Deep Neural Networks for Estimation and Inference

Max H. Farrell

with Tengyuan Liang & Sanjog Misra

Introduction & Outline

1.
>
>
>

vVvyyvy»pn

vVVvyvw

Context: Nonparametric Estimation
Goal in this paper is to study a standard problem with a “new" tool
How does deep learning do in a problem we understand well

We not addressing: high dimensionality, adaptivity, double-descent, ...

Main Results

Nonasymptotic high-probability bounds and implied rates

“Industry standard” setup: multi-layer perceptron, ReLU activation
Generic results for other architectures

Deep Learning In Economics (if time)
Structured models for individual heterogeneity
Structured network to match

Semiparametric inference

Deep Feed-Forward Neural Networks:

Problem Set Up

Nonparametric Problem

General regression-type problem
» Outcome Y, d covariates X € R¢
» Targetis fx = argminE [¢(f,Y, X)]
» Any loss function such that:
L. Lipschitz: [¢(f,y,2) — £(9,y,2)| < Co|f(x) — g(z)]
2. Curvature: ciE[(f — f2)%] <E[(f,Y, X)] — E[6(f+, Y, X)] < 2E[(f — f+)?]

» Includes least squares, logistic, poisson, ...
DNN estimator

ﬁ)NN = arg mlnze (f7 Yi, $z)) e.g. Z (f7 Yi, 331) = %(y - f(a;))2

fo € Fonx i=1

» No optimization issues here

~

> Sometimes helpful to think of a linear sieve, but with learned basis: f(x) = p(x)'¥

Feedforward Neural Networks

A set of units:
» d = dim(X) input units
» One output unit, Y

» U hidden units between

Units are arranged into layers:
» According to a directed, acyclic graph
» Unit is in layer [if it has a predecessor in [— 1 and none for any I’ > 1

» For parameters wy,; and by, unit h in layer [computes % 141 = o (&jwn,; + bu1)
— Iayer [returns iﬁH_l = (5'1,1_‘_1, e i'Hl,H—l)

» Dimension of &; = H; = width
» Number of layers = L = depth

» Final layer outputs appropriate ﬁ)NN(w), e.g., for LS]?: Zr(x) wr +br

Computation
» Layer by layer, back-propagation implements chain rule

> 0 = all weights and “biases” {(w}, ;,bn1)}; W total parameters

Architecture Choice 1: Multi-Layer Perceptron
MLP a.k.a. Fully-connected feedforward network

» Fully connected to adjacent layers
» No hyperlinks
» Not necessarily “rectangle”

» Now common practice
(though many others exist)

Embed any feedforward network in an MLP:

Architecture Choice 2: Rectified Linear Unit Activation Function

The activation function for each node: o(z) = max(0, z)

> Used at each node: (Zjw; + by) — o(Zjw; + br)

» The RelLU activation is ubiquitous, replacing sigmoid-type

» Better optimization properties, does not get stuck in zero-gradient areas

» Conjecture: same results hold for any piecewise linear activation, slight modifications

Architecture Choice 3: Unbounded Weights

Parameters of the DNN are “slopes” wy,; and “intercepts” by
» Each node &; — (i;wh,l =+ bh,l) — o (a?:{wh,l =+ bh,l)

» Common in theory to impost a bound on all parameters:

max max lwn,illoe V |bri] < B
I<L h<H

» The reason: bounded weights make complexity arguments easier

Practically this seems innocuous
» Because empirically weights are often “small”

» And certainly optimizers don't return wy,; = oo

But actually:

» Bounds cause corner solutions and other computational problems
» How do you set the bound?

» Is this some type of regularization?

What about in theory?

Architecture Choice 3: Unbounded Weights

For intuition, go back to a linear regression model:
Yi =i +e;

The analogue of bounded weights in a NN is a bound on |f]|

Seems innocuous: all theory and all practice assume |3| bounded
» Theory: E[Bow | Xn| =8

» Practice: How many papers have a table with B = o0?

The argument goes like this:

1. If |B] < oo (which we all agree on), then there is some B > 0 such that |3| < B
2. The exact constant B doesn't matter, because | can always rescale:

Yi=Tif+ei =y = (miB)%+gi

3. Therefore, without loss of generality, | restrict estimation to ‘/3” <1

Wait, what?

Architecture Choice 3: Unbounded Weights

Same thing for neural networks: instead of rescaling, we do a copying trick

10
|
1
|
.
|
N

0.9
1

Simple example:

0.8

0.

ReLU(Bz + 1) — ReLU(Bz — 1)
f* = 5 ~

0.6
1

I
’. / — beta=2
7/ - — beta=10

1.0

0.5

0.4 0.6 0.8

With unbounded weights With bounded weights < 1
1. 2 hidden units for any 8 1. 273 units required
2. y/1/n rate for any 3 2. y/f/n rate

If | 8] < B, then “"asymptotically” this copying makes no difference

Architecture Choice 3: Unbounded Weights

For nonparametrics, the copying happens on the ideal approximating network

ReLU universal approximation idea: @
1. Composition of ReLU = piecewise linear Q
2. Piecewise linear =~ any polynomial

3. Smooth fcn & Taylor series = polynomial

= ReLU = any smooth fcn (Yarotsky)

0.0

Now argue just like before

1. If f« is smooth (say Holder p) then max Hffk) Hoo < B, some B
sp

2. Therefore with bounded weights < 1, need 2Bp = “O(1)” ReLU units to = f

There's a big difference between |3| < B for some B vs a specified, known B

Nonasymptotic High Probability Bounds
and

Implied Convergence Rates

Main Results

Generic Architecture
» Let Fonw be a generic class of feed-forward DNNs with ReLU activation
» Depth = L, total parameters = W

» Assume f, is bounded. Define the bias as epx :=

inf | f = filleo

feFn
Then we have the general result:

With probability at least 1 — e~ 7:

€pNN

~ W Llog W log 1
E, [(fpm—f*)ﬂ gc(%mgwr%”*%r 2)

Comments

» Nonasymptotic, high-probability bounds. Convergence rates follow immediately.
» Final bound depends on the architecture and the assumed function space

Main Results

Multi-Layer Perceptrons and Smooth Functions

» Matching standard practice: MLP 4 RelLU

» For MLP: W = HﬁLn, H, = common width order
» Standard smoothness assumption: f, is p-smooth

A leading, important case of the first result is then

En [(Fur = £)°] = O <%<HL>

logn + efm)

...at best = Op (nW’pW log® n)

Comments
d
» Best rate uses H, =< n2@+d log”n and L, < logn
> Fast enough for semiparametrics . .. but not optimal (n~2r/(2P+d)

> Relies on best-known approximation results for MLP-ReLU: exwr = eve (Hn, L)
» Loose bounds? Or really suboptimal?

Main Results

Two other interesting results

1. Optimal rate
i . i __2p ,
» A special, cooked-up architecture delivers n~ 2r+d, i.e. Stone's bound

» Only of theoretical interest; architecture not practical

2. Fixed-width
d
» An MLP, with H = 2d + 10 /4 oo and L,, < n22+d) can obtain nf’y%d
»> Most different from 1990s results

> Interesting in transfer learning, but limited by rate (i.e. p = 1)

Comment: future results?

» New approximations (bounds on bias epn) can yield new rates immediately
» E.g.: fixed-width for p > 1 — Corollary 2 immediately sharpens

» E.g.: Sharper €yr for MLP-ReLU — Faster rate on previous slide

Proof Intuition

Start with usual decomposition:
» Truth: f.
» Estimate: f

» Best Approximation: fn € Foxy , argmin ||f — fu|loo
» Usual bias-variance:

If = £iliac S (B =) [6f,2) = €Fe, 2)] +En[0(fn,2) = €(f., 2)]

Empirical Process Bias

Key motivation in the proof

» Control the empirical process without bounding the weights

Proof Intuition: Empirical Process

Empirical Process Term

» Employ localization techniques, e.g. Bartlett, Bousquet, Mendelson (2005)
» Sharp VC dimension bounds for ReLU networks: Bartlett et al (2017)

Rademacher Complexity

1 n
R, F := sup — 1 f(xs).
fern; ()

» Rademacher draws, n; = +1
» Intuitively measures how flexible the function class is for predicting random signs

» Have good control of Empirical Rademacher Complexity E,[R,F] (via VC dim)

Key ldea: Recursive Improvement
> Suppose we knew ||f — full7, (x) < 70°

> Let G:={g=L(f,2) = £(fe,;2) : [€ Foun, If = fellTyx) <707}
» Use this to tighten the bound

Proof Intuition: Empirical Process

Step (i) Symmetrization: w.p. > 1 —2e™"”

(E—Ea) [(f,2) = (/)] S EyRa Q+W+Z

Step (ii) Complexity Bound:
Pdlmfl}"nw) logn < 70 WL lzg(W) logn

Step (iii) Improve the Initial Bound:
If = £laco S E—Ea) [6f,2) = €fe, 2)] +Ea[0Fn 2) = £(J, 2)]
S ro- (\/ Wileg W logn + \/7> + e+ En\/z"_ x
n n n n
= rpo(ro) K ro? = initial bound

Step (iv) Stopping point:

WL
This trick keeps working if o > W logn O

Deep Learning In Economics:

Individual Heterogeneity

The Problem

1. We are interested in some economic model with heterogeneous effects:

[,(data , ﬁi)

However:

»> Only with long panels j3; =~ f;

» Estimates may not conform to theory
» And what about new individuals?

2. Instead we balance structure and flexibility, using covariates:

L(data, B(x;))

> Intuitively the same as using interaction terms, but S(x) is a flexible function

3. Specifically we use deep neural networks to capture the heterogeneity:

L(data, BDNN(QH))

Framework for Heterogeneity

1. Model E[Y | @, t] = G(a(x) + B(x)'t)

> Special case of L£({yi,ti,:} , B(w:)), just for today
» Old history in statistics, a.k.a. varying/functional/smooth coefficient model

» But here our motivation is heterogeneity + structure

-+ Interpretable model

+ Economically meaningful

+ Respects economic principles
+ Fully flexible heterogeneity

Compare to:
> Classical parametric model: E[Y | @, t] = G(a+ @'t + v'x)

+ Interpretable, meaningful
— Limited heterogeneity, no flexibility

> Fully nonparametric, naive ML model: E[Y | x,t] = G(u(t,x))
+ Fully heterogeneous and flexible
— Mostly uninterpretable, may not make economic sense
— Cannot recover second-stage objects

Why Deep Learning?

The model imposes economic structure, respects economic theory,

ElY |z, t] = G(a(z) + B(x)'t)

We need an estimator that is “structurally compatible”
» The model structure is baked directly into the estimation

» Global restriction, easy to impose

DNNS are an ideal method

» Both structurally compatible and capable of tackling modern problems
» Economic structure helps in implementing ML

Why Deep Learning?

Big picture point: implementing ML in economics, why are we ignoring economics?
> Avoid pure prediction: § = f(,t), instead learn a(z) and B(x) jointly
» Point is not to adapt to structure

» We design our novel architecture to model heterogeneity, enforce structure:

Hidden
Inputs

-

Parameter Model
layer layer

7 \‘ ?
/‘) cla@ @y

Main Results

Key Results
» Only d = dim(z) affects the rate, i.e. dimension of heterogeneity
> Naive ML approach have slow rate: dim(x) + dim(¢)

» Discrete variables handled seamlessly and don't affect rate

» Former uses the same architecture idea, and is more novel; latter is standard

Main Rate Theorem
» Building on FLM1

> Say «(-), B(-) are p-smooth in the d. continuous covariates

de
> Set width H,, < n2®+d) log® n and depth L, < logn

E, [(//B\DNN - ,3)2] = Op (n_ﬁ log® n)

Framework for Heterogeneity

1. Model E[Y | @, t] = G(a(x) + B(x)'t)
2. Inference Target 6o = E[H(X,a(X),B(X),t")]

Researcher chooses H function:
» Vectors are allowed
» So are implicit functions
» Not possible without structure
> Only require you to compute VH = (0H/d«, OH/O3)’

142 simultaneously cover many economically interesting contexts:
» Recovering existing results: ATE, partially linear model, ...

» Delivering new applications: choice models, average partial effects,

continuous/multiple treatments, production functions, count data, Berry logit, . ..

» |dea extends to IV, multinomial choice, systems, ...

Framework for Heterogeneity

1. Model E[Y | @, t] = G(a(x) + B(x)'t)

2. Inference Target 6o = E[H(X,a(X),B(X),t")]

Main theoretical result of this section:

» Single influence function calculation, ¥ — 6o, (our model structure + Newey 1994)
¥ = H(a,B,2) + VH(a,B,2) A=) (1,t) (y - Glal) + B(2)'1))

> One crucial piece is A(x) = var[GY?T|x], G = dG(u)/du
» Intuition: generalization of the inverse propensity part of the IF
» Implementation: Estimate in observational data, but compute in experiments

» For semiparametric inference in general: small denominators are a bear

» Inference then follows standard methods, e.g. cross-fitting (Chernozhukov et al 2018)

Seeing it All in Action:

What is Advertising Worth?

How does advertising content affect purchasing?

Bertrand, Karlan, Mullainathan, Shafir, Zinman (QJE, 2010)
» Advertising for shortish-term loans in South Africa
> Y ={0,1} = Applied for a loan

» T = 12 ad characteristics, randomly assigned (based on x)

> Interest rate: directly compute value
» Other qualities (photos, tables, uses) can be valued

» X = 11 individual characteristics, some discrete

v

Original questions: does advertising content matter? How much?

v

Original results: marginal effects from probit

Applying the Framework

1. Structural model: E[Y | z,t] = logit(a(x) + B(x)'t)
2. Average marginal effects:
PR {6E[Y|X,t]]

5 =E[B(X)G(1-G)]

|

H(a, B)

3. Estimate apaw (@), Boa ()
4. Inference via IF
» Compute A(x): nontrivial, but computable

What couldn’t we do before?

» Structural model allows for computation of marginal effects

» Deep learning means 11-dimensional nonparametrics feasible
» 13! nonparametric functions: a(x), 3(x)

» Standard errors rely on novel IF

Results Table

Variable QIJE DNN ME 95% CI Pr (B (x) > 0) | Coef. of Variation
Interest rate offer -0.0029 -0.0047 -0.0083 | -0.0011 0.1337 1.0211
‘We speak your language -0.0043 -0.0048 -0.0137 | 0.0041 0.2533 2.0542
Special rate for you 0.0001 -0.0034 -0.0120 | 0.0053 0.5001 4.4506
No photo 0.0013 0.0038 -0.0060 | 0.0136 0.5723 3.4931
Black photo 0.0058 0.0016 -0.0064 | 0.0096 0.5402 5.1348
Female photo 0.0057 0.0060 -0.0021 | 0.0141 0.6820 2.3375
Cell phone raffle -0.0023 -0.0009 -0.0104 | 0.0085 0.4812 17.0059
Example loan shown 0.0068 0.0044 -0.0084 | 0.0173 0.8631 1.9379
No loan use mentioned 0.0059 0.0108 0.0009 | 0.0207 0.7499 1.0936
Interest rate shown 0.0025 0.0017 -0.0085 | 0.0119 0.6289 7.9903
Loss comparison -0.0024 0.0001 -0.0081 | 0.0083 0.2342 89.3606
Competitors rate shown -0.0002 0.0013 -0.0085 | 0.0111 0.4107 9.6790

Estimates

p
4 g H
5
H : g
" H
I s d 5 f
g i H £
H
3 H H
H H H
s - - -
H B H
H P
H .
H . .
¢ :
4
5 B 5
i
i H ER
f
: H
5 H
H
4 H
§ s .
4
H
o - e o
2 H
10 H g
y :
H
s
. H
s £
. 1 t
5
s
° H
3
: H
A 2
- = [=

Offer Rate Coefficient

-~ DNN
- QIE

100 120
L L

80
!

Density

001 0.00 0.01 0.02

offerd.

Beyond Marginal Effects: Optimal Offers

Some Real Economics

» Assume the firm wishes to maximize profits:

m = max L [rG (r)][1 — D (r)]

r=rate

» [= expected dollar loan amount, normalize to 1 (doesn’t impact the rate)
» 7 = the interest rate offered
> G(r) = the probability of acceptance (depends on a(x;), B(x;))

» [1 — D (r)] = probability of non-default on the loan
(calibrated to match the results in the QJE using a logit kernel)

» Then it is straightforward to show that

2%2 (TG(T)/BTJrG(T)) [17D(r)]er(r)D(r)5:0

Beyond Marginal Effects: Optimal Offers

» Simplifying:

o r =GB+ D= D] ~rD ()5 =0
» And using the logit structure:
. 1+r(1—-G(r))pBr

N D(r)é

» There will a unique fixed point since the denominator of the RHS is decreasing in r
for 8, <0and § >0

» Therefore:
o 1471 =G (r)) B
N D (r*)é

Applying the Framework
» Even if we don’t have it in closed form, r* is a smooth function of a(x), 3(x)

= We can do inference on 6y = E[H (o, B,7")]
OH or*

> derivatives can be calculated via implicit differentiation or numerically: o 95
/r.*

» Impossible without our results and without exploiting heterogeneity

Optimal Offers

9
@
o
53

%)

I

¥ o4

o

15}
4
a3
4

15

£
=)
e

i
o
8 4

T T
15 20

Interst Rate - LHS

30

35

Optimal Offers

9
@
o
53

%)

I

¥ o4

o

15}
4
a3
4

15

£
=)
e

i
o
8 4

T T
15 20

Interst Rate - LHS

30

35

Optimal Offers

9
@
o
53

%)

I

¥ o4

o

15}
4
a3
4

15

£
=)
e

i
o
8 4

T T
15 20

Interst Rate - LHS

30

35

Optimal Offers

9
@
o
53

%)

I

¥ o4

o

15}
4
a3
4

15

£
=)
e

i
o
8 4

T T
15 20

Interst Rate - LHS

30

35

Optimal Offers

80

40

%)

I

x

i

o

15}

4

a3

4

15

£
=)
e
i
o
8 4

T T
15 20

Interst Rate - LHS

30

35

Optimal Offers

SHY- arey 1sai8|

Interst Rate - LHS

Optimal Offers

Interest Rate ~RHS
40 80

-40

-80

Interst Rate - LHS

Optimal Offers

L00

s00

Aususa
700

SHY- arey 1sai8|

Interst Rate - LHS

Wrapping Up

Wrapping Up

Deep Learning can have a place in the economics toolbox
Our results are practicable & broadly applicable

Contributions to deep learning itself
» Nonasymptotic bounds for general regression problems

» Matching common practice
» Fully connected network, ReLU activation, unbounded weights

» Shows good empirical performance

Contribution to economics N ML: structured models with heterogeneity
» Wide ranging methodology

» Novel architecture for structured models
» Inference via novel IF

» Big picture point: implementing ML in economics, don't ignore economics

Long way to go

» Computational issues: optimization, tuning, easy to use tools, ...

P Theoretical issues: optimal architectures, depth vs. width, different data types, ...

Thanks!

	Introduction
	Deep Neural Networks
	Main Results
	Structure
	Application
	Conclusion

