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Market structure

© Reserve markets (delivery in less than 2 hours)
@ Intraday market (delivery in less than 24 hours but more than 2 hours)
© Spot market (delivery in 1 day)
© Futures market (delivery in 1 day up to 2 years)
In this talk we are focusing on futures market.

Some market features:
@ Seasonality.
@ High idiosyncratic risk.
© Flow-commodity.
@ Difficult to store.

2/19



Euro/MWh

50

45

40

35

30

25

20

DE-Futures prices on 4th of March 2020

T T T
2020.5 2021.0 2021.5

Time in weeks

2022.0

3/19



Model wish list

© Model should incorporate seasonal effects. (Daily, weekly and yearly cycle)
@ Apart from seasonal affects: Markovian structure.

© C(learly interpretable model factors.

© Finite dimensionality (smaller dimension is better)

© New contracts should be readily priceable in the model.

@ Arbitrage free.
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Energy futures model

@ F¢(T1, T2) denotes the time t price of a futures with delivery in the time-interval [T, T2].
t t
fr(x) = ft(O)+/ Bs(x)ds+/ os(x)dWs,
0 0
1

.7'2
f(t,y — t)dt,
T2_T1/ (t,y —t)dt,

Ty

Ft(T17 T2) —

@ o, Bt can be chosen to be curves only depending on season and state.
@ New contracts can readily be priced.

@ From (NA) condition: 3 must have a specific structure:

Be(x) = Oxfe(x) + oe(x) 7t

where 7 has the same dimension as the driving Brownian motion (with v = 0 under EMM).
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Structural implication (FDR on vector space + NA)

@ |If realised on a finite dimensional space V of curves, then one must have o, 3; € V and V
must be invariant under the derivative.
@ Spaces of functions which are invariant under the derivative have a basis of the form

x — Re(p(x) - €*)
where p is a complex polynomial and « € C.
Our choice of generating curves:

X
fra i x— —e

forsome o > 0and n=0,1,..., N.
) 1
Al!OWed [N O or m ‘ . .
With the second choice f, ., has its maximum in n/c.
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Statistical result

1 1
’ week’ month’ quarter’ year

© We use the curves f, , with n=0,1, a =0 (dimension= 10)

@ Estimated volatility is 99% on the curves:

fi)#a fl#a fi 1, f#a f]_l

7 week 7 week ? month 7 quarter 7 year

with estimated correlations less than 10%.
© The model does still involve all curves to capture the initial state and for dynamic reasons.

@ Possible seasonality in the volatility has been ignored so far.
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Stochastic optimal control

@ The goal of stochastic optimal control is to maximise some quantity in expectation over a
class of processes (controlled process) which is parametrised by some other stochastic
processes (the control).

@ A typical setup: c is prog. measurable process chosen with values in some interval [a, b]
and

dXtC = B(t. Ct, Xtc)dt —+ U(t, Ct, Xtc)th.

-
E[/o g(s,cs, X$)ds + f(X$)| — Maximise over ¢

g is called running gain and f is called terminal gain. A maximiser c* of the above quantity
is called an optimal control.
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Does it work well?

© Optimal controls are in many examples impossible to find.

@ Numerics for stochastic optimal control is an active topic and typically yields convergent
schemes with convergence rates but implicit error constants.

© — If we choose for a numerical approach: When is a chosen control good? Or, if we
simply take a reasonable appearing control, is it actually good?

©@ — We actually need explicit error bounds for the error between a chosen control and the
unknown optimal control.
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Density and occupation estimates

Say
dXt = /8tdt + O'th

(o > 0 a constant) and |/3;| bounded by C. Then X; has density p; and (a version of p satisfies)
a
pel0 < 22 4 coa)
ot

where ¢ and @ are the density and distribution function of the standard normal law and

a:=CVo?2t— ¥ — ol

o2t

The expected local time 7;(x) of X at level x has similar explicit bounds and these bounds do
not require constant diffusion coefficient.
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Estimating the error to unknown optimal control
@ Control problem with T deterministic, o constant and (¢, c,x) € [—1,1].

dXE = Bt ce, XE)dt + odWs,  B|F(X5)| — Maximise over ¢

@ Say ¢ = 7(t, XS) is the chosen control and its performance function is given by

U(t,x) := B qlf(XF)l, tel0,T].
© One has U(T,x) = f(x) and U(t, Xf) is a martingale.
T - * * * 02
BIF(XF)] = U0.X0) + [ B |00t XE) + U0 X )5+ U0 XE) T | ae
0
-
'+ ), El

2
— U0, Xo) + /

< B[F(XS)] + / /R max_ [U'(£,x)(b — B(t, x))] ae(x)dxdt

be{1, —1}

)
Ut XE V(B = Bt e XE))] dt
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Risk factors impacting pension schemes

A pension scheme is a financial contract between a pension provider and the member(s) of the
plan; established for the purpose of providing an income in retirement for the member(s).

Problems for insurance companies:
@ Longevity risk (Creates stress to some pension schemes)

@ Low interest rate environment. (Problem for guaranteed interest rate. Creates huge stress
to private pension provider)
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Some classical products

© PAYG (Typical state-pension. Defined benefits, sometimes defined contribution)
@ Unit-linked (Contract between single person and insurance company)

@ Annuity pools (Only for retirement phase)
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Our approach: Maximal with-profit

Features in the accumulation phase:

© Unit-linked type account

@ Collective account

© Exchange via a volatility smoothing mechanism
Features in the retirement phase:

@ Annuity pool

@ Smoothing mechnism
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Accumulation Phase Retirement Phase
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Thank you for your attention!



