combining p-values
- classical MANOVA
- semiparametric MANOVA (using bootstrap)
- semiparametric MANCOVA (using bootstrap)
- nonparametric MANOVA (using ranks)
- supplementing the above by an appropriate multiple testing tree

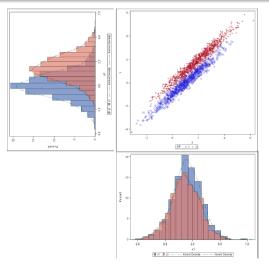
Nonparametric MANOVA

Local

Conclusions

00000

Joint and marginal distributions



Major differences may be hidden from the univariate eye.

Arne Bathke Arne.Bathke@sbg.ac.at

Multivariate Data

Strategies

Strategies for inference

- One response variable at a time
 - parametric / semi- / nonparametric
 - adjusting for multiple testing
 - combining p-values
- classical MANOVA
- semiparametric MANOVA (using bootstrap)
- semiparametric MANCOVA (using bootstrap)
- nonparametric MANOVA (using ranks)
- supplementing the above by an appropriate multiple testing tree

Research questions

- Situation: data with several endpoints (responses) and several factor levels (experimental conditions)
- Global questions
 - Is there a difference between experimental conditions when using the information from all endpoints?
- Local questions ("finding the needle in the haystack")
 - If yes, on which endpoints?
 - And between which conditions?
 - Is there a condition that works better than others?
 - Control familywise α when answering local questions [trying to support research reproducibility!]

Data Example I: Insect-Flower Interaction

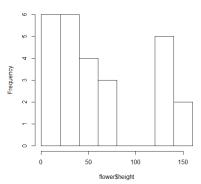
- insects from different taxa may visit different flowers
- flower traits = response variables (height, nectar-tube depth, display size, etc.)
- taxa = subpopulations = factor levels (bees, beetles, bumble bees, ants, etc.)
- individual insects = experimental units
- as illustration, consider a = 4 taxa and p = 3 traits

Response variables = Traits

- height
- nectar tube depth
- display size (how many flowers/inflorescences per species)

MANOVA? Or looking at one variable at a time... (1)

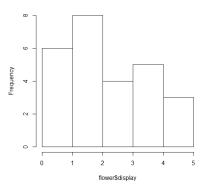
height



Histogram of flower\$height

MANOVA?? Or looking at one variable at a time... (2)

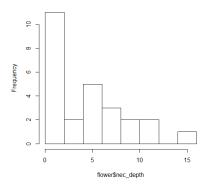
display size



Histogram of flower\$display

MANOVA??? Or looking at one variable at a time... (3)

nectar tube depth



Histogram of flower\$nec_depth

Let's try parametric MANOVA

$$\label{eq:cbind} \begin{split} &Y{=}cbind(flower\$height,flower\$nec_depth,flower\$display) \\ &trt{=}as.factor(flower\$animal) \\ &flower.manova{=}manova(Y \sim trt,data{=}flower) \\ &summary(flower.manova,test{=}"Pillai"") \\ &summary(flower.manova,test{=}"Wilks") \end{split}$$

	Df	Pillai	approx F	num Df	den Df	Pr(>F)
trt	3	0.62199	1.9181	9	66	0.06438
	Df	Wilks	approx F	num Df	den Df	Pr(>F)
trt	3	0.42897	2.2563	9	48.825	0.03358

 Nonparametric MANOVA

Local

Conclusions

Let's try MANOVA (2)

	Df	Pillai	approx F	num Df	den Df	$\Pr(>F)$
trt	3	0.62199	1.9181	9	66	0.06438
	Df	Wilks	approx F	num Df	den Df	Pr(>F)
trt	3	0.42897	2.2563	9	48.825	0.03358

"Nectar tube depth" was rather skewed, take logarithm instead \ldots

	Df	Pillai	approx F	num Df	den Df	Pr(>F)
trt	3	0.67318	2.1216	9	66	0.03972
	Df	Wilks	approx F	num Df	den Df	Pr(>F)
trt	3	0.39646	2.5091	9	48.825	0.01902

Let's try MANOVA (3)

raw data	Df	statistic	approx F	num Df	den Df	Pr(>F)
Pillai trt	3	0.62199	1.9181	9	66	0.06438
Wilks trt	3	0.42897	2.2563	9	48.825	0.03358
loginec	Df					
log.nec	DI	statistic	approx F	num Df	den Df	Pr(>F)
Pillai trt			2.1216		den Df 66	Pr(>F) 0.03972
						· /

count variable "display size" also skewed, take its logarithm as well \ldots

log:nec,di	splay	Df	statistic	approx F	num Df	den Df	Pr(>F)
Pillai	trt	3	0.75693	2.4746	9	66	0.01689
Wilks	trt	3	0.35551	2.8726	9	48.825	0.008395
Histogram of SoverSeec_depth	н	riogram of BowerSchapiny					
	o y						

Preliminary Confusion

- O parametric MANOVA may lead to confusing results
- Reminder: parametric MANOVA assumes multivariate normality of the data
- O univariate normality is sometimes hard to justify
- O multivariate normality is usually quasi impossible to justify

Strategies

Strategies for inference

- One response variable at a time
- classical MANOVA
- semiparametric MANOVA (using bootstrap)
- semiparametric MANCOVA (using bootstrap)
- nonparametric MANOVA (using ranks)
- supplementing the above by an appropriate multiple testing tree
 - parametric / semi- / nonparametric
 - adjusting for multiple testing
 - combining p-values

Data Example II: Dementia, Alzheimer's Disease (AD)

- Demographic development in western countries comes with growing incidence of dementia (about 150,000 affected in Austria)
- Accurate and early diagnosis desirable
- Facilitates early treatment and perhaps prevention of dementing course

Alzheimer / EEG / SPECT

- 160 patients with either Alzheimer's disease (AD), mild cognitive impairment (MCI), or subjective cognitive complaints without clinically significant deficits (SCC)
- neuropsychological diagnostics for evaluation of cognitive impairment included test batteries for dementia, memory, intelligence, education and emotional status
- do the groups differ w.r.t. single photon emission computed tomography (SPECT) or electroencephalography (EEG)?
- EEG values of activity, complexity, mobility, and brain rate at five regions, 46 different SPECT variables
- high-dimensional response setting
- potential addtional factors: age, sex
- interactions between these and the neuropsychological diagnosis?

SPECT

- single-photon emission computed tomography (SPECT)
- well examined tool
- used to differentiate AD from other forms of dementia (frontotemporal dementia, dementia with Lewy bodies)
- considered cheap

EEG

- considered much cheaper
- electroencephalogram (SPECT)
- highly available
- free of radiation hazards, non-invasive
- useful as diagnostic tool in early-onset dementia

We'll get back to these data soon, but first some theory...

Notation for (non/semi/parametric) multivariate CR1F

- p different response variables (endpoints) $k = 1, \dots, p$
- a different experimental conditions (treatments, sub-populations)
 i = 1, ..., a
- n_i subjects (experimental units) per condition $j = 1, ..., n_i$

Sample 1				Sample 2			Sample a					
$X_{11}^{(1)}$	$X_{12}^{(1)}$		$X_{1n_1}^{(1)}$	$X_{21}^{(1)}$	$X_{22}^{(1)}$		$X_{2n_2}^{(1)}$		$X_{a1}^{(1)}$	$X_{a2}^{(1)}$		$X^{(1)}_{a,n_a}$
$X_{11}^{(2)}$	$X_{12}^{(2)}$		$X_{1n_1}^{(2)}$	$X_{21}^{(2)}$	$X_{22}^{(2)}$		$X_{2n_2}^{(2)}$		$X_{a1}^{(2)}$	$X_{a2}^{(2)}$		$X_{a, n_a}^{(2)}$
$X_{11}^{(p)}$	$X_{12}^{(p)}$		$X_{1n_1}^{(p)}$	$X_{21}^{(p)}$	$X_{22}^{(p)}$		$X_{2n_2}^{(p)}$	· · · · · · ·	$X^{(p)}_{a1}$	$X_{a2}^{(p)}$		$X^{(p)}_{a,n_a}$

• Ranks denoted by *R* instead of *X*, where each row (each variable) is ranked separately

Classical vs. Semiparametric (Additive Location) Model

Classical parametric MANOVA

$$(X_{ij}^{(1)},\ldots,X_{ij}^{(p)})' \sim N_p(\mu_i,\Sigma), \ i=1,\ldots,a; \ j=1,\ldots,n_i;$$

 X_{ij} independent random vectors

 Alternative Model 1: Semiparametric MANOVA using multivariate linear model

$$X_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, \ldots, a; j = 1, \ldots, n_i.$$

For each *i*, the $\varepsilon_{i1}, \ldots, \varepsilon_{in_i}$ are i.i.d. *p*-dimensional random vectors satisfying

$$E(\varepsilon_{i1}) = 0,$$

$$Cov(\varepsilon_{i1}) = \Sigma_i > 0, \ i = 1, \dots, a,$$

$$E(\|\varepsilon_{i1}\|^4) < \infty, \ i = 1, \dots, a.$$

• Null hypothesis: $H_0^{\mu}: \mu_1 = \cdots = \mu_a$

Assumption of Homoscedasticity

- Parametric MANOVA assumes that covariance matrices are the same for each group
- severe restriction in practice!
- Violation of the covariance matrix homogeneity assumption may cause serious problems with MANOVA, even under normality
- Similar to univariate case, in particular for unbalanced designs
- Distinguish *positive* and *negative pairing* of group size n_i with variance σ²_i
- For nominal $\alpha =$ 0.05, the simulated α may be . . .
 - ... around 0.01 for positive pairing $(n_2 = 2 \cdot n_1, \sigma_2^2 = 3 \cdot \sigma_1^2)$
 - ... around 0.20 for *negative pairing*

Local

Conclusions

Equal Covariance Matrices? EEG Data

Table 1: Covariance matrices for the three impairment diagnosis groups AD, MCI and SCC, calculated for six EEG response variables. Variables 1-3 are temporal, frontal, and cerebellal values for brain rate, variables 4-6 corresponding values for complexity. For ease of presentation, the covariance matrices are displayed in tabular form.

mance	e man	uces a	re ais	piayea	ın ta	outar jo
AD	1	2	3	4	5	6
	5.14	5.04	4.94	5.63	4.36	4.46
	5.04	6.55	5.21	5.74	5.82	4.83
	4.94	5.21	6.35	5.39	4.55	6.63
	5.63	5.74	5.39	8.88	6.92	6.64
	4.36	5.82	4.55	6.92	7.88	7.15
	4.46	4.83	6.63	6.64	7.15	13.84
MCI	1	2	3	4	5	6
	2.10	1.95	1.76	1.45	1.25	0.69
	1.95	2.18	1.82	1.59	1.61	0.86
	1.76	1.82	2.11	1.41	1.21	1.08
	1.45	1.59	1.41	2.23	2.35	1.19
	1.25	1.61	1.21	2.35	2.95	1.23
	0.69	0.86	1.08	1.19	1.23	1.03
SCC	1	2	3	4	5	6
	1.62	1.17	1.17	0.76	0.49	0.32
	1.17	1.41	1.10	0.63	0.75	0.37
	1.17	1.10	1.26	0.54	0.39	0.41
	0.76	0.63	0.54	0.64	0.53	0.30
	0.49	0.75	0.39	0.53	0.94	0.28
	0.32	0.37	0.41	0.30	0.28	0.28

Classical vs. Semiparametric (Additive Location) Model

Classical parametric MANOVA

$$(X_{ij}^{(1)},\ldots,X_{ij}^{(p)})' \sim N_p(\mu_i,\Sigma), \ i=1,\ldots,a; \ j=1,\ldots,n_i;$$

 X_{ij} independent random vectors

 Alternative Model 1: Semiparametric MANOVA using multivariate linear model

$$X_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, \ldots, a; j = 1, \ldots, n_i.$$

For each *i*, the $\varepsilon_{i1}, \ldots, \varepsilon_{in_i}$ are i.i.d. *p*-dimensional random vectors satisfying

$$E(\varepsilon_{i1}) = 0,$$

$$Cov(\varepsilon_{i1}) = \Sigma_i > 0, \ i = 1, \dots, a,$$

$$E(\|\varepsilon_{i1}\|^4) < \infty, \ i = 1, \dots, a.$$

• Null hypothesis: $H_0^{\mu}: \mu_1 = \cdots = \mu_a$

Classical vs. Nonparametric Model

• Classical parametric MANOVA assumes the model

$$(X_{ij}^{(1)}, \ldots, X_{ij}^{(p)})' \sim N_p(\mu_i, \Sigma), \ i = 1, \ldots, a; \ j = 1, \ldots, n_i;$$

 X_{ij} independent random vectors

(note multivariate normality and equal covariance matrices)Alternative Model 2: Nonparametric (rank-based) MANOVA:

$$(X_{ij}^{(1)}, \dots, X_{ij}^{(p)})' \sim F_i, i = 1, \dots, a; j = 1, \dots, n_i;$$

 X_{ij} independent random vectors

• Null hypotheses: $H_0^{\mu}: \mu_1 = \cdots = \mu_a$ or $H_0^{\mathsf{F}}: \mathsf{F}_1 = \cdots = \mathsf{F}_a$

 Nonparametric MANOVA

Local

Conclusions

Review: Deriving (M)ANOVA test statistics

- Goal: Multivariate (M) Analysis of Variance (ANOVA)
- Recall: ANOVA
- a groups with respective sample sizes n_i ; $N = \sum_{i=1}^{a} n_i$

$$F = H/E \quad \text{where}$$

$$H = \frac{1}{a-1} \sum_{i=1}^{a} n_i (\mathbf{\bar{X}}_{i.} - \mathbf{\bar{X}}_{..})^2 \quad \text{and}$$

$$E = \frac{1}{N-a} \sum_{i=1}^{a} \sum_{j=1}^{n_i} (\mathbf{X}_{ij} - \mathbf{\bar{X}}_{i.})^2.$$

• Under normality, equal variances, and null hypothesis: $F \sim F(a-1, N-a).$

Review: Deriving (M)ANOVA test statistics

- Multivariate (M) Analysis of Variance (ANOVA)
- a groups with respective sample sizes n_i ; $N = \sum_{i=1}^{a} n_i$
- p variables

$$H(\mathbf{X}) = \frac{1}{a-1} \sum_{i=1}^{a} n_i (\mathbf{\bar{X}}_{i.} - \mathbf{\bar{X}}_{..}) (\mathbf{\bar{X}}_{i.} - \mathbf{\bar{X}}_{..})' \quad \text{and}$$
$$E(\mathbf{X}) = \frac{1}{N-a} \sum_{i=1}^{a} \sum_{j=1}^{n_i} (\mathbf{X}_{ij} - \mathbf{\bar{X}}_{i.}) (\mathbf{X}_{ij} - \mathbf{\bar{X}}_{i.})'.$$

• How to combine these into one test statistic?

Review: Classical MANOVA test statistics

Lawley-Hotelling's trace:
$$T_{LH} = \operatorname{tr}(HE^{-}) = \sum \lambda_{l}$$

Bartlett-Nanda-Pillai: $T_{BNP} = \operatorname{tr}(H(H+E)^{-}) = \sum \frac{\lambda_{l}}{1+\lambda_{l}}$
Wilks' Lambda: $T_{WL} = -\log \frac{\det(E)}{\det(E+H)} = \prod \frac{1}{1+\lambda_{l}}$

where A^- is the Moore-Penrose generalized inverse of A, λ_I are the eigenvalues of HE^{-1}

- Classical MANOVA assumes <u>multivariate normality</u>.
- Still, null distributions rather complicated.

Proposed Test Statistics

- Nonparametric
 - Rank-based variation on Wilks' Lambda
 - Sampling distribution: approximated by *F* with estimated d.f. (moment approximation)
- Semiparametric
 - Wald-Type Statistic $N \cdot \bar{\mathbf{X}}'_{\cdot} \mathbf{T} (\mathbf{T} \hat{\mathbf{V}}_{N} \mathbf{T})^{+} \mathbf{T} \bar{\mathbf{X}}_{\cdot}$
 - Sampling distribution: Parametric bootstrap; generating normal random vectors using group-specific empirical covariance matrices (*iid* only within the groups)

Not so Many Assumptions: Two Models

- Alternative Model 1:
- Additive location model
 - endpoints should be metric variables
 - additivity should be justifiable
 - hypotheses formulated using mean vectors
 - advantages when performing a closed testing procedure in order to choose relevant variables
 - test statistics in terms of observed values
 - sampling distribution: we propose asymptotic model-based bootstrap
 - very flexible theory, works for pretty much any factorial design with multiple endpoints (even for repeated measures)
 - R package MANOVA.RM (0.5.1)

Not so Many Assumptions: Two Models

- Alternative Model 2:
- Fully nonparametric model
 - endpoints may be metric, ordinal, binary (or mix thereof)
 - hypotheses formulated using multivariate distributions
 - test statistics expressed in terms of endpoint-wise ranks, and based on nonparametric relative effect
 - sampling distribution: we propose *F* with moment approximation
 - asymptotic distributions (large *a*, large *n*), Cornish Fisher expansions, permutations also available
 - highly robust; invariant under endpoint-wise strictly monotone (isotone or antitone!) transformations
 - higher-way layouts somewhat tedious, but possible
 - R package npmv (2.4.0) for multivariate one-way layout

Literature

- Nonparametric MANOVA: AR Ellis & WW Burchett & SW Harrar & AB 2017, Nonparametric inference for multivariate data: the R package npmv. J Stat Soft 76, 4.
- Semiparametric MANOVA:

F Konietschke & AB & SW Harrar & M Pauly 2015, Parametric and nonparametric bootstrap methods for general MANOVA. <u>J Multivariate An</u> 140, 291–301.

- Semiparametric MANOVA and Repeated Measures: AB & S Friedrich & M Pauly & F Konietschke & W Staffen & N Strobl & Y Höller 2018, Testing mean differences among groups: multivariate and repeated measures analysis with minimal assumptions. <u>Mult Beh Res</u>
- Nonparametric Combination:

R Arboretti & AB & E Carrozzo & F Pesarin & L Salmaso 2019, Multivariate permutation tests for two sample testing \dots Stat Meth Med Res

• Semiparametric MANCOVA:

G Zimmermann & M Pauly & AB 2020 J Multivariate An

Nonparametric MANOVA

• Nonparametric MANOVA:

$$(X_{ij}^{(1)},\ldots,X_{ij}^{(p)})'\sim F_i, \ i=1,\ldots,a; \ j=1,\ldots,n_i;$$

 X_{ij} independent random vectors

- F_i are *p*-variate distributions
- Null hypothesis: $H_0^F : F_1 = \cdots = F_a$
- Based on this model, we have developed
 - asymptotic theory
 - small sample approximations (expansions, moment estimators, permutations)
 - Ind the R package npmv

for nonparametric inference of multivariate data

Local

Conclusions

Nonparametric MANOVA and npmv: flower data

```
install.packages( "npmv ")
library(npmv)
library(Formula)
```

nonpartest(height | nec_depth | display \sim animal, flower)

Nonparametric MANOVA

Local

Conclusions

Nonparametric MANOVA using npmv

Results . . .

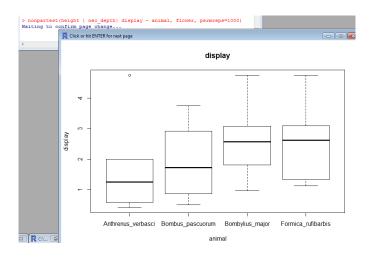
No! First a few pictures!

 Nonparametric MANOVA

Local

Conclusions

Nonparametric MANOVA using npmv - First: Figures



Nonparametric MANOVA using npmv - Second: Numbers

\$results	_		Permutation
	Test		Test
	Statistic	P-value	P-value
ANOVA type test	2.588	0.020	0.016
McKeon approx. for the			
Lawley Hotelling Test	3.292	0.007	0.008
Muller approx. for the			
Bartlett-Nanda-Pillai Test	2.238	0.021	0.021
Wilks Lambda	2.813	0.010	0.013
\$releffects heigh	it nec_de	pth displa	ay

neight	nec_deptn	display
0.603	0.301	0.353
0.365	0.769	0.423
0.442	0.611	0.596
0.609	0.282	0.596
	0.365 0.442	0.603 0.301 0.365 0.769 0.442 0.611

Sidenote: Relative Effects

- the natural quantity upon which these (and several other) nonparametric tests are based
- basically an extension of P(X < Y)
- "Assume that you randomly choose a B.p. and you randomly choose any insect from your trial. Then, the estimated probability that B.p. seeks out the flower with longer nectar-tube depth is 0.769"
- larger relative effects for one group indicate a tendency to larger observations
- 1/2 indicates "no tendency"
- (basically) a univariate measure

\$releffects	height	nec_depth	display
Anthrenus_verbasci	0.603	0.301	0.353
Bombus_pascuorum	0.365	0.769	0.423
Bombylius_major	0.442	0.611	0.596
Formica_rufibarbis	0.609	0.282	0.596
Arne Bathke Arne.	c.at Multivar	riate Data	

Preliminary Conclusions

- It is possible to do <u>valid</u> inference for multivariate data that does not follow normal distributions
- O The assumed model underlying the nonparametric method is quite general
- Inference invariant under monotone transformations of individual variables
- Inference should never stand alone practitioners shall always be confronted with graphs of their data, and with numerical effect measures that (hopefully) can be interpreted

Some facts about the R package npmv

- Altogether, eight tests are being calculated
- Generally, Wilks' Lambda is recommended
- For high-dimensional data, the only test that can always be used is the ANOVA-type test: use whenever Wilks' Lambda is not available
- N < 10: Permutation test; $10 \le N < 30$: Randomization test with 10,000 permutations; $30 \le N$: F approximation

- Global (nonparametric) MANOVA has shown that the (a) taxa differ in their preferred niches of the (p) traits
- So what?
- Maybe not the main question that is of interest to the biologist?
- Real questions:
 - which traits matter
 - which taxa differ from each other
- Conjectures from the figures and relative effects:
 - nectar depth seems to be a discriminating trait
 - Anthrenus verbasci (and Formica rufibarbis) seem to act differently from the other insects

Finding the interesting conditions / treatments

- Multiple testing approach with familywise error control
- Possible hypotheses using three treatments A, B, C and the multivariate distribution functions

A B C
$$\begin{bmatrix} \widehat{=} & F_A^{(multiv.)} = F_B^{(multiv.)} = F_C^{(multiv.)} \end{bmatrix}$$

A B A C B C

- This family of hypotheses is closed under intersection
 Closed testing procedure (Marcus/Peritz/Gabriel 1976)
 can be used
- closure test is coherent and controls familywise error rate ... without having to adjust the local α for the individual hypothesis tests

Finding the interesting conditions II

- Possible hypotheses using four treatments A, B, C, D and the multivariate distribution functions
 A B C D
 - ABC ABD ACD BCD
 - AB AC AD BC BD CD
- This family of hypotheses is...
 - ... not closed under intersection!
- need to take the partial hypotheses into account, even though they may not be of interest themselves:
 (A B) (C D) (A C) (B D) (A D) (B C)

Finding the interesting conditions III

- Possible hypotheses using four treatments A, B, C, D and the multivariate distribution functions
 A B C D
 A B C A B D A C D B C D
 (A B) (C D) (A C) (B D) (A D) (B C)
 A B A C A D B C B D C D
- This family of hypotheses is closed under intersection!

 —> Closed testing procedure (Marcus/Peritz/Gabriel 1976)
 could technically be used

Nonparametric MANOVA

Local 000●00000000000 Conclusions

When finding interesting conditions, take care of partial hypotheses

• However: the number of partial hypotheses grows rather fast

factor levels	4	5	10	13	20
all hypotheses in family					51,725,158,
closed under intersection	14	51	115,974	27,644,436	,235,371

Solution: testing partial hypotheses implicitly, with "partial bonferronization"

Partial Bonferronization

- Possible hypotheses using four treatments A, B, C, D and the multivariate distribution functions
 - Total: 4A B C DSubset of 3:A B C A B D A C D B C DPesky partials:(A B) (C D)Subset of 2:A B A C A D B C B D C D
- $\bullet\,$ Test each of the subsets of size 2 at $\alpha\cdot 2/4$
- Consider (A B)(C D) "rejected" if A B or C D is rejected, etc.
- $\bullet\,$ Resulting procedure is coherent, and controls familywise error rate at $\alpha\,$
- And fast! Only $2^a a 1$ hypotheses need to be tested

Nonparametric MANOVA

Local

Conclusions

Partial Bonferronization saves time!

factor levels	4	5	10	13	20
all hypotheses in family					51,725,158,
closed under intersection	14	51	115,974	27,644,436	,235,371
$2^{a} - a - 1$	11	26	1,013	8,178	1,048,555

Finding the interesting endpoints

 Possible nonparametric hypotheses using three response variables / endpoints (h, n, d) and all factor levels (say, ABCD, as before) hnd \cong $F_{A}^{(h,n,d)} = F_{B}^{(h,n,d)} = F_{C}^{(h,n,d)} = F_{D}^{(h,n,d)}$ nd $\widehat{=}$ $F_A^{(h,n)} = F_B^{(h,n)} = F_C^{(h,n)} = F_D^{(h,n)}$ $F_A^{(h,d)} = F_B^{(h,d)} = F_C^{(h,d)} = F_D^{(h,d)}$ $F_A^{(n,d)} = F_B^{(n,d)} = F_C^{(n,d)} = F_D^{(n,d)}$ hn hd $\hat{\Xi}^{(h)} = F_B^{(h)} = F_C^{(h)} = F_D^{(h)}$ $F_A^{(n)} = F_B^{(n)} = F_C^{(n)} = F_D^{(n)}$ $F_A^{(d)} = F_B^{(d)} = F_C^{(d)} = F_D^{(d)}$ h n

Finding the interesting endpoints II

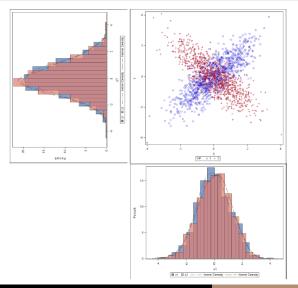
- This family of nonparametric hypotheses is... ... *not* closed under intersections!
- Consider, e.g., h, n and hn.
- Intersection of the two hypotheses $F_A^{(h)} = F_B^{(h)}$ and $F_A^{(n)} = F_B^{(n)}$ is not equal to $F_A^{(h,n)} = F_B^{(h,n)}!$
- Equality of the marginal distribution does not imply equality of the joint distribution!

Nonparametric MANOVA

Local

Conclusions

Joint and marginal distributions



Finding the interesting endpoints III

- This family of nonparametric hypotheses is <u>not</u> closed under intersections!
- Consider, e.g., h, n and hn.
- Intersection of the two hypotheses $F_A^{(h)} = F_B^{(h)}$ and $F_A^{(n)} = F_B^{(n)}$ is not equal to $F_A^{(h,n)} = F_B^{(h,n)}!$
- Equality of the marginal distribution does not imply equality of the joint distribution!

 \Longrightarrow Closed testing procedure can not be used.

- Partial Bonferronization: E.g., divide α by the number of hypotheses being considered at each step, to obtain a local α.
- Familywise error rate is not exceeded then. However: Can be conservative in some situations (depends on the specific test statistic!)

From nonparametric to semiparametric

- For semi/parametric hypotheses, formulated in terms of location parameters, the situation is different.
- Consider, e.g., h, n and hn.
- Intersection of the two hypotheses $\mu_A^{(h)} = \mu_B^{(h)}$ and $\mu_A^{(n)} = \mu_B^{(n)}$ equals $(\mu_A^{(h)}, \mu_A^{(n)}) = (\mu_B^{(h)}, \mu_B^{(n)})!$
- Equality of the mean vector elements implies equality of the mean vector.
- This family of semi/parametric hypotheses is closed under intersections! =>> Closed testing procedure can be used for a coherent test.
- $\bullet\,$ Individual α does not need to be adjusted, familywise error still controlled.

Subset testing for the flower-insect example

- Which traits or combinations of traits could be discriminating? (height=h, nectar tube depth=n, display size=d) hnd √ hn hd nd h n d
- $\bullet\,$ Which insects could have different trait niches? (Fr, Bp, Av, Bm)

Fr Bp Av Bm $\sqrt{}$

- Fr Bp Av Fr Bp Bm Fr Av Bm Bp Av Bm
- $\label{eq:Fr} Fr \; Bp \quad Fr \; Av \quad Fr \; Bm \quad Bp \; Av \quad Bp \; Bm \quad Av \; Bm$
- Answered with a closed multiple testing procedure, using the (new) nonparametric multivariate method at each step
- Coherence!

Closed multiple testing procedure

 $\label{eq:ssnonpartest} ssnonpartest(height \mid nec_depth \mid display \sim animal, flower, alpha=.05, test=c(1,0,0,0), factors.and.variables=TRUE)$

- "test": choose one of ANOVA type, LH, BNP, Wilks' Lambda
- $p \leq a$: test subsets of the variables,
 - p > a: test subsets of factor levels
 - call "factors.and.variables=TRUE" above requests both

Closed multiple testing procedure: output from R - npmv

The Global Hypothesis is significant, subset algorithm will continue

Performing the Subset Algorithm based on Response Variables

The Hypothesis involving response variables height nec_depth display is significant

The Hypothesis involving response variables nec_depth display is significant

The Hypothesis involving response variables height nec_depth is significant

The Hypothesis involving response variables nec_depth is significant

All appropriate subsets using response variables have been checked using a closed multiple testing procedure, which controls the maximum overall type I error rate at alpha=0.05

<u>hnd</u>

<u>hn</u>	h	<u>nd</u>	
h	<u>n</u>	d	

Closed multiple testing procedure: output from R - npmv

The Global Hypothesis is significant, subset algorithm will continue

Performing the Subset Algorithm based on Factor levels

The Hypothesis between factor levels Anthrenus_verbasci Bombus_pascuorum Bombylius_major Formica_rufibarbis is significant

The Hypothesis between factor levels Bombus_pascuorum Bombylius_major Formica_rufibarbis is significant

The Hypothesis between factor levels Anthrenus_verbasci Bombus_pascuorum Formica_rufibarbis is significant

The Hypothesis between factor levels Anthrenus_verbasci Bombus_pascuorum Bombylius_major is significant

The Hypothesis between factor levels Bombus_pascuorum Formica_rufibarbis is significant

The Hypothesis between factor levels Anthrenus_verbasci Bombus_pascuorum is significant

All appropriate subsets using factor levels have been checked using a closed multiple testing procedure, which controls the maximum overall type I error rate at alpha=0.05

<u>Fr Bp Av Bm</u> Fr Bp Av Fr Bp Bm Fr Av Bm <u>Bp Av Bm</u> Fr Bp Fr Av Fr Bm Bp Av Bp Bm Av Bm



- Inference for data with multiple endpoints
- Theory and R packages for:
 - (N) Nonparametric model, rank-based test and
 - (S) Semiparametric model, parametric bootstrap-based test.
- (N) and (S) answer different questions, work for different types of data, have different invariance and robustness properties, have different, although overlapping scope.
- Multivariate more powerful than univariate: Even small effects can be found if they are emitted by the same conditions and are visible in a few endpoints – signals don't even have to go into the same direction in the different endpoints.
- Supplementing multivariate by multiple inference
- Not exceeding familywise nominal α , that is, few false positives.
- (N) somewhat more conservative than (S) when using closed testing principle

Non-/Semi-/Parametric MANOVA

Parametric

- Multivariate normal (metric) data, equal covariance matrices
- Hypotheses in mean vectors
- Semiparametric
 - Metric endpoints
 - Hypotheses in mean vectors
 - Bootstrap
- Nonparametric
 - Ordinal, binary, or metric endpoints (or mix thereof)
 - Hypotheses in multivariate distributions
 - Tests based on nonparametric relative effects
 - Invariance under endpoint-wise monotone transformations
- Still lots of work to do!

