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The recursive optimal stopping problem

v

2 projects: A and B
Profit of A is described by ¢ and Profit of B is .

If project A is chosen then it is realized P-a.s. instantaneously
(i.e. at time T)

v

v

v

If project B is chosen then it is realised with probability p at
the (delayed) time 7 4 ¢
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The recursive optimal stopping problem

» d-dimensional Markov process X

» 0,1 : R — R, continuous functions such that v (z) > ()
for all 2 € R?

pel01]
¥ random variable with CDF F
(7, ) controls taking values in R* x {0,1}

v

v

v

Problem:

U(x) = supk e_TTSO(X:)]-{a:O}

(T,a)

+e ) (pd)( T+19) (1 - p)v<X3r(+ﬂ)) 1{(1:1}7
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» in academia: which journal should we submit our papers?
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Motivation

Examples
» project decision for R&D department
» in academia: which journal should we submit our papers?

» trading in the lit market and the dark pool
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A 2-dimensional model for trading in the lit
and the dark pool

» (Bid) price in the lit market S
» price in the dark pool S + K, K is the spread
The problem:

v(s, k) = sup E|e”""yS 1 n—0}

(m:)

+e T (S5 g+ K EL o)+ (1= p)o(Siy g Kig)) Liaz1) |-

Here we take:
X=(SK), o(X)=rSfor0<y<land 9(X)=5+K.
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Literature review

The problem itself is new, however there links with
» control problems with recursive utility (initiated by Epstein &
Zin (1991), Duffie & Epstein (1992))
» optimal multiple stopping problems (Carmona (2008), De
Angelis & Kitapbayev (2017))
» impulse control problems with delay (Bayraktar & Egami
(2007), Dayanik & Karatzas (2003))

Optimization in dark pools ( Kratz & Schéneborn (2014, 2015,
2018), Crisafi & Macrina (2016)) with a different objective.
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Contribution

» Study a general d-dimensional recursive optimal stopping
problem;

» Discuss the 2-dimensional case;

» Derive additional properties of the value function and the
stopping rule.
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Notation

v

Filtered probability space (2, F,F,P);

» d-dimensional Markov process X;

» ¢ random variable with CDF F and p € [0, 1];
» T set of F-stopping times;

» D={(r,a): 7€T, ac{0,1}, a € F};

Banach space

v

Ag={F: f € O(RSR,), such that | fll, < +oo}

2
where Hintd i= SUP,cRd %.
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Assumptions

Assumption

(i) There exists p € (0,1) s.t.
Xy o= e 7001 4] X,)2),

is a P,-supermartingale for any x € R%;

(i) for any compact K C R? we have

sup E, [sup e’"t|Xt|d] < 00;
zeEK t>0

(iii) for any x € R? and (z)n>0 S.t. Tp — @

lim E [sup e X — Xf|d] =

n—oo t>0

(iv) functions ¢ and 1 belong to Aq (with ¢ < ).
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Two equivalent problem formulations

Problem 1. Find a continuous function v : R* — R that satisfies

v(@) = s E|eTTp(XE) (0my)
(r,0)€D

+ D (pp(XE) + (1= po(XE ) L] ()
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Two equivalent problem formulations

Problem 1. Find a continuous function v : R* — R that satisfies

v(@) = s E|eTTp(XE) (0my)
(r,0)€D

e (X2 ) + (1= PJU(XE ) Lomr) |- (1)
Problem 2. Find a continuous function 7 : R? — R, that satisfies

@) = sup E[e max o (X2), A) (XD} |, (@)
TeT

where (Af)(z) := /0 e TE [pU(XP) + (1 — p) f(XP)] F(de),

for any continuous function f : R = R, .
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Equivalence of the stopping problems

Lemma

A continuous function v : R® — R is a solution of Problem 1 if
and only if it solves Problem 2.

Sketch of the proof.

o(@) = sup E[ewxm{a_m
(r,a)€D

+ /oZiT(TH (1”/1( )+ _p)U(Xf-s-t)) F(dt)l{a—l}]-
0

Use that « is Fr-measurable, Fubini’s theorem and the strong
Markov property of X

| [ e oz + (- pe(xz) Fian
= T (AV) (X)L o).

Finally, the tower property leads to the claim.

16 /23



The main result

Theorem

» Problem 2 admits a unique solution v € Aj.

» The stopping time
Ty = inf {t >0:v(Xy) = max {@(Xy), (Av)(Xy)} }

is optimal for (1).
» The process
(e_rtv(Xt))tZO
is a right-continuous (non-negative) supermartingale
» The process
(e—r(t/\r*)v(Xt/\T* ))tzo

is a right-continuous (non-negative) martingale.
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Sketch of the proof.

Define the operator

Tf)(x) = supE [e™ " max {p(X7), (A)(XT)}] . (3)

Objective: v is the unique fixed point of the operator I' and an
optimal stopping time exists.
» Step 1. The operator A maps Ay into itself.
» Step 2. An optimal stopping time in (3) exists and I'f is Isc
for every f € C(R%RT)
» Step 3. T'f is usc for every f € C(R%; RY)

» Step 4. ' is a contraction
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No delay

If P(¥ = 0) =1 the optimiser would always choose av = 1.

» if 10(X) is not achieved the investor learns immediately and
instantly stop again and choose oo =1

» the mechanism continues (instantaneously) until the payoff is
attained

Corollary
If F(0) =1 we have

o(z) = supE, [ $(X,)], fors € RY
TET
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Application to trading in the lit/dark pool

The model

dS; = p1Sedt + alStdBtl, So=s5>0,
dK; = paKidt + 09 Ky d B2, Ko=Fk>0.

> ul,ugeRand 01,09 >0

» (B})i>0, (B?)+>0 Brownian motions with correlation
ve[-1,1].
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Application to trading in the lit/dark pool
The model

dsS; = Mlstdt + UlStdBtl, So=s5>0,
dK; = paKidt + 09 Ky d B2, Ko=Fk>0.

> ul,ugeRand 01,09 >0

» (B})i>0, (B?)+>0 Brownian motions with correlation
ve[-1,1].

Problem formulation

v(s, k) = EE’I;E [6_”— max {W/Sf., (Av)(S3, Kf)H

where

(AP k) = [ eE [o(sg + KE) + (=) (52 KD) Fla),
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Can we say more?

With no loss of generality take v = 1.

>

>

The value function is positive homogeneous

We can reduce dimension (i.e. we get a 1 dimensional
recursive optimal stopping problem): alternative
characterization of the stopping time and the value function

The value function u is monotonic, non-decreasing and convex

The optimal stopping rule can be expressed in terms of two
boundaries

The smooth-fit holds (i.e. the value function is C1)



Thank you for the attention

B Coraneri, K. AND DE ANGELIS, T. (2019)
A class of recursive optimal stopping problems with
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Positive homogeneity

v

For all (s, k) € R2 we have v(s, k) = sv(1,k/s).
Define the process Zt IS(:

Note that

v

v

(Aw)(s. k) = / e ME [p(S7 + K+ (1— p)o(S, KD)] F(dt)
=5 /Oo e TE [Stlp(l +Z3) + (1 - p)Shu(l, 2;)] F(dt)
0

» we change the measure “using” the martingale pert of S}

dQ

2
olBl-ZLt

—\F = Dt =€ to2

dP‘ ‘

Then Dy = S}e—#t

v



» Let (Z;)i>0 be the solution of the SDE
dz; = Zt(,ug — #1)dt + Zﬁdét, t e [0, OO),

where Et is a P-Brownian motion
» 7 under Q has the same distribution of Z under P
» Then:

(Av)(s, k) :=s /OOO e~ TTRE [p(1 4 Z7) + (1 — p)u(1, Z7)] F(dt)



Reduction to optimal stopping in dimension 1

Define

u(z) := sup E [e_(r_’“)T max{1, (ITu)(Z2)} (4)

where

(Mu)(2) = /000 e”UTE [p(1+ Z7) + (1 — p)u(Z7)] F(db).

Then u(z) = v(1,k/s).



The stopping rule
Continuation region:

C:={ze Ry : u(z) > max[l, (Ilu)(2)]}
Stopping region:

S :={z € Ry : u(z) = max[1, (ITu)(2)]|}

Theorem

Assume F(0) < 1, then there exist two points 0 < as < b, < +00
such that C = (a., by).

Corollary

If F(0) < 1, then there exists optimal (1., a*) € D and

Tx — 1nf{t > 0: Kt ¢ (St © Ay, St . b*)} and o = 1{KT*ZST*'b*}.



The Continuation and the Stopping regions
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