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Market structure

1 Reserve markets (delivery in less than 2 hours)

2 Intraday market (delivery in less than 24 hours but more than 2 hours)

3 Spot market (delivery in 1 day)

4 Futures market (delivery in 1 day up to 2 years)

In this talk we are focusing on futures market.

Some market features:

1 Seasonality.

2 High idiosyncratic risk.

3 Flow-commodity.

4 Difficult to store.
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Model wish list

1 Model should incorporate seasonal effects. (Daily, weekly and yearly cycle)

2 Apart from seasonal affects: Markovian structure.

3 Clearly interpretable model factors.

4 Finite dimensionality (smaller dimension is better)

5 New contracts should be readily priceable in the model.

6 Arbitrage free.
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Energy futures model

Ft(T1,T2) denotes the time t price of a futures with delivery in the time-interval [T1,T2].

ft(x) = ft(0) +

∫ t

0
βs(x)ds +

∫ t

0
σs(x)dWs ,

Ft(T1,T2) =
1

T2 − T1

∫ T2

T1

f (t, y − t)dt,

1 σt , βt can be chosen to be curves only depending on season and state.

2 New contracts can readily be priced.

3 From (NA) condition: β must have a specific structure:

βt(x) = ∂x ft(x) + σt(x)γt

where γ has the same dimension as the driving Brownian motion (with γ = 0 under EMM).
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Structural implication (FDR on vector space + NA)

1 If realised on a finite dimensional space V of curves, then one must have σt , βt ∈ V and V
must be invariant under the derivative.

2 Spaces of functions which are invariant under the derivative have a basis of the form

x 7→ Re(p(x) · eαx)

where p is a complex polynomial and α ∈ C.

Our choice of generating curves:

fn,α : x 7→ xn

n!
e−αx

for some α ≥ 0 and n = 0, 1, . . . ,N.
Allowed α: 0 or 1

contract length .
With the second choice fn,α has its maximum in n/α.
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Statistical result

1 We use the curves fn,α with n = 0, 1, α = 0, 1
week ,

1
month ,

1
quarter ,

1
year (dimension= 10)

2 Estimated volatility is 99% on the curves:

f0, 1
week

, f1, 1
week

, f1, 1
month

, f1, 1
quarter

, f1, 1
year

with estimated correlations less than 10%.

3 The model does still involve all curves to capture the initial state and for dynamic reasons.

4 Possible seasonality in the volatility has been ignored so far.
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Stochastic optimal control

1 The goal of stochastic optimal control is to maximise some quantity in expectation over a
class of processes (controlled process) which is parametrised by some other stochastic
processes (the control).

2 A typical setup: c is prog. measurable process chosen with values in some interval [a, b]
and

dX c
t = β(t, ct ,X

c
t )dt + σ(t, ct ,X

c
t )dWt ,

E
[ ∫ T

0
g(s, cs ,X

c
s )ds + f (X c

T )
]
→ Maximise over c

g is called running gain and f is called terminal gain. A maximiser c∗ of the above quantity
is called an optimal control.
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Does it work well?

1 Optimal controls are in many examples impossible to find.

2 Numerics for stochastic optimal control is an active topic and typically yields convergent
schemes with convergence rates but implicit error constants.

3 −→ If we choose for a numerical approach: When is a chosen control good? Or, if we
simply take a reasonable appearing control, is it actually good?

4 −→ We actually need explicit error bounds for the error between a chosen control and the
unknown optimal control.
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Density and occupation estimates

Say
dXt = βtdt + σdWt

(σ > 0 a constant) and |βt | bounded by C . Then Xt has density ρt and (a version of ρ satisfies)

ρt(x) ≤ ϕ(a)√
σ2t

+ CΦ(a)

where ϕ and Φ are the density and distribution function of the standard normal law and

a := C
√
σ2t − |x − X0|√

σ2t

The expected local time ηt(x) of X at level x has similar explicit bounds and these bounds do
not require constant diffusion coefficient.
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Estimating the error to unknown optimal control
1 Control problem with T deterministic, σ constant and β(t, c , x) ∈ [−1, 1].

dX c
t = β(t, ct ,X

c
t )dt + σdWt , E

[
f (X c

T )
]
→ Maximise over c

2 Say ct = γ(t,X c
t ) is the chosen control and its performance function is given by

U(t, x) := E(t,x)[f (X c
T )], t ∈ [0,T ].

3 One has U(T , x) = f (x) and U(t,X c
t ) is a martingale.

E[f (X c∗
T )] = U(0,X0) +

∫ T

0
E

[
U̇(t,X c∗

t ) + U ′(t,X c∗
t )β∗t + U ′′(t,X c∗

t )
σ2

2

]
dt

= U(0,X0) +

∫ T

0
E
[
U ′(t,X c∗

t )(β∗t − β(t, ct ,X
c∗
t ))

]
dt

≤ E[f (X c
T )] +

∫ T

0

∫
R

max
b∈{1,−1}

[
U ′(t, x)(b − β(t, x))

]
αt(x)dxdt
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Risk factors impacting pension schemes

A pension scheme is a financial contract between a pension provider and the member(s) of the
plan; established for the purpose of providing an income in retirement for the member(s).

Problems for insurance companies:

1 Longevity risk (Creates stress to some pension schemes)

2 Low interest rate environment. (Problem for guaranteed interest rate. Creates huge stress
to private pension provider)
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Some classical products

1 PAYG (Typical state-pension. Defined benefits, sometimes defined contribution)

2 Unit-linked (Contract between single person and insurance company)

3 Annuity pools (Only for retirement phase)
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Our approach: Maximal with-profit

Features in the accumulation phase:

1 Unit-linked type account

2 Collective account

3 Exchange via a volatility smoothing mechanism

Features in the retirement phase:

1 Annuity pool

2 Smoothing mechnism
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Retirement Point

Accumulation phase                                                                 Retirement 

Individual accounts

Additional safety layer 1 Additional safety layer 2

Collective account  1 Collective account  2

1 2 3

Premia

Third              
party
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Thank you for your attention!


