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Introduction & Outline

1. Context: Nonparametric Estimation

I Goal in this paper is to study a standard problem with a “new” tool

I How does deep learning do in a problem we understand well

I We not addressing: high dimensionality, adaptivity, double-descent, . . .

2. Main Results

I Nonasymptotic high-probability bounds and implied rates

I “Industry standard” setup: multi-layer perceptron, ReLU activation

I Generic results for other architectures

3. Deep Learning In Economics (if time)

I Structured models for individual heterogeneity

I Structured network to match

I Semiparametric inference



Deep Feed-Forward Neural Networks:

Problem Set Up



Nonparametric Problem

General regression-type problem

I Outcome Y , d covariates X ∈ Rd

I Target is f? = arg minE [` (f, Y,X)]

I Any loss function such that:

1. Lipschitz:
∣∣`(f, y,x)− `(g, y,x)

∣∣ ≤ C`
∣∣f(x)− g(x)

∣∣
2. Curvature: c1E

[
(f − f?)

2
]
≤ E[`(f, Y,X)]− E[`(f?, Y,X)] ≤ c2E

[
(f − f?)

2
]

I Includes least squares, logistic, poisson, . . .

DNN estimator

f̂dnn := arg min
fθ∈Fdnn

n∑
i=1

` (f, yi,xi) , e.g. ` (f, yi,xi) =
1

2
(y − f(x))2

I No optimization issues here

I Sometimes helpful to think of a linear sieve, but with learned basis: f̂(x) = p̂(x)′γ̂



Feedforward Neural Networks

A set of units:

I d = dim(X) input units

I One output unit, Y

I U hidden units between

Units are arranged into layers:

I According to a directed, acyclic graph

I Unit is in layer l if it has a predecessor in l − 1 and none for any l′ ≥ l
I For parameters wh,l and bh,l, unit h in layer l computes x̃h,l+1 = σ(x̃′lwh,l + bh,l)

↪→ layer l returns x̃l+1 = (x̃1,l+1, . . . , x̃Hl,l+1)

I Dimension of x̃l = Hl = width

I Number of layers = L = depth

I Final layer outputs appropriate f̂dnn(x), e.g., for LS f̂ = x̃L(x)′wL + bL

Computation

I Layer by layer, back-propagation implements chain rule

I θ = all weights and “biases” {(w′h,l, bh,l)}; W total parameters



Architecture Choice 1: Multi-Layer Perceptron

MLP a.k.a. Fully-connected feedforward network

I Fully connected to adjacent layers

I No hyperlinks

I Not necessarily “rectangle”

I Now common practice
(though many others exist)

Embed any feedforward network in an MLP:



Architecture Choice 2: Rectified Linear Unit Activation Function

The activation function for each node: σ(z) = max(0, z)
I Used at each node: (x̃′lwl + bl) 7→ σ(x̃′lwl + bl)
I The ReLU activation is ubiquitous, replacing sigmoid-type
I Better optimization properties, does not get stuck in zero-gradient areas
I Conjecture: same results hold for any piecewise linear activation, slight modifications
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Architecture Choice 3: Unbounded Weights

Parameters of the DNN are “slopes” wh,l and “intercepts” bh,l

I Each node x̃l 7→ (x̃′lwh,l + bh,l) 7→ σ (x̃′lwh,l + bh,l)

I Common in theory to impost a bound on all parameters:

max
l≤L

max
h≤Hl

‖wh,l‖∞ ∨ |bh,l| ≤ B

I The reason: bounded weights make complexity arguments easier

Practically this seems innocuous

I Because empirically weights are often “small”

I And certainly optimizers don’t return wh,l =∞

But actually:

I Bounds cause corner solutions and other computational problems

I How do you set the bound?

I Is this some type of regularization?

What about in theory?



Architecture Choice 3: Unbounded Weights

For intuition, go back to a linear regression model:

yi = xiβ + εi

The analogue of bounded weights in a NN is a bound on |β̂|

Seems innocuous: all theory and all practice assume |β| bounded

I Theory: E
[
β̂ols |Xn

]
= β

I Practice: How many papers have a table with β̂ =∞?

The argument goes like this:

1. If |β| <∞ (which we all agree on), then there is some B > 0 such that |β| < B

2. The exact constant B doesn’t matter, because I can always rescale:

yi = xiβ + εi = yi =
(
xiB

) β
B

+ εi

3. Therefore, without loss of generality, I restrict estimation to
∣∣β̂∣∣ ≤ 1

Wait, what?



Architecture Choice 3: Unbounded Weights

Same thing for neural networks: instead of rescaling, we do a copying trick

Simple example:

f? =
ReLU

(
βx+ 1

)
− ReLU

(
βx− 1

)
2
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With unbounded weights

1. 2 hidden units for any β

2.
√

1/n rate for any β

With bounded weights ≤ 1

1. 2β units required

2.
√
β/n rate

If |β| < B, then “asymptotically” this copying makes no difference



Architecture Choice 3: Unbounded Weights

For nonparametrics, the copying happens on the ideal approximating network

ReLU universal approximation idea:

1. Composition of ReLU = piecewise linear

2. Piecewise linear ≈ any polynomial

3. Smooth fcn ≈ Taylor series = polynomial

⇒ ReLU ≈ any smooth fcn (Yarotsky)
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Now argue just like before

1. If f? is smooth (say Hölder p) then max
k≤p

∥∥f (k)
?

∥∥
∞< B, some B

2. Therefore with bounded weights ≤ 1, need 2Bp = “O(1)′′ ReLU units to ≈ f?

There’s a big difference between |β| < B for some B vs a specified, known B



Nonasymptotic High Probability Bounds

and

Implied Convergence Rates



Main Results

Generic Architecture

I Let Fdnn be a generic class of feed-forward DNNs with ReLU activation

I Depth = L, total parameters = W

I Assume f? is bounded. Define the bias as εdnn := inf
f∈Fdnn

‖f − f?‖∞

Then we have the general result:

With probability at least 1− e−γ :

En
[
(f̂dnn − f?)2

]
≤ C

(
WL logW

n
logn+

log log n+ γ

n
+ ε2dnn

)

Comments

I Nonasymptotic, high-probability bounds. Convergence rates follow immediately.

I Final bound depends on the architecture and the assumed function space



Main Results

Multi-Layer Perceptrons and Smooth Functions

I Matching standard practice: MLP + ReLU

I For MLP: W = H2
nLn, Hn = common width order

I Standard smoothness assumption: f? is p-smooth

A leading, important case of the first result is then

En
[
(f̂mlp − f?)2

]
= OP

(
H2
nL

2
n log(H2

nLn)

n
logn+ ε2mlp

)
. . . at best = OP

(
n
− p

p+d log8 n
)

Comments

I Best rate uses Hn � n
d

2(p+d) log2 n and Ln � logn

I Fast enough for semiparametrics . . . but not optimal (n−2p/(2p+d))

I Relies on best-known approximation results for MLP-ReLU: εmlp = εmlp(Hn, Ln)

I Loose bounds? Or really suboptimal?



Main Results

Two other interesting results

1. Optimal rate

I A special, cooked-up architecture delivers n−
2p

2p+d , i.e. Stone’s bound

I Only of theoretical interest; architecture not practical

2. Fixed-width

I An MLP, with H = 2d+ 10 6→ ∞ and Ln � n
d

2(2+d) , can obtain n−
2

2+d

I Most different from 1990s results

I Interesting in transfer learning, but limited by rate (i.e. p = 1)

Comment: future results?

I New approximations (bounds on bias εdnn) can yield new rates immediately

I E.g.: fixed-width for p > 1 → Corollary 2 immediately sharpens

I E.g.: Sharper εmlp for MLP-ReLU → Faster rate on previous slide



Proof Intuition

Start with usual decomposition:

I Truth: f?

I Estimate: f̂

I Best Approximation: fn ∈ Fdnn , arg min ‖f − f?‖∞
I Usual bias-variance:

‖f̂ − f?‖2L2(X) . (E− En)
[
`(f̂ ,z)− `(f?,z)

]
︸ ︷︷ ︸

Empirical Process

+En
[
`(fn,z)− `(f?,z)

]
︸ ︷︷ ︸

Bias

Key motivation in the proof

I Control the empirical process without bounding the weights



Proof Intuition: Empirical Process

Empirical Process Term

I Employ localization techniques, e.g. Bartlett, Bousquet, Mendelson (2005)

I Sharp VC dimension bounds for ReLU networks: Bartlett et al (2017)

Rademacher Complexity

RnF := sup
f∈F

1

n

n∑
i=1

ηif(xi).

I Rademacher draws, ηi = ±1

I Intuitively measures how flexible the function class is for predicting random signs

I Have good control of Empirical Rademacher Complexity Eη[RnF ] (via VC dim)

Key Idea: Recursive Improvement

I Suppose we knew ‖f̂ − f?‖2L2(X) ≤ r02

I Let G := {g = `(f,z)− `(f?,z) : f ∈ Fdnn, ‖f − f?‖2L2(X) ≤ r02}
I Use this to tighten the bound



Proof Intuition: Empirical Process

Step (i) Symmetrization: w.p. ≥ 1− 2e−γ

(E− En)
[
`(f̂ ,z)− `(f?,z)

]
. EηRnG +

√
r02γ

n
+
γ

n

Step (ii) Complexity Bound:

EηRnG . r0

√
Pdim(Fdnn)

n
logn . r0

√
WL log(W )

n
logn

Step (iii) Improve the Initial Bound:

‖f̂ − f?‖2L2(X) . (E− En)
[
`(f̂ ,z)− `(f?,z)

]
+ En

[
`(fn,z)− `(f?,z)

]
. r0 ·

(√
WL logW

n
logn+

√
γ

n

)
+ ε2n + εn

√
γ

n
+
γ

n

= r0o(r0)� r0
2 = initial bound

Step (iv) Stopping point:

This trick keeps working if r0 >

√
WL logW

n
logn



Deep Learning In Economics:

Individual Heterogeneity



The Problem

1. We are interested in some economic model with heterogeneous effects:

L
(
data , βi

)
However:
I Only with long panels β̂i ≈ βi
I Estimates may not conform to theory
I And what about new individuals?

2. Instead we balance structure and flexibility, using covariates:

L
(
data , β(xi)

)
I Intuitively the same as using interaction terms, but β(x) is a flexible function

3. Specifically we use deep neural networks to capture the heterogeneity:

L
(
data , β̂dnn(xi)

)



Framework for Heterogeneity

1. Model E[Y | x, t] = G
(
α(x) + β(x)′t

)
I Special case of L

(
{yi, ti,xi} , β(xi)

)
, just for today

I Old history in statistics, a.k.a. varying/functional/smooth coefficient model
I But here our motivation is heterogeneity + structure
+ Interpretable model
+ Economically meaningful
+ Respects economic principles
+ Fully flexible heterogeneity

Compare to:

I Classical parametric model: E[Y | x, t] = G
(
α+ β′t+ γ′x

)
+ Interpretable, meaningful
− Limited heterogeneity, no flexibility

I Fully nonparametric, naive ML model: E[Y | x, t] = G
(
u(t,x)

)
+ Fully heterogeneous and flexible
− Mostly uninterpretable, may not make economic sense
− Cannot recover second-stage objects



Why Deep Learning?

The model imposes economic structure, respects economic theory, . . . .

E[Y | x, t] = G
(
α(x) + β(x)′t

)
We need an estimator that is “structurally compatible”

I The model structure is baked directly into the estimation

I Global restriction, easy to impose

DNNS are an ideal method

I Both structurally compatible and capable of tackling modern problems

I Economic structure helps in implementing ML



Why Deep Learning?

Big picture point: implementing ML in economics, why are we ignoring economics?

I Avoid pure prediction: ŷ = f̂(x, t), instead learn α(x) and β(x) jointly

I Point is not to adapt to structure

I We design our novel architecture to model heterogeneity, enforce structure:

x1

xd

α(x)

β(x)

t

G
(
α(x) + β(x)′t

)

Hidden
layers

Inputs
Parameter

layer
Model
layer



Main Results

Key Results
I Only d = dim(x) affects the rate, i.e. dimension of heterogeneity

I Naive ML approach have slow rate: dim(x) + dim(t)

I Discrete variables handled seamlessly and don’t affect rate

I Former uses the same architecture idea, and is more novel; latter is standard

Main Rate Theorem

I Building on FLM1

I Say α(·), β(·) are p-smooth in the dc continuous covariates

I Set width Hn � n
dc

2(p+dc) log2 n and depth Ln � logn

En
[
(β̂dnn − β)2

]
= OP

(
n
− p

p+dc log8 n
)



Framework for Heterogeneity

1. Model E[Y | x, t] = G
(
α(x) + β(x)′t

)
2. Inference Target θ0 = E

[
H(X, α(X),β(X), t∗)

]

Researcher chooses H function:

I Vectors are allowed

I So are implicit functions

I Not possible without structure

I Only require you to compute ∇H = (∂H/∂α, ∂H/∂β)′

1+2 simultaneously cover many economically interesting contexts:

I Recovering existing results: ATE, partially linear model, . . .

I Delivering new applications: choice models, average partial effects,
continuous/multiple treatments, production functions, count data, Berry logit, . . .

I Idea extends to IV, multinomial choice, systems, . . .



Framework for Heterogeneity

1. Model E[Y | x, t] = G
(
α(x) + β(x)′t

)
2. Inference Target θ0 = E

[
H(X, α(X),β(X), t∗)

]

Main theoretical result of this section:

I Single influence function calculation, ψ − θ0, (our model structure + Newey 1994)

ψ = H(α,β,x) + ∇H(α,β,x)′Λ(x)−1(1, t)′
(
y −G

(
α(x) + β(x)′t

))
I One crucial piece is Λ(x) = var[Ġ1/2T |x], Ġ = ∂G(u)/∂u

I Intuition: generalization of the inverse propensity part of the IF

I Implementation: Estimate in observational data, but compute in experiments

I For semiparametric inference in general: small denominators are a bear

I Inference then follows standard methods, e.g. cross-fitting (Chernozhukov et al 2018)



Seeing it All in Action:

What is Advertising Worth?



How does advertising content affect purchasing?

Bertrand, Karlan, Mullainathan, Shafir, Zinman (QJE, 2010)

I Advertising for shortish-term loans in South Africa

I Y = {0, 1} = Applied for a loan

I T = 12 ad characteristics, randomly assigned (based on x)
I Interest rate: directly compute value
I Other qualities (photos, tables, uses) can be valued

I X = 11 individual characteristics, some discrete

I Original questions: does advertising content matter? How much?

I Original results: marginal effects from probit



Applying the Framework

1. Structural model: E[Y | x, t] = logit
(
α(x) + β(x)′t

)
2. Average marginal effects:

θ0 = E
[
∂E[Y |X, t∗]

∂t

]
= E

[
β(X)G(1−G)︸ ︷︷ ︸
H(α, β)

]
3. Estimate α̂dnn(xi), β̂dnn(xi)

4. Inference via IF
I Compute Λ(x): nontrivial, but computable

What couldn’t we do before?

I Structural model allows for computation of marginal effects
I Deep learning means 11-dimensional nonparametrics feasible

I 13! nonparametric functions: α(x),β(x)

I Standard errors rely on novel IF



Results Table

Variable QJE DNN ME 95% CI Pr (β (x) > 0) Coef. of Variation

Interest rate offer -0.0029 -0.0047 -0.0083 -0.0011 0.1337 1.0211

We speak your language -0.0043 -0.0048 -0.0137 0.0041 0.2533 2.0542

Special rate for you 0.0001 -0.0034 -0.0120 0.0053 0.5001 4.4506

No photo 0.0013 0.0038 -0.0060 0.0136 0.5723 3.4931

Black photo 0.0058 0.0016 -0.0064 0.0096 0.5402 5.1348

Female photo 0.0057 0.0060 -0.0021 0.0141 0.6820 2.3375

Cell phone raffle -0.0023 -0.0009 -0.0104 0.0085 0.4812 17.0059

Example loan shown 0.0068 0.0044 -0.0084 0.0173 0.8631 1.9379

No loan use mentioned 0.0059 0.0108 0.0009 0.0207 0.7499 1.0936

Interest rate shown 0.0025 0.0017 -0.0085 0.0119 0.6289 7.9903

Loss comparison -0.0024 0.0001 -0.0081 0.0083 0.2342 89.3606

Competitors rate shown -0.0002 0.0013 -0.0085 0.0111 0.4107 9.6790



Estimates



Offer Rate Coefficient



Beyond Marginal Effects: Optimal Offers

Some Real Economics

I Assume the firm wishes to maximize profits:

πi = max
r=rate

L [rG (r)] [1−D (r)]

I L = expected dollar loan amount, normalize to 1 (doesn’t impact the rate)

I r = the interest rate offered

I G(r) = the probability of acceptance (depends on α(xi), β(xi))

I [1−D (r)] = probability of non-default on the loan
(calibrated to match the results in the QJE using a logit kernel)

I Then it is straightforward to show that

∂π

∂r
=
(
rĠ (r)βr +G (r)

)
[1−D (r)]− rG (r) Ḋ (r) δ = 0



Beyond Marginal Effects: Optimal Offers

I Simplifying:

∂π

∂r
= (r (1−G (r))βr + 1) [1−D (r)]− rḊ (r) δ = 0

I And using the logit structure:

r =
1 + r (1−G (r))βr

D (r) δ

I There will a unique fixed point since the denominator of the RHS is decreasing in r
for βr < 0 and δ > 0

I Therefore:

r∗ =
1 + r∗ (1−G (r∗))βr

D (r∗) δ

Applying the Framework

I Even if we don’t have it in closed form, r∗ is a smooth function of α(x),β(x)

⇒ We can do inference on θ0 = E[H(α,β, r∗)]

I derivatives can be calculated via implicit differentiation or numerically:
∂H

∂r∗
∂r∗

∂β

I Impossible without our results and without exploiting heterogeneity



Optimal Offers
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Wrapping Up



Wrapping Up

Deep Learning can have a place in the economics toolbox
Our results are practicable & broadly applicable

Contributions to deep learning itself

I Nonasymptotic bounds for general regression problems

I Matching common practice
I Fully connected network, ReLU activation, unbounded weights

I Shows good empirical performance

Contribution to economics ∩ ML: structured models with heterogeneity

I Wide ranging methodology

I Novel architecture for structured models

I Inference via novel IF

I Big picture point: implementing ML in economics, don’t ignore economics

Long way to go

I Computational issues: optimization, tuning, easy to use tools, . . .

I Theoretical issues: optimal architectures, depth vs. width, different data types, . . .



Thanks!
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