Deep Neural Networks for Estimation and Inference

Max H. Farrell

with Tengyuan Liang \& Sanjog Misra

Introduction \& Outline

1. Context: Nonparametric Estimation

- Goal in this paper is to study a standard problem with a "new" tool
- How does deep learning do in a problem we understand well
- We not addressing: high dimensionality, adaptivity, double-descent, ...

2. Main Results

- Nonasymptotic high-probability bounds and implied rates
- "Industry standard" setup: multi-layer perceptron, ReLU activation
- Generic results for other architectures

3. Deep Learning In Economics (if time)

- Structured models for individual heterogeneity
- Structured network to match
- Semiparametric inference

Deep Feed-Forward Neural Networks:

Problem Set Up

Nonparametric Problem

General regression-type problem

- Outcome Y, d covariates $\boldsymbol{X} \in \mathbb{R}^{d}$
- Target is $f_{\star}=\arg \min \mathbb{E}[\ell(f, Y, \boldsymbol{X})]$
- Any loss function such that:

1. Lipschitz: $|\ell(f, y, \boldsymbol{x})-\ell(g, y, \boldsymbol{x})| \leq C_{\ell}|f(\boldsymbol{x})-g(\boldsymbol{x})|$
2. Curvature: $\quad c_{1} \mathbb{E}\left[\left(f-f_{\star}\right)^{2}\right] \leq \mathbb{E}[\ell(f, Y, \boldsymbol{X})]-\mathbb{E}\left[\ell\left(f_{\star}, Y, \boldsymbol{X}\right)\right] \leq c_{2} \mathbb{E}\left[\left(f-f_{\star}\right)^{2}\right]$

- Includes least squares, logistic, poisson, ...

DNN estimator

$$
\widehat{f}_{\mathrm{DNN}}:=\underset{f_{\boldsymbol{\theta}} \in \mathcal{F}_{\mathrm{DNN}}}{\arg \min } \sum_{i=1}^{n} \ell\left(f, y_{i}, \boldsymbol{x}_{i}\right), \quad \text { e.g. } \quad \ell\left(f, y_{i}, \boldsymbol{x}_{i}\right)=\frac{1}{2}(y-f(\boldsymbol{x}))^{2}
$$

- No optimization issues here
- Sometimes helpful to think of a linear sieve, but with learned basis: $\widehat{f}(\boldsymbol{x})=\hat{\boldsymbol{p}}(\boldsymbol{x})^{\prime} \hat{\gamma}$

Feedforward Neural Networks

A set of units:

- $d=\operatorname{dim}(\boldsymbol{X})$ input units
- One output unit, Y
- U hidden units between

Units are arranged into layers:

- According to a directed, acyclic graph
- Unit is in layer l if it has a predecessor in $l-1$ and none for any $l^{\prime} \geq l$
- For parameters $\boldsymbol{w}_{h, l}$ and $b_{h, l}$, unit h in layer l computes $\tilde{x}_{h, l+1}=\sigma\left(\tilde{\boldsymbol{x}}_{l}^{\prime} \boldsymbol{w}_{h, l}+b_{h, l}\right)$ \hookrightarrow layer l returns $\tilde{\boldsymbol{x}}_{l+1}=\left(\tilde{x}_{1, l+1}, \ldots, \tilde{x}_{H_{l}, l+1}\right)$
- Dimension of $\tilde{\boldsymbol{x}}_{l}=H_{l}=$ width
- Number of layers $=L=$ depth
- Final layer outputs appropriate $\widehat{f}_{\text {DNN }}(\boldsymbol{x})$, e.g., for LS $\widehat{f}=\tilde{\boldsymbol{x}}_{L}(\boldsymbol{x})^{\prime} \boldsymbol{w}_{L}+b_{L}$

Computation

- Layer by layer, back-propagation implements chain rule
- $\boldsymbol{\theta}=$ all weights and "biases" $\left\{\left(\boldsymbol{w}_{h, l}^{\prime}, b_{h, l}\right)\right\} ; W$ total parameters

Architecture Choice 1: Multi-Layer Perceptron

MLP a.k.a. Fully-connected feedforward network

- Fully connected to adjacent layers
- No hyperlinks
- Not necessarily "rectangle"
- Now common practice (though many others exist)

Embed any feedforward network in an MLP:

Architecture Choice 2: Rectified Linear Unit Activation Function

The activation function for each node: $\sigma(z)=\max (0, z)$

- Used at each node: $\left(\tilde{\boldsymbol{x}}_{l}^{\prime} \boldsymbol{w}_{l}+b_{l}\right) \mapsto \sigma\left(\tilde{\boldsymbol{x}}_{l}^{\prime} \boldsymbol{w}_{l}+b_{l}\right)$
- The ReLU activation is ubiquitous, replacing sigmoid-type
- Better optimization properties, does not get stuck in zero-gradient areas
- Conjecture: same results hold for any piecewise linear activation, slight modifications

Architecture Choice 3: Unbounded Weights

Parameters of the DNN are "slopes" $\boldsymbol{w}_{h, l}$ and "intercepts" $b_{h, l}$

- Each node $\tilde{\boldsymbol{x}}_{l} \mapsto\left(\tilde{\boldsymbol{x}}_{l}^{\prime} \boldsymbol{w}_{h, l}+b_{h, l}\right) \mapsto \sigma\left(\tilde{\boldsymbol{x}}_{l}^{\prime} \boldsymbol{w}_{h, l}+b_{h, l}\right)$
- Common in theory to impost a bound on all parameters:

$$
\max _{l \leq L} \max _{h \leq H_{l}}\left\|\boldsymbol{w}_{h, l}\right\|_{\infty} \vee\left|b_{h, l}\right| \leq B
$$

- The reason: bounded weights make complexity arguments easier

Practically this seems innocuous

- Because empirically weights are often "small"
- And certainly optimizers don't return $\boldsymbol{w}_{h, l}=\infty$

But actually:

- Bounds cause corner solutions and other computational problems
- How do you set the bound?
- Is this some type of regularization?

What about in theory?

Architecture Choice 3: Unbounded Weights

For intuition, go back to a linear regression model:

$$
y_{i}=x_{i} \beta+\varepsilon_{i}
$$

The analogue of bounded weights in a NN is a bound on $|\hat{\beta}|$

Seems innocuous: all theory and all practice assume $|\beta|$ bounded

- Theory: $\mathbb{E}\left[\hat{\beta}_{\text {oLS }} \mid \boldsymbol{X}_{n}\right]=\beta$
- Practice: How many papers have a table with $\hat{\beta}=\infty$?

The argument goes like this:

1. If $|\beta|<\infty$ (which we all agree on), then there is some $B>0$ such that $|\beta|<B$
2. The exact constant B doesn't matter, because I can always rescale:

$$
y_{i}=x_{i} \beta+\varepsilon_{i}=y_{i}=\left(x_{i} B\right) \frac{\beta}{B}+\varepsilon_{i}
$$

3. Therefore, without loss of generality, I restrict estimation to $|\hat{\beta}| \leq 1$

Architecture Choice 3: Unbounded Weights

Same thing for neural networks: instead of rescaling, we do a copying trick

Simple example:

$$
f_{\star}=\frac{\operatorname{ReLU}(\beta x+1)-\operatorname{ReLU}(\beta x-1)}{2}
$$

With unbounded weights

1. 2 hidden units for any β
2. $\sqrt{1 / n}$ rate for any β

With bounded weights ≤ 1

1. 2β units required
2. $\sqrt{\beta / n}$ rate

If $|\beta|<B$, then "asymptotically" this copying makes no difference

Architecture Choice 3: Unbounded Weights

For nonparametrics, the copying happens on the ideal approximating network

ReLU universal approximation idea:

1. Composition of $\operatorname{ReLU}=$ piecewise linear
2. Piecewise linear \approx any polynomial
3. Smooth fcn \approx Taylor series $=$ polynomial
$\Rightarrow \operatorname{ReLU} \approx$ any smooth fcn
(Yarotsky)

Now argue just like before

1. If f_{\star} is smooth (say Hölder p) then $\max _{k \leq p}\left\|f_{\star}^{(k)}\right\|_{\infty}<B$, some B
2. Therefore with bounded weights ≤ 1, need $2 B p=" O(1)^{\prime}$ ReLU units to $\approx f_{\star}$

There's a big difference between $|\beta|<B$ for some B vs a specified, known B

Nonasymptotic High Probability Bounds and

Implied Convergence Rates

Main Results

Generic Architecture

- Let $\mathcal{F}_{\text {DNN }}$ be a generic class of feed-forward DNNs with ReLU activation
- Depth $=L$, total parameters $=W$
- Assume f_{\star} is bounded. Define the bias as $\epsilon_{\mathrm{DNN}}:=\inf _{f \in \mathcal{F}_{\mathrm{DNN}}}\left\|f-f_{\star}\right\|_{\infty}$

Then we have the general result:

With probability at least $1-e^{-\gamma}$:

$$
\mathbb{E}_{n}\left[\left(\widehat{f}_{\mathrm{DNN}}-f_{\star}\right)^{2}\right] \leq C\left(\frac{W L \log W}{n} \log n+\frac{\log \log n+\gamma}{n}+\epsilon_{\mathrm{DNN}}^{2}\right)
$$

Comments

- Nonasymptotic, high-probability bounds. Convergence rates follow immediately.
- Final bound depends on the architecture and the assumed function space

Main Results

Multi-Layer Perceptrons and Smooth Functions

- Matching standard practice: MLP + ReLU
- For MLP: $W=H_{n}^{2} L_{n}, H_{n}=$ common width order
- Standard smoothness assumption: f_{\star} is p-smooth

A leading, important case of the first result is then

$$
\begin{aligned}
\mathbb{E}_{n}\left[\left(\widehat{f}_{\mathrm{MLP}}-f_{\star}\right)^{2}\right] & =O_{\mathbb{P}}\left(\frac{H_{n}^{2} L_{n}^{2} \log \left(H_{n}^{2} L_{n}\right)}{n} \log n+\epsilon_{\mathrm{MLP}}^{2}\right) \\
\ldots \text { at best } & =O_{\mathbb{P}}\left(n^{-\frac{p}{p+d}} \log ^{8} n\right)
\end{aligned}
$$

Comments

- Best rate uses $H_{n} \asymp n^{\frac{d}{2(p+d)}} \log ^{2} n$ and $L_{n} \asymp \log n$
- Fast enough for semiparametrics . . . but not optimal $\left(n^{-2 p /(2 p+d)}\right)$
- Relies on best-known approximation results for MLP-ReLU: $\epsilon_{\text {MLP }}=\epsilon_{\text {MLP }}\left(H_{n}, L_{n}\right)$
- Loose bounds? Or really suboptimal?

Main Results

Two other interesting results

1. Optimal rate

- A special, cooked-up architecture delivers $n^{-\frac{2 p}{2 p+d}}$, i.e. Stone's bound
- Only of theoretical interest; architecture not practical

2. Fixed-width

- An MLP, with $H=2 d+10 \nrightarrow \infty$ and $L_{n} \asymp n^{\frac{d}{2(2+d)}}$, can obtain $n^{-\frac{2}{2+d}}$
- Most different from 1990s results
- Interesting in transfer learning, but limited by rate (i.e. $p=1$)

Comment: future results?

- New approximations (bounds on bias $\epsilon_{\text {DNN }}$) can yield new rates immediately
- E.g.: fixed-width for $p>1 \rightarrow$ Corollary 2 immediately sharpens
- E.g.: Sharper $\epsilon_{\text {MLP }}$ for MLP-ReLU \rightarrow Faster rate on previous slide

Proof Intuition

Start with usual decomposition:

- Truth: f_{\star}
- Estimate: \hat{f}
- Best Approximation: $f_{n} \in \mathcal{F}_{\mathrm{DNN}}, \arg \min \left\|f-f_{\star}\right\|_{\infty}$
- Usual bias-variance:

$$
\left\|\hat{f}-f_{\star}\right\|_{L_{2}(X)}^{2} \lesssim \underbrace{\left(\mathbb{E}-\mathbb{E}_{n}\right)\left[\ell(\hat{f}, \boldsymbol{z})-\ell\left(f_{\star}, \boldsymbol{z}\right)\right]}_{\text {Empirical Process }}+\underbrace{\mathbb{E}_{n}\left[\ell\left(f_{n}, \boldsymbol{z}\right)-\ell\left(f_{\star}, \boldsymbol{z}\right)\right]}_{\text {Bias }}
$$

Key motivation in the proof

- Control the empirical process without bounding the weights

Proof Intuition: Empirical Process

Empirical Process Term

- Employ localization techniques, e.g. Bartlett, Bousquet, Mendelson (2005)
- Sharp VC dimension bounds for ReLU networks: Bartlett et al (2017)

Rademacher Complexity

$$
R_{n} \mathcal{F}:=\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} f\left(x_{i}\right)
$$

- Rademacher draws, $\eta_{i}= \pm 1$
- Intuitively measures how flexible the function class is for predicting random signs
- Have good control of Empirical Rademacher Complexity $\mathbb{E}_{\eta}\left[R_{n} \mathcal{F}\right]$ (via VC dim)

Key Idea: Recursive Improvement

- Suppose we knew $\left\|\hat{f}-f_{\star}\right\|_{L_{2}(X)}^{2} \leq r_{0}{ }^{2}$
- Let $\mathcal{G}:=\left\{g=\ell(f, \boldsymbol{z})-\ell\left(f_{\star}, \boldsymbol{z}\right): f \in \mathcal{F}_{\mathrm{DNN}},\left\|f-f_{\star}\right\|_{L_{2}(X)}^{2} \leq r_{0}{ }^{2}\right\}$
- Use this to tighten the bound

Proof Intuition: Empirical Process

Step (i) Symmetrization: w.p. $\geq 1-2 e^{-\gamma}$

$$
\left(\mathbb{E}-\mathbb{E}_{n}\right)\left[\ell(\hat{f}, \boldsymbol{z})-\ell\left(f_{\star}, \boldsymbol{z}\right)\right] \lesssim \mathbb{E}_{\eta} R_{n} \mathcal{G}+\sqrt{\frac{r_{0}^{2} \gamma}{n}}+\frac{\gamma}{n}
$$

Step (ii) Complexity Bound:

$$
\mathbb{E}_{\eta} R_{n} \mathcal{G} \lesssim r_{0} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{DNN}}\right)}{n} \log n} \lesssim r_{0} \sqrt{\frac{W L \log (W)}{n} \log n}
$$

Step (iii) Improve the Initial Bound:

$$
\begin{aligned}
\left\|\hat{f}-f_{\star}\right\|_{L_{2}(X)}^{2} & \lesssim\left(\mathbb{E}-\mathbb{E}_{n}\right)\left[\ell(\hat{f}, \boldsymbol{z})-\ell\left(f_{\star}, \boldsymbol{z}\right)\right]+\mathbb{E}_{n}\left[\ell\left(f_{n}, \boldsymbol{z}\right)-\ell\left(f_{\star}, \boldsymbol{z}\right)\right] \\
& \lesssim r_{0} \cdot\left(\sqrt{\frac{W L \log W}{n} \log n}+\sqrt{\frac{\gamma}{n}}\right)+\epsilon_{n}^{2}+\epsilon_{n} \sqrt{\frac{\gamma}{n}}+\frac{\gamma}{n} \\
& =r_{0} o\left(r_{0}\right) \ll r_{0}^{2}=\text { initial bound }
\end{aligned}
$$

Step (iv) Stopping point:
This trick keeps working if $r_{0}>\sqrt{\frac{W L \log W}{n} \log n}$

Deep Learning In Economics:

Individual Heterogeneity

The Problem

1. We are interested in some economic model with heterogeneous effects:

$$
\mathcal{L}\left(\text { data }, \beta_{i}\right)
$$

However:

- Only with long panels $\hat{\beta}_{i} \approx \beta_{i}$
- Estimates may not conform to theory
- And what about new individuals?

2. Instead we balance structure and flexibility, using covariates:

$$
\mathcal{L}\left(\text { data }, \beta\left(\boldsymbol{x}_{i}\right)\right)
$$

- Intuitively the same as using interaction terms, but $\beta(\boldsymbol{x})$ is a flexible function

3. Specifically we use deep neural networks to capture the heterogeneity:

$$
\mathcal{L}\left(\text { data }, \widehat{\beta}_{\mathrm{DNN}}\left(\boldsymbol{x}_{i}\right)\right)
$$

Framework for Heterogeneity

1. Model $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)$

- Special case of $\mathcal{L}\left(\left\{y_{i}, \boldsymbol{t}_{i}, \boldsymbol{x}_{i}\right\}, \boldsymbol{\beta}\left(\boldsymbol{x}_{i}\right)\right)$, just for today
- Old history in statistics, a.k.a. varying/functional/smooth coefficient model
- But here our motivation is heterogeneity + structure
+ Interpretable model
+ Economically meaningful
+ Respects economic principles
+ Fully flexible heterogeneity

Compare to:

- Classical parametric model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G\left(\alpha+\boldsymbol{\beta}^{\prime} \boldsymbol{t}+\boldsymbol{\gamma}^{\prime} \boldsymbol{x}\right)$
+ Interpretable, meaningful
- Limited heterogeneity, no flexibility
- Fully nonparametric, naive ML model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G(u(\boldsymbol{t}, \boldsymbol{x}))$
+ Fully heterogeneous and flexible
- Mostly uninterpretable, may not make economic sense
- Cannot recover second-stage objects

Why Deep Learning?

The model imposes economic structure, respects economic theory,

$$
\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)
$$

We need an estimator that is "structurally compatible"

- The model structure is baked directly into the estimation
- Global restriction, easy to impose

DNNS are an ideal method

- Both structurally compatible and capable of tackling modern problems
- Economic structure helps in implementing ML

Why Deep Learning?

Big picture point: implementing ML in economics, why are we ignoring economics?

- Avoid pure prediction: $\hat{y}=\hat{f}(\boldsymbol{x}, t)$, instead learn $\alpha(\boldsymbol{x})$ and $\boldsymbol{\beta}(\boldsymbol{x})$ jointly
- Point is not to adapt to structure
- We design our novel architecture to model heterogeneity, enforce structure:

Main Results

Key Results

- Only $d=\operatorname{dim}(\boldsymbol{x})$ affects the rate, i.e. dimension of heterogeneity
- Naive ML approach have slow rate: $\operatorname{dim}(\boldsymbol{x})+\operatorname{dim}(\boldsymbol{t})$
- Discrete variables handled seamlessly and don't affect rate
- Former uses the same architecture idea, and is more novel; latter is standard

Main Rate Theorem

- Building on FLM1
- Say $\alpha(\cdot), \beta(\cdot)$ are p-smooth in the d_{c} continuous covariates
- Set width $H_{n} \asymp n^{\frac{d_{c}}{2\left(p+d_{c}\right)}} \log ^{2} n$ and depth $L_{n} \asymp \log n$

$$
\mathbb{E}_{n}\left[\left(\widehat{\beta}_{\mathrm{DNN}}-\beta\right)^{2}\right]=O_{\mathbb{P}}\left(n^{-\frac{p}{p+d_{c}}} \log ^{8} n\right)
$$

Framework for Heterogeneity

1. Model $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)$
2. Inference Target $\quad \theta_{0}=\mathbb{E}\left[H\left(\boldsymbol{X}, \alpha(\boldsymbol{X}), \boldsymbol{\beta}(\boldsymbol{X}), \boldsymbol{t}^{*}\right)\right]$

Researcher chooses H function:

- Vectors are allowed
- So are implicit functions
- Not possible without structure
- Only require you to compute $\nabla H=(\partial H / \partial \alpha, \partial H / \partial \boldsymbol{\beta})^{\prime}$
$1+2$ simultaneously cover many economically interesting contexts:
- Recovering existing results: ATE, partially linear model, ...
- Delivering new applications: choice models, average partial effects, continuous/multiple treatments, production functions, count data, Berry logit, ...
- Idea extends to IV, multinomial choice, systems, ...

Framework for Heterogeneity

1. Model $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=G\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)$
2. Inference Target $\quad \theta_{0}=\mathbb{E}\left[H\left(\boldsymbol{X}, \alpha(\boldsymbol{X}), \boldsymbol{\beta}(\boldsymbol{X}), \boldsymbol{t}^{*}\right)\right]$

Main theoretical result of this section:

- Single influence function calculation, $\psi-\theta_{0}$, (our model structure + Newey 1994)

$$
\psi=H(\alpha, \boldsymbol{\beta}, \boldsymbol{x})+\nabla H(\alpha, \boldsymbol{\beta}, \boldsymbol{x})^{\prime} \boldsymbol{\Lambda}(\boldsymbol{x})^{-1}(1, \boldsymbol{t})^{\prime}\left(y-G\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)\right)
$$

- One crucial piece is $\boldsymbol{\Lambda}(\boldsymbol{x})=\operatorname{var}\left[\dot{G}^{1 / 2} \boldsymbol{T} \mid \boldsymbol{x}\right], \quad \dot{G}=\partial G(u) / \partial u$
- Intuition: generalization of the inverse propensity part of the IF
- Implementation: Estimate in observational data, but compute in experiments
- For semiparametric inference in general: small denominators are a bear
- Inference then follows standard methods, e.g. cross-fitting (Chernozhukov et al 2018)

Seeing it All in Action:

What is Advertising Worth?

How does advertising content affect purchasing?

Bertrand, Karlan, Mullainathan, Shafir, Zinman (QJE, 2010)

- Advertising for shortish-term loans in South Africa
- $Y=\{0,1\}=$ Applied for a loan
- $\boldsymbol{T}=12$ ad characteristics, randomly assigned (based on \boldsymbol{x})
- Interest rate: directly compute value
- Other qualities (photos, tables, uses) can be valued
- $\boldsymbol{X}=11$ individual characteristics, some discrete
- Original questions: does advertising content matter? How much?
- Original results: marginal effects from probit

Applying the Framework

1. Structural model: $\mathbb{E}[Y \mid \boldsymbol{x}, \boldsymbol{t}]=\operatorname{logit}\left(\alpha(\boldsymbol{x})+\boldsymbol{\beta}(\boldsymbol{x})^{\prime} \boldsymbol{t}\right)$
2. Average marginal effects:

$$
\theta_{0}=\mathbb{E}\left[\frac{\partial \mathbb{E}\left[Y \mid \boldsymbol{X}, t^{*}\right]}{\partial t}\right]=\mathbb{E}[\underbrace{\beta(\boldsymbol{X}) G(1-G)}_{H(\alpha, \beta)}]
$$

3. Estimate $\widehat{\alpha}_{\text {DNN }}\left(\boldsymbol{x}_{i}\right), \widehat{\boldsymbol{\beta}}_{\text {DNN }}\left(\boldsymbol{x}_{i}\right)$
4. Inference via IF

- Compute $\boldsymbol{\Lambda}(\boldsymbol{x})$: nontrivial, but computable

What couldn't we do before?

- Structural model allows for computation of marginal effects
- Deep learning means 11-dimensional nonparametrics feasible
- 13! nonparametric functions: $\alpha(\boldsymbol{x}), \boldsymbol{\beta}(\boldsymbol{x})$
- Standard errors rely on novel IF

Results Table

Variable	QJE	DNN ME	$\mathbf{9 5 \%} \mathbf{C I}$		$\operatorname{Pr}(\boldsymbol{\beta}(\boldsymbol{x})>\mathbf{0})$	Coef. of Variation
Interest rate offer	-0.0029	-0.0047	-0.0083	-0.0011	0.1337	1.0211
We speak your language	-0.0043	-0.0048	-0.0137	0.0041	0.2533	2.0542
Special rate for you	0.0001	-0.0034	-0.0120	0.0053	0.5001	4.4506
No photo	0.0013	0.0038	-0.0060	0.0136	0.5723	3.4931
Black photo	0.0058	0.0016	-0.0064	0.0096	0.5402	5.1348
Female photo	0.0057	0.0060	-0.0021	0.0141	0.6820	2.3375
Cell phone raffle	-0.0023	-0.0009	-0.0104	0.0085	0.4812	17.0059
Example loan shown	0.0068	0.0044	-0.0084	0.0173	0.8631	1.9379
No loan use mentioned	0.0059	0.0108	0.0009	0.0207	0.7499	1.0936
Interest rate shown	0.0025	0.0017	-0.0085	0.0119	0.6289	7.9903
Loss comparison	-0.0024	0.0001	-0.0081	0.0083	0.2342	89.3606
Competitors rate shown	-0.0002	0.0013	-0.0085	0.0111	0.4107	9.6790

Estimates

Offer Rate Coefficient

Beyond Marginal Effects: Optimal Offers

Some Real Economics

- Assume the firm wishes to maximize profits:

$$
\pi_{i}=\max _{r=\mathrm{rate}} L[r G(r)][1-D(r)]
$$

- $L=$ expected dollar loan amount, normalize to 1 (doesn't impact the rate)
- $r=$ the interest rate offered
- $G(r)=$ the probability of acceptance (depends on $\alpha\left(\boldsymbol{x}_{i}\right), \boldsymbol{\beta}\left(\boldsymbol{x}_{i}\right)$)
- $[1-D(r)]=$ probability of non-default on the loan (calibrated to match the results in the QJE using a logit kernel)
- Then it is straightforward to show that

$$
\frac{\partial \pi}{\partial r}=\left(r \dot{G}(r) \beta_{r}+G(r)\right)[1-D(r)]-r G(r) \dot{D}(r) \delta=0
$$

Beyond Marginal Effects: Optimal Offers

- Simplifying:

$$
\frac{\partial \pi}{\partial r}=\left(r(1-G(r)) \beta_{r}+1\right)[1-D(r)]-r \dot{D}(r) \delta=0
$$

- And using the logit structure:

$$
r=\frac{1+r(1-G(r)) \beta_{r}}{D(r) \delta}
$$

- There will a unique fixed point since the denominator of the RHS is decreasing in r for $\beta_{r}<0$ and $\delta>0$
- Therefore:

$$
r^{*}=\frac{1+r^{*}\left(1-G\left(r^{*}\right)\right) \beta_{r}}{D\left(r^{*}\right) \delta}
$$

Applying the Framework

- Even if we don't have it in closed form, r^{*} is a smooth function of $\alpha(\boldsymbol{x}), \boldsymbol{\beta}(\boldsymbol{x})$
\Rightarrow We can do inference on $\theta_{0}=\mathbb{E}\left[H\left(\alpha, \boldsymbol{\beta}, r^{*}\right)\right]$
- derivatives can be calculated via implicit differentiation or numerically: $\frac{\partial H}{\partial r^{*}} \frac{\partial r^{*}}{\partial \beta}$
- Impossible without our results and without exploiting heterogeneity

Optimal Offers

Wrapping Up

Wrapping Up

Deep Learning can have a place in the economics toolbox Our results are practicable \& broadly applicable

Contributions to deep learning itself

- Nonasymptotic bounds for general regression problems
- Matching common practice
- Fully connected network, ReLU activation, unbounded weights
- Shows good empirical performance

Contribution to economics \cap ML: structured models with heterogeneity

- Wide ranging methodology
- Novel architecture for structured models
- Inference via novel IF
- Big picture point: implementing ML in economics, don't ignore economics

Long way to go

- Computational issues: optimization, tuning, easy to use tools, ...
- Theoretical issues: optimal architectures, depth vs. width, different data types, ...

Thanks!

