Deep Neural Networks for Estimation and Inference

Max H. Farrell

with Tengyuan Liang & Sanjog Misra

Introduction & Outline

1. Context: Nonparametric Estimation

- Goal in this paper is to study a standard problem with a "new" tool
- How does deep learning do in a problem we understand well
- We not addressing: high dimensionality, adaptivity, double-descent, ...

2. Main Results

- Nonasymptotic high-probability bounds and implied rates
- "Industry standard" setup: multi-layer perceptron, ReLU activation
- Generic results for other architectures
- 3. Deep Learning In Economics (if time)
- Structured models for individual heterogeneity
- Structured network to match
- Semiparametric inference

Deep Feed-Forward Neural Networks: Problem Set Up

Nonparametric Problem

General regression-type problem

- Outcome Y, d covariates $\boldsymbol{X} \in \mathbb{R}^d$
- Target is $f_{\star} = \arg \min \mathbb{E} \left[\ell \left(f, Y, X \right) \right]$
- Any loss function such that:
 - 1. Lipschitz: $|\ell(f, y, \boldsymbol{x}) \ell(g, y, \boldsymbol{x})| \leq C_{\ell} |f(\boldsymbol{x}) g(\boldsymbol{x})|$
 - 2. Curvature: $c_1 \mathbb{E}\left[(f f_\star)^2\right] \le \mathbb{E}[\ell(f, Y, \boldsymbol{X})] \mathbb{E}[\ell(f_\star, Y, \boldsymbol{X})] \le c_2 \mathbb{E}\left[(f f_\star)^2\right]$
 - Includes least squares, logistic, poisson, ...

DNN estimator

$$\widehat{f}_{\text{DNN}} := \mathop{\arg\min}_{f_{\boldsymbol{\theta}} \in \mathcal{F}_{\text{DNN}}} \sum_{i=1}^{n} \ell\left(f, y_i, \boldsymbol{x}_i\right), \qquad \quad \text{e.g.} \quad \ell\left(f, y_i, \boldsymbol{x}_i\right) = \frac{1}{2} (y - f(\boldsymbol{x}))^2$$

- No optimization issues here
- Sometimes helpful to think of a linear sieve, but with learned basis: $\widehat{f}(x) = \hat{p}(x)' \hat{\gamma}$

Feedforward Neural Networks

A set of units:

- $d = \dim(\mathbf{X})$ input units
- One output unit, Y
- U hidden units between

Units are arranged into layers:

- According to a directed, acyclic graph
- Unit is in layer l if it has a predecessor in l-1 and none for any $l' \ge l$
- For parameters $w_{h,l}$ and $b_{h,l}$, unit h in layer l computes $\tilde{x}_{h,l+1} = \sigma(\tilde{x}'_l w_{h,l} + b_{h,l})$ \hookrightarrow layer l returns $\tilde{x}_{l+1} = (\tilde{x}_{1,l+1}, \dots, \tilde{x}_{H_l,l+1})$
- Dimension of $\tilde{\boldsymbol{x}}_l = H_l = width$
- Number of layers = L = depth
- Final layer outputs appropriate $\widehat{f}_{ ext{DNN}}(m{x})$, e.g., for LS $\widehat{f} = ilde{m{x}}_L(m{x})'m{w}_L + b_L$

Computation

- Layer by layer, back-propagation implements chain rule
- ▶ θ = all weights and "biases" { $(w'_{h,l}, b_{h,l})$ }; W total parameters

Architecture Choice 1: Multi-Layer Perceptron

MLP a.k.a. Fully-connected feedforward network

- Fully connected to adjacent layers
- No hyperlinks
- Not necessarily "rectangle"
- Now common practice (though many others exist)

Embed any feedforward network in an MLP:

Architecture Choice 2: Rectified Linear Unit Activation Function

The activation function for each node: $\sigma(z) = \max(0, z)$

- Used at each node: $(\tilde{\boldsymbol{x}}'_l \boldsymbol{w}_l + b_l) \mapsto \sigma(\tilde{\boldsymbol{x}}'_l \boldsymbol{w}_l + b_l)$
- The ReLU activation is ubiquitous, replacing sigmoid-type
- Better optimization properties, does not get stuck in zero-gradient areas
- Conjecture: same results hold for any piecewise linear activation, slight modifications

Parameters of the DNN are "slopes" $\boldsymbol{w}_{h,l}$ and "intercepts" $b_{h,l}$

- ► Each node $\tilde{x}_l \mapsto (\tilde{x}'_l w_{h,l} + b_{h,l}) \mapsto \sigma (\tilde{x}'_l w_{h,l} + b_{h,l})$
- Common in theory to impost a bound on all parameters:

$$\max_{l \leq L} \max_{h \leq H_l} \|\boldsymbol{w}_{h,l}\|_{\infty} \vee |b_{h,l}| \leq B$$

The reason: bounded weights make complexity arguments easier

Practically this seems innocuous

- Because empirically weights are often "small"
- And certainly optimizers don't return $oldsymbol{w}_{h,l} = \infty$

But actually:

- Bounds cause corner solutions and other computational problems
- How do you set the bound?
- Is this some type of regularization?

What about in theory?

For intuition, go back to a linear regression model:

 $y_i = x_i\beta + \varepsilon_i$

The analogue of bounded weights in a NN is a bound on $|\hat{eta}|$

Seems innocuous: all theory and all practice assume $|\beta|$ bounded

- Theory: $\mathbb{E}[\hat{\beta}_{\text{OLS}} \mid \boldsymbol{X}_n] = \beta$
- Practice: How many papers have a table with $\hat{\beta} = \infty$?

The argument goes like this:

- 1. If $|\beta| < \infty$ (which we all agree on), then there is some B > 0 such that $|\beta| < B$
- 2. The exact constant B doesn't matter, because I can always rescale:

$$y_i = x_i\beta + \varepsilon_i = y_i = (x_iB)\frac{\beta}{B} + \varepsilon_i$$

3. Therefore, without loss of generality, I restrict estimation to $|\hat{eta}| \leq 1$

Wait, what?

Same thing for neural networks: instead of rescaling, we do a copying trick

Simple example:

$$f_{\star} = \frac{\mathsf{ReLU}(\beta x + 1) - \mathsf{ReLU}(\beta x - 1)}{2}$$

With unbounded weights

- 1. 2 hidden units for any β
- 2. $\sqrt{1/n}$ rate for any β

With bounded weights ≤ 1

1. 2β units required

2.
$$\sqrt{\beta/n}$$
 rate

If $|\beta| < B$, then "asymptotically" this **copying** makes no difference

For nonparametrics, the copying happens on the ideal approximating network

Now argue just like before

- 1. If f_{\star} is smooth (say Hölder p) then $\max_{k \leq p} \left\| f_{\star}^{(k)} \right\|_{\infty} < B$, some B
- 2. Therefore with bounded weights ≤ 1 , need 2Bp = "O(1)" ReLU units to $\approx f_{\star}$

There's a **big** difference between $|\beta| < B$ for some B vs a specified, known B

Nonasymptotic High Probability Bounds and Implied Convergence Rates

Generic Architecture

- \blacktriangleright Let $\mathcal{F}_{_{DNN}}$ be a generic class of feed-forward DNNs with ReLU activation
- Depth = L, total parameters = W

Assume f_{\star} is bounded. Define the bias as $\epsilon_{\text{DNN}} := \inf_{f \in \mathcal{F}_{\text{DNN}}} ||f - f_{\star}||_{\infty}$

Then we have the general result:

With probability at least $1 - e^{-\gamma}$: $\mathbb{E}_n\left[\left(\widehat{f}_{\text{DNN}} - f_\star\right)^2\right] \le C\left(\frac{WL\log W}{n}\log n + \frac{\log\log n + \gamma}{n} + \epsilon_{\text{DNN}}^2\right)$

Comments

- Nonasymptotic, high-probability bounds. Convergence rates follow immediately.
- Final bound depends on the architecture and the assumed function space

Multi-Layer Perceptrons and Smooth Functions

- Matching standard practice: MLP + ReLU
- For MLP: $W = H_n^2 L_n$, $H_n =$ common width order
- ► Standard smoothness assumption: *f*^{*} is *p*-smooth

A leading, important case of the first result is then

$$\mathbb{E}_n\left[(\widehat{f}_{\scriptscriptstyle \mathrm{MLP}} - f_\star)^2\right] = O_{\mathbb{P}}\left(\frac{H_n^2 L_n^2 \log(H_n^2 L_n)}{n} \log n + \epsilon_{\scriptscriptstyle \mathrm{MLP}}^2\right)$$

...at best = $O_{\mathbb{P}}\left(n^{-\frac{p}{p+d}} \log^8 n\right)$

Comments

- Best rate uses $H_n \asymp n^{\frac{d}{2(p+d)}} \log^2 n$ and $L_n \asymp \log n$
- Fast enough for semiparametrics . . . but not optimal $(n^{-2p/(2p+d)})$
- ▶ Relies on best-known approximation results for MLP-ReLU: $\epsilon_{\text{MLP}} = \epsilon_{\text{MLP}}(H_n, L_n)$
- Loose bounds? Or really suboptimal?

Two other interesting results

- 1. Optimal rate
 - A special, cooked-up architecture delivers $n^{-\frac{2p}{2p+d}}$, i.e. Stone's bound
 - Only of theoretical interest; architecture not practical
- 2. Fixed-width
 - An MLP, with $H = 2d + 10 \not\rightarrow \infty$ and $L_n \asymp n^{\frac{d}{2(2+d)}}$, can obtain $n^{-\frac{2}{2+d}}$
 - Most different from 1990s results
 - Interesting in transfer learning, but limited by rate (i.e. p = 1)

Comment: future results?

- New approximations (bounds on bias ϵ_{DNN}) can yield new rates immediately
- ▶ E.g.: fixed-width for $p > 1 \rightarrow$ Corollary 2 immediately sharpens
- ▶ E.g.: Sharper ϵ_{MLP} for MLP-ReLU \rightarrow Faster rate on previous slide

Proof Intuition

Start with usual decomposition:

- Truth: f_{\star}
- ▶ Estimate: \hat{f}
- ▶ Best Approximation: $f_n \in \mathcal{F}_{\text{DNN}}$, $\arg \min ||f f_{\star}||_{\infty}$
- Usual bias-variance:

$$\|\hat{f} - f_{\star}\|_{L_{2}(X)}^{2} \lesssim \underbrace{(\mathbb{E} - \mathbb{E}_{n})\left[\ell(\hat{f}, \boldsymbol{z}) - \ell(f_{\star}, \boldsymbol{z})\right]}_{\text{Empirical Process}} + \underbrace{\mathbb{E}_{n}\left[\ell(f_{n}, \boldsymbol{z}) - \ell(f_{\star}, \boldsymbol{z})\right]}_{\text{Bias}}$$

Key motivation in the proof

Control the empirical process without bounding the weights

Proof Intuition: Empirical Process

Empirical Process Term

- Employ localization techniques, e.g. Bartlett, Bousquet, Mendelson (2005)
- Sharp VC dimension bounds for ReLU networks: Bartlett et al (2017)

Rademacher Complexity

$$R_n \mathcal{F} := \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \eta_i f(x_i).$$

- Rademacher draws, $\eta_i = \pm 1$
- Intuitively measures how flexible the function class is for predicting random signs
- Have good control of *Empirical Rademacher Complexity* $\mathbb{E}_{\eta}[R_n \mathcal{F}]$ (via VC dim)

Key Idea: Recursive Improvement

- Suppose we knew $\|\hat{f} f_\star\|_{L_2(X)}^2 \leq r_0^2$
- ▶ Let $\mathcal{G} := \{g = \ell(f, \mathbf{z}) \ell(f_{\star}, \mathbf{z}) : f \in \mathcal{F}_{\text{DNN}}, \|f f_{\star}\|_{L_{2}(X)}^{2} \leq r_{0}^{2}\}$
- Use this to tighten the bound

Proof Intuition: Empirical Process

Step (i) Symmetrization: w.p. $\geq 1 - 2e^{-\gamma}$

$$(\mathbb{E}-\mathbb{E}_n)\left[\ell(\hat{f},oldsymbol{z})-\ell(f_\star,oldsymbol{z})
ight]\ \lesssim\ \mathbb{E}_\eta R_n \mathcal{G} + \sqrt{rac{{oldsymbol{r_0}}^2\gamma}{n}}+rac{\gamma}{n}$$

Step (ii) Complexity Bound:

$$\mathbb{E}_\eta R_n \mathcal{G} \ \lesssim \ oldsymbol{r_0} \sqrt{rac{ ext{Pdim}(\mathcal{F}_{ ext{DNN}})}{n} \log n} \ \lesssim \ oldsymbol{r_0} \sqrt{rac{WL\log(W)}{n} \log n}$$

Step (iii) Improve the Initial Bound:

$$\begin{split} |\hat{f} - f_{\star}||_{L_{2}(X)}^{2} &\lesssim \ (\mathbb{E} - \mathbb{E}_{n}) \left[\ell(\hat{f}, \boldsymbol{z}) - \ell(f_{\star}, \boldsymbol{z}) \right] + \mathbb{E}_{n} \left[\ell(f_{n}, \boldsymbol{z}) - \ell(f_{\star}, \boldsymbol{z}) \right] \\ &\lesssim \ \boldsymbol{r_{0}} \cdot \left(\sqrt{\frac{WL \log W}{n} \log n} + \sqrt{\frac{\gamma}{n}} \right) + \epsilon_{n}^{2} + \epsilon_{n} \sqrt{\frac{\gamma}{n}} + \frac{\gamma}{n} \\ &= \boldsymbol{r_{0}} o(\boldsymbol{r_{0}}) \ll \boldsymbol{r_{0}}^{2} = \text{initial bound} \end{split}$$

Step (iv) Stopping point:

This trick keeps working if
$$r_0 > \sqrt{rac{WL\log W}{n}\log n}$$

Deep Learning In Economics:

Individual Heterogeneity

The Problem

1. We are interested in some economic model with heterogeneous effects:

$$\mathcal{L}ig(\mathsf{data}\;,\;eta_iig)$$

However:

- Only with long panels $\hat{\beta}_i \approx \beta_i$
- Estimates may not conform to theory
- And what about new individuals?
- 2. Instead we balance structure and flexibility, using covariates:

$$\mathcal{L}ig(\mathsf{data}\ ,\ eta(oldsymbol{x}_i)ig)$$

- Intuitively the same as using interaction terms, but $\beta(x)$ is a flexible function
- 3. Specifically we use deep neural networks to capture the heterogeneity:

$$\mathcal{L}ig(\mathsf{data}\ ,\ \widehat{eta}_{ ext{DNN}}(oldsymbol{x}_i)ig)$$

Framework for Heterogeneity

1. Model $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x})'\boldsymbol{t})$

- ▶ Special case of $\mathcal{L}(\{y_i, t_i, x_i\}, \boldsymbol{\beta}(x_i))$, just for today
- Old history in statistics, a.k.a. varying/functional/smooth coefficient model
- But here our motivation is heterogeneity + structure
- + Interpretable model
- + Economically meaningful
- + Respects economic principles
- + Fully flexible heterogeneity

Compare to:

- Classical parametric model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(\alpha + \boldsymbol{\beta}' \boldsymbol{t} + \boldsymbol{\gamma}' \boldsymbol{x})$
 - + Interpretable, meaningful
 - Limited heterogeneity, no flexibility
- Fully nonparametric, naive ML model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(u(\boldsymbol{t}, \boldsymbol{x}))$
 - + Fully heterogeneous and flexible
 - Mostly uninterpretable, may not make economic sense
 - Cannot recover second-stage objects

Why Deep Learning?

The model imposes economic structure, respects economic theory,

$$\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(\alpha(\boldsymbol{x}) + \boldsymbol{\beta}(\boldsymbol{x})'\boldsymbol{t})$$

We need an estimator that is "structurally compatible"

- The model structure is baked directly into the estimation
- Global restriction, easy to impose

DNNS are an ideal method

- Both structurally compatible and capable of tackling modern problems
- Economic structure helps in implementing ML

Why Deep Learning?

Big picture point: implementing ML in economics, why are we ignoring economics?

- Avoid pure prediction: $\hat{y} = \hat{f}(x, t)$, instead learn $\alpha(x)$ and $\beta(x)$ jointly
- Point is not to adapt to structure
- ▶ We design our novel architecture to model heterogeneity, enforce structure:

Key Results

- ▶ Only $d = \dim(x)$ affects the rate, i.e. dimension of heterogeneity
 - ▶ Naive ML approach have slow rate: $\dim(x) + \dim(t)$
- Discrete variables handled seamlessly and don't affect rate
 - Former uses the same architecture idea, and is more novel; latter is standard

Main Rate Theorem

- Building on FLM1
- Say $\alpha(\cdot), \ \beta(\cdot)$ are *p*-smooth in the d_c continuous covariates
- Set width $H_n \simeq n^{\frac{d_c}{2(p+d_c)}} \log^2 n$ and depth $L_n \simeq \log n$

$$\mathbb{E}_n\left[\left(\widehat{eta}_{ ext{DNN}}-eta
ight)^2
ight] \ = \ O_{\mathbb{P}}\left(n^{-rac{p}{p+d_c}}\log^8 n
ight)$$

Framework for Heterogeneity

1. Model
$$\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x})'\boldsymbol{t})$$

2. Inference Target $\theta_0 = \mathbb{E} \big[H(\boldsymbol{X}, \alpha(\boldsymbol{X}), \boldsymbol{\beta}(\boldsymbol{X}), \boldsymbol{t}^*) \big]$

Researcher chooses H function:

- Vectors are allowed
- So are implicit functions
- Not possible without structure
- Only require you to compute $\nabla H = (\partial H/\partial \alpha, \ \partial H/\partial \beta)'$

1+2 simultaneously cover many economically interesting contexts:

- Recovering existing results: ATE, partially linear model, ...
- Delivering new applications: choice models, average partial effects, continuous/multiple treatments, production functions, count data, Berry logit, ...
- Idea extends to IV, multinomial choice, systems, ...

Framework for Heterogeneity

1. Model
$$\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = G(\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x})'\boldsymbol{t})$$

2. Inference Target
$$heta_0 = \mathbb{E} \big[H(\boldsymbol{X}, \alpha(\boldsymbol{X}), \boldsymbol{\beta}(\boldsymbol{X}), \boldsymbol{t}^*) \big]$$

Main theoretical result of this section:

Single influence function calculation, $\psi - \theta_0$, (our model structure + Newey 1994)

$$\psi = H(\alpha, \boldsymbol{\beta}, \boldsymbol{x}) + \nabla H(\alpha, \boldsymbol{\beta}, \boldsymbol{x})' \boldsymbol{\Lambda}(\boldsymbol{x})^{-1} (1, \boldsymbol{t})' \Big(y - G\big(\alpha(\boldsymbol{x}) + \boldsymbol{\beta}(\boldsymbol{x})' \boldsymbol{t}\big) \Big)$$

- One crucial piece is $\Lambda(x) = \operatorname{var}[\dot{G}^{1/2}T|x], \quad \dot{G} = \partial G(u)/\partial u$
 - Intuition: generalization of the inverse propensity part of the IF
 - Implementation: Estimate in observational data, but compute in experiments
 - For semiparametric inference in general: small denominators are a bear
- Inference then follows standard methods, e.g. cross-fitting (Chernozhukov et al 2018)

Seeing it All in Action:

What is Advertising Worth?

How does advertising content affect purchasing?

Bertrand, Karlan, Mullainathan, Shafir, Zinman (QJE, 2010)

- Advertising for shortish-term loans in South Africa
- $Y = \{0, 1\} = \text{Applied for a loan}$
- T = 12 ad characteristics, randomly assigned (based on x)
 - Interest rate: directly compute value
 - Other qualities (photos, tables, uses) can be valued
- X = 11 individual characteristics, some discrete
- Original questions: does advertising content matter? How much?
- Original results: marginal effects from probit

Applying the Framework

- 1. Structural model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}] = \mathsf{logit}(\alpha(\boldsymbol{x}) + \boldsymbol{\beta}(\boldsymbol{x})'\boldsymbol{t})$
- 2. Average marginal effects:

$$\theta_0 = \mathbb{E}\left[\frac{\partial \mathbb{E}[Y|\boldsymbol{X}, t^*]}{\partial t}\right] = \mathbb{E}\left[\underbrace{\beta(\boldsymbol{X})G(1-G)}_{H(\alpha, \beta)}\right]$$

- 3. Estimate $\widehat{\alpha}_{\text{DNN}}(\boldsymbol{x}_i)$, $\widehat{\boldsymbol{\beta}}_{\text{DNN}}(\boldsymbol{x}_i)$
- 4. Inference via IF

Compute $\Lambda(x)$: nontrivial, but computable

What couldn't we do before?

- Structural model allows for computation of marginal effects
- Deep learning means 11-dimensional nonparametrics feasible
 13! nonparametric functions: α(x), β(x)
- Standard errors rely on novel IF

Results Table

Variable	QJE	DNN ME	95% CI		$\Pr\left(\beta\left(x\right)>0\right)$	Coef. of Variation
Interest rate offer	-0.0029	-0.0047	-0.0083	-0.0011	0.1337	1.0211
We speak your language	-0.0043	-0.0048	-0.0137	0.0041	0.2533	2.0542
Special rate for you	0.0001	-0.0034	-0.0120	0.0053	0.5001	4.4506
No photo	0.0013	0.0038	-0.0060	0.0136	0.5723	3.4931
Black photo	0.0058	0.0016	-0.0064	0.0096	0.5402	5.1348
Female photo	0.0057	0.0060	-0.0021	0.0141	0.6820	2.3375
Cell phone raffle	-0.0023	-0.0009	-0.0104	0.0085	0.4812	17.0059
Example loan shown	0.0068	0.0044	-0.0084	0.0173	0.8631	1.9379
No loan use mentioned	0.0059	0.0108	0.0009	0.0207	0.7499	1.0936
Interest rate shown	0.0025	0.0017	-0.0085	0.0119	0.6289	7.9903
Loss comparison	-0.0024	0.0001	-0.0081	0.0083	0.2342	89.3606
Competitors rate shown	-0.0002	0.0013	-0.0085	0.0111	0.4107	9.6790

Estimates

Offer Rate Coefficient

offer4

Beyond Marginal Effects: Optimal Offers

Some Real Economics

Assume the firm wishes to maximize profits:

$$\pi_{i} = \max_{r=\text{rate}} L\left[rG\left(r\right)\right] \left[1 - D\left(r\right)\right]$$

 \blacktriangleright L = expected dollar loan amount, normalize to 1 (doesn't impact the rate)

- r = the interest rate offered
- G(r) = the probability of acceptance (depends on $\alpha(x_i)$, $\beta(x_i)$)
- [1 D(r)] =probability of non-default on the loan (calibrated to match the results in the QJE using a logit kernel)
- Then it is straightforward to show that

$$\frac{\partial \pi}{\partial r} = \left(r\dot{G}\left(r\right)\beta_{r} + G\left(r\right) \right) \left[1 - D\left(r\right)\right] - rG\left(r\right)\dot{D}\left(r\right)\delta = 0$$

Beyond Marginal Effects: Optimal Offers

Simplifying:

$$\frac{\partial \pi}{\partial r} = \left(r\left(1 - G\left(r\right)\right)\beta_r + 1\right)\left[1 - D\left(r\right)\right] - r\dot{D}\left(r\right)\delta = 0$$

And using the logit structure:

$$r = \frac{1 + r \left(1 - G(r)\right) \beta_r}{D(r) \delta}$$

- \blacktriangleright There will a unique fixed point since the denominator of the RHS is decreasing in r for $\beta_r<0$ and $\delta>0$
- Therefore:

$$r^{*} = \frac{1 + r^{*} (1 - G(r^{*})) \beta_{r}}{D(r^{*}) \delta}$$

Applying the Framework

- Even if we don't have it in closed form, r^* is a smooth function of $\alpha(x), \beta(x)$
- \Rightarrow We can do inference on $\theta_0 = \mathbb{E}[H(\alpha, \beta, r^*)]$
 - derivatives can be calculated via implicit differentiation or numerically: $\frac{\partial H}{\partial r^*} \frac{\partial r^*}{\partial \beta}$
 - Impossible without our results and without exploiting heterogeneity

Wrapping Up

Wrapping Up

Deep Learning can have a place in the economics toolbox Our results are practicable & broadly applicable

Contributions to deep learning itself

- Nonasymptotic bounds for general regression problems
- Matching common practice
 - Fully connected network, ReLU activation, unbounded weights
- Shows good empirical performance

Contribution to economics ML: structured models with heterogeneity

- Wide ranging methodology
- Novel architecture for structured models
- Inference via novel IF
- Big picture point: implementing ML in economics, don't ignore economics

Long way to go

- Computational issues: optimization, tuning, easy to use tools,
- Theoretical issues: optimal architectures, depth vs. width, different data types, ...

Thanks!