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Bitcoin Mining

▶ Bitcoins, created Jan 2009, limited to 21 million: > 17 million in circulation now.
▶ Independent “miners” compete for the right to record the next transaction block on the

blockchain. They follow proof-of-work protocol and solve math puzzles.
▶ Once a miner obtains a solution, the corresponding block is added on top of the

blockchain and the miner obtains the reward.
▶ The math puzzle is designed such that there is no known better way of solving it than

brute force calculation: the chance of getting the reward is proportional to the
computational power or the hash rates that miners can provide.

▶ The difficulty of the puzzle varies to maintain a consistent solving time, for example 10
minutes.
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Context

We hope to better understand incentives for participants in a proof-of-work
system.

Contributes to the growing area of cryptocurrency research.

Our work most closely relates to

▶ Arnosti and Weinberg 2018 consider a one-block asymmetric costs mining model and show
that lower cost leads to higher market share.

▶ Alsabah and Capponi 2020 explore a two-stage mining game consisting of research and
development, followed by competition.

▶ Cong, He, and Li 2019 examine mining pools and the impacts of their risk sharing.

We propose a continuous time (repeated) mining game in which miners optimize terminal
utility.
Our focus is on how factors such as competition, cost advantages, and resource endowment
affect profit distribution, mining power, and centralization.
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Results

▶ Agents with more resources have a stronger incentive to mine.
▶ This leads to preferential attachment and initial wealth imbalances are exacerbated.
▶ Under liquidity constraints, low-wealth miners are effectively blockaded by wealthier

miners.
▶ Cost advantages in mining lead to significant shares of the mining market, unaffected by

competition.
▶ These effects serve as explanations for the concentration of mining.
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Cryptocurrency Issues

▶ What one hears most about cryptocurrencies, particularly Bitcoin, concerns the wildness of
their prices, which seem to follow perpetual cycles of speculative mania and manic
depression.

▶ This talk is not about their prices: we are interested in understanding and modeling the
interaction of bitcoin miners and the consequent evolution of wealth inequality among
participants.

▶ Are cryptocurrencies currencies or commodities? CFTC in the US classifies them as
commodities, and their electronic structure of production mirrors the uncertainty and
language of mining resources in finite supply.

▶ Connection to game theoretic models of energy production from various sources many of
which, like oil, are exhaustible.
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Cryptocurrency Issues II

▶ Much of the buzz around crypto comes from novice investors scoring a quick profit off an
astounding price soar

▶ Data privacy concerns could be allayed by a payment and banking system founded on the
underlying blockchain technology.

▶ A largely unregulated network could have myriad unintended benefits for trafficking and
laundering.

▶ The hype may parallel that of the liberating internet a quarter century ago: anyone would
be able to communicate whatever they want to everyone, and now of course we do just
that.

▶ Time will tell the future of cryptocurrencies in society.
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Mining model

Let D = 1/10min.

For a miner i ∈ 1, . . . ,M producing αi
t hashes per dt, the block rate of miner i is

λi
t =

1
D

αi
t∑M

i=1 α
i
t
.

With costs c per unit of hash, the net reward is

−cαi
t dt + r dNi

t,

where Nt is a process for which

P[Ni
t+∆t − Ni

t = 1] = λi
t∆t + o(∆t) and P[Ni

t+∆t − Ni
t ≥ 2] = o(∆t).
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Continuum approximation

For large M, this interaction becomes very complex.

Unfortunately, the interaction is not of mean-field structure:
If M → ∞, either αi

t → 0 or
∑M

i=0 α
i
t → ∞.

However, observe that
pl. i’s hash rate
total hash rate

=
pl. i’s hash rate

#players × mean hash rate
≈

pl. i’s hash rate
pl. i’s hash rate + (#players −1) × mean hash rate

.

Let
λi

t
N=M
=

1
D

αi
t

αi
t + M 1

N−1
∑N

j=1,
j̸=i

αj
t

N→∞−−−−→ 1
D

αi
t

αi
t + Mᾱt

,

where ᾱ is interpreted in the mean field games sense.
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where ᾱ is interpreted in the mean field games sense.

7



Continuum approximation

For large M, this interaction becomes very complex.

Unfortunately, the interaction is not of mean-field structure:
If M → ∞, either αi

t → 0 or
∑M

i=0 α
i
t → ∞.

However, observe that
pl. i’s hash rate
total hash rate

=
pl. i’s hash rate

#players × mean hash rate
≈

pl. i’s hash rate
pl. i’s hash rate + (#players −1) × mean hash rate

.

Let
λi

t
N=M
=

1
D

αi
t

αi
t + M 1

N−1
∑N

j=1,
j̸=i

αj
t

N→∞−−−−→ 1
D

αi
t

αi
t + Mᾱt
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The miner’s problem

Recall that the net earnings from mining at the rate αt is

dXt = −cαt dt + r dNt.

Each miner observes the aggregate mining of the population, Mᾱ, and seeks to maximize
terminal utility:

v(t0, x; ᾱ) = sup
α

E[U(XT)|Xt0 = x],

The HJB equation is

∂tv + sup
α

(
−cα∂xv +

α

D(α+ Mᾱt)
∆v

)
= 0, v(T, x) = U(x),

where ∆v = v(t, x + r; ᾱ)− v(t, x; ᾱ).
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Optimal hash rate

The optimal response to the population mean hash rate ᾱ is

α∗(t, x; ᾱ) = argmax
α

(
−cα∂xv +

α

D(α+ Mᾱt)
∆v

)

=


− Mᾱt +

√
Mᾱt∆v(t, x; ᾱ)
Dc∂xv(t, x; ᾱ)

, if ᾱt <
∆v(t, x; ᾱ)

(M − 1)Dc∂xv(t, x; ᾱ)
,

0, otherwise.
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Fokker–Planck equation

With α∗ the optimal response to ᾱ, denote by m(t, x; ᾱ) the resulting density of miners.

Then m is a solution to

∂tm − ∂x(cα∗m)− 1
D

(
α∗(t, x − r)

α∗(t, x − r) + Mᾱt
m(t, x − r)− α∗(t, x)

α∗(t, x) + Mᾱt
m(t, x)

)
= 0,

with initial distribution m(t0, x) = m0(x).

This leads to a corresponding mean hash rate

, and we call ᾱ∗ an equilibrium mean hash rate if

ᾱ′
t =

∫
R
α∗(t, x; ᾱ )m(t, x; ᾱ ) dx, ∀t ∈ [t0,T].
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Mean field game

We are looking for a solution to the coupled system
0 = ∂tv + sup

α

(
−cα∂xv +

α

D(α+ Mᾱ∗
t )
∆v

)
, v(T, x) = U(x),

0 = ∂tm − ∂x(cα∗m)− 1
D

(
α∗(t, x − r)

α∗(t, x − r) + Mᾱ∗
t

m(t, x − r)− α∗(t, x)
α∗(t, x) + Mᾱ∗

t
m(t, x)

)
,

where α∗ is the optimizer in the first equation and

ᾱ∗
t =

∫
Et

α∗(t, x)m(t, x)dx.
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Solving the mean field game

Given any ᾱ, we can compute the following steps.

ᾱ

v α∗ m

ᾱ′

HJB argmaxα

argmaxα

FP

FP

∫
α∗m dx

Idea: Start with ᾱ and iterate this procedure ᾱ 7→ ᾱ′ until convergence to ᾱ∗.

This typically fails due to oscillations, especially for large M.

To temper the oscillations, we introduce inertia:

ᾱ 7→
(

1 − 1
M
)
ᾱ+

1
M ᾱ′.
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ᾱ v α∗ m

ᾱ′
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ᾱ 7→
(

1 − 1
M
)
ᾱ+
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Liquidity constrained mining

Miners are required to keep their wealth non-negative.

A miner’s activity ceases when its wealth reaches 0.

Let
U(x) = 1

1 − γ
x1−γ for γ ∈ (0, 1).

Lemma

For any time t and equilibrium hash rate ᾱ∗
t > 0, there exists xb(t) > 0 such that zero rate

mining is optimal, i.e., α∗(t, x) = 0 for x ≤ xb(t).
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t > 0, there exists xb(t) > 0 such that zero rate

mining is optimal, i.e., α∗(t, x) = 0 for x ≤ xb(t).

13



60 80 100 120 140
0

m

t = 0
t = 30

60 80 100 120 140
0

m

t = 0
t = 45

60 80 100 120 140
0

x

m

t = 0
t = 60

60 80 100 120 140
0

x
m

t = 0
t = 90

14



100 150 200

0.0

0.005

0.01

0.015

0.02

0.025

x

Profit
t = 0
t = 45
t = 90

0 20 40 60 80
0

0.1

0.2

0.3

0.4

t

Miners with x ≥ 100
Proportion of total
Share of profits

15



Cost-advantaged miner

Cost-advantaged miner hashes at the rate β, pays kccβt for kc > 0, and mines blocks at the rate

λ1
t =

βt
D(βt + Mᾱt)

.

For simplicity, this miner is assumed wealthy and risk-neutral:

sup
βt≥0

E

[∫ T

0
−kccβtdt + pdN1

t

]
.

The optimal hash rate is

β∗(t; ᾱ) =


− Mᾱt +

√
pMᾱt
kccD , if ᾱt <

p
kccMD ,

0, otherwise.
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The other miners

Taking into account the advantaged miner,

λt =
αt

D(αt + (M − 1)ᾱt + βt)
,

New maximizer

α∗(t, x; ᾱ, β) =


− (Mᾱt + βt) +

√
(Mᾱt + βt)∆v

Dc∂xv
, if Mᾱt + βt <

∆v
Dc∂xv

,

0, otherwise.
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Explicit solution

Proposition

Suppose the individual miners have exponential utility U(x) = − 1
γ e−γx and no liquidity

constraints, suppose the relative cost efficiency satisfies

kc <
γr

1 − e−γr
M

M − 1 ,

and let
κ1 =

1 − e−γr

Dcγ , κ2 =
Mr

Dkcc
.

Then, in equilibrium, all miners are active with

α∗(t, x) ≡ ᾱ∗
t ≡ κ2

1κ2
(κ1 + κ2)2 > 0, β∗

t ≡ κ1κ2(κ2 − Mκ1)

(κ1 + κ2)2 > 0,

for all t ∈ [t0,T] and x ∈ R.
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Market share and profits

For γ � p and M � 1,
β∗

β∗ + Mᾱ∗ ≈ 1 − kc.

In other words, mining competition does not affect the market share of the advantaged miner.

The hash rates β∗, α∗ and profits

Y1
t0+t = −kccβ∗t + rN1∗

t , Yt0+t = −cα∗t + rN∗
t

satisfy, as M → ∞,

β∗
t = O(1) α∗(t, x) = O(1/M)

E(Y1
t0+t) = O(1), E(Yt0+t) = O(1/M),

Var(Y1
t0+t) = O(1), Var(Yt0+t) = O(1/M).
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Liquidity constraints
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Liquidity constraints
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Conclusion

▶ Concentration of Bitcoin mining enables censorship of transactions.
▶ The strong incentives for concentration is fundamental to proof-of-work.
▶ This suggests that the current state of aggregation into a small number of mining pools is

not transient.
▶ Not only is centralization at odds with the core priciples of Bitcoin; it is also a danger to

the system as it enables censorship and possibly fraudulent transactions.
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