A class of recursive optimal stopping problems with applications to stock trading

Katia Colaneri

Vienna, 24 May 2019
joint work with Tiziano De Angelis

Outline

(1) Problem formulation
(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

Outline

(1) Problem formulation

(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

The recursive optimal stopping problem

- 2 projects: A and B
- Profit of A is described by φ and Profit of B is ψ.
- If project A is chosen then it is realized P-a.s. instantaneously (i.e. at time τ)
- If project B is chosen then it is realised with probability p at the (delayed) time $\tau+\vartheta$

The recursive optimal stopping problem

- d-dimensional Markov process X
- $\varphi, \psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, continuous functions such that $\psi(x)>\varphi(x)$ for all $x \in \mathbb{R}^{d}$
- $p \in[0,1]$
- ϑ random variable with CDF F
- (τ, α) controls taking values in $\mathbb{R}^{+} \times\{0,1\}$

Problem:

$$
\begin{aligned}
v(x)=\sup _{(\tau, \alpha)} \mathrm{E} & {\left[e^{-r \tau} \varphi\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=0\}}\right.} \\
& +e^{-r(\tau+\vartheta)}\left(\mathbf{p} \psi\left(X_{\tau+\vartheta}^{x}\right)+(\mathbf{1}-\mathbf{p}) \mathbf{v}\left(\mathbf{X}_{\tau+\vartheta}^{\mathbf{x}}\right)\right) \mathbf{1}_{\{\alpha=\mathbf{1}\}}
\end{aligned}
$$

Outline

1) Problem formulation

(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

Motivation

Examples

Motivation

Examples

- project decision for R\&D department

Motivation

Examples

- project decision for R\&D department
- in academia: which journal should we submit our papers?

Motivation

Examples

- project decision for R\&D department
- in academia: which journal should we submit our papers?
- trading in the lit market and the dark pool

A 2-dimensional model for trading in the lit and the dark pool

- (Bid) price in the lit market S
- price in the dark pool $S+K, K$ is the spread

The problem:

$$
\begin{aligned}
v(s, k) & =\sup _{(\tau, \alpha)} \mathrm{E}\left[e^{-r \tau} \gamma S_{\tau}^{s} \mathbf{1}_{\{\alpha=0\}}\right. \\
& \left.+e^{-r(\tau+\vartheta)}\left(p\left(S_{\tau+\vartheta}^{s}+K_{\tau+\vartheta}^{k}\right)+(1-p) v\left(S_{\tau+\vartheta}^{s}, K_{\tau+\vartheta}^{k}\right)\right) \mathbf{1}_{\{\alpha=1\}}\right] .
\end{aligned}
$$

Here we take:
$X=(S, K), \varphi(X)=\gamma S$ for $0<\gamma \leq 1$ and $\psi(X)=S+K$.

Literature review

The problem itself is new, however there links with

- control problems with recursive utility (initiated by Epstein \& Zin (1991), Duffie \& Epstein (1992))
- optimal multiple stopping problems (Carmona (2008), De Angelis \& Kitapbayev (2017))
- impulse control problems with delay (Bayraktar \& Egami (2007), Dayanik \& Karatzas (2003))

Optimization in dark pools (Kratz \& Schöneborn (2014, 2015, 2018), Crisafi \& Macrina (2016)) with a different objective.

Contribution

- Study a general d-dimensional recursive optimal stopping problem;
- Discuss the 2-dimensional case;
- Derive additional properties of the value function and the stopping rule.

Outline

1) Problem formulation

(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

Notation

- Filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathrm{P})$;
- d-dimensional Markov process X;
- ϑ random variable with CDF F and $p \in[0,1]$;
- \mathcal{T} set of \mathbb{F}-stopping times;
- $\mathcal{D}=\left\{(\tau, \alpha): \tau \in \mathcal{T}, \alpha \in\{0,1\}, \alpha \in \mathcal{F}_{\tau}\right\}$;
- Banach space

$$
\mathcal{A}_{d}:=\left\{f: f \in C\left(\mathbb{R}^{d} ; \mathbb{R}_{+}\right), \text {such that }\|f\|_{\mathcal{A}_{d}}<+\infty\right\}
$$

where $\|f\|_{\mathcal{A}_{d}}^{2}:=\sup _{x \in \mathbb{R}^{d}} \frac{|f(x)|^{2}}{1+|x|_{d}^{2}}$.

Assumptions

Assumption

(i) There exists $\rho \in(0,1)$ s.t.

$$
\widehat{X}_{t}:=e^{-2 r(1-\rho) t}\left(1+\left|X_{t}\right|_{d}^{2}\right),
$$

is a P_{x}-supermartingale for any $x \in \mathbb{R}^{d}$;
(ii) for any compact $K \subset \mathbb{R}^{d}$ we have

$$
\sup _{x \in K} \mathrm{E}_{x}\left[\sup _{t \geq 0} e^{-r t}\left|X_{t}\right|_{d}\right]<\infty ;
$$

(iii) for any $x \in \mathbb{R}^{d}$ and $\left(x_{n}\right)_{n \geq 0}$ s.t. $x_{n} \rightarrow x$

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\sup _{t \geq 0} e^{-r t}\left|X_{t}^{x_{n}}-X_{t}^{x}\right|_{d}\right]=0
$$

(iv) functions φ and ψ belong to \mathcal{A}_{d} (with $\varphi \leq \psi$).

Outline

1) Problem formulation

(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

Two equivalent problem formulations

Problem 1. Find a continuous function $v: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies

$$
\begin{align*}
v(x)= & \sup _{(\tau, \alpha) \in \mathcal{D}} \mathrm{E}\left[e^{-r \tau} \varphi\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=0\}}\right. \\
& \left.+e^{-r(\tau+\vartheta)}\left(p \psi\left(X_{\tau+\vartheta}^{x}\right)+(1-p) v\left(X_{\tau+\vartheta}^{x}\right)\right) \mathbf{1}_{\{\alpha=1\}}\right] . \tag{1}
\end{align*}
$$

Two equivalent problem formulations

Problem 1. Find a continuous function $v: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies

$$
\begin{align*}
v(x)= & \sup _{(\tau, \alpha) \in \mathcal{D}} \mathrm{E}\left[e^{-r \tau} \varphi\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=0\}}\right. \\
& \left.+e^{-r(\tau+\vartheta)}\left(p \psi\left(X_{\tau+\vartheta}^{x}\right)+(1-p) v\left(X_{\tau+\vartheta}^{x}\right)\right) \mathbf{1}_{\{\alpha=1\}}\right] . \tag{1}
\end{align*}
$$

Problem 2. Find a continuous function $\tilde{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies

$$
\begin{equation*}
\tilde{v}(x)=\sup _{\tau \in \mathcal{T}} \mathrm{E}\left[e^{-r \tau} \max \left\{\varphi\left(X_{\tau}^{x}\right),(\Lambda \tilde{v})\left(X_{\tau}^{x}\right)\right\}\right], \tag{2}
\end{equation*}
$$

where $(\Lambda f)(x):=\int_{0}^{\infty} e^{-r t} \mathrm{E}\left[p \psi\left(X_{t}^{x}\right)+(1-p) f\left(X_{t}^{x}\right)\right] F(\mathrm{~d} t)$, for any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$.

Two equivalent problem formulations

Problem 1. Find a continuous function $v: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies

$$
\begin{align*}
v(x)= & \sup _{(\tau, \alpha) \in \mathcal{D}} \mathrm{E}\left[e^{-r \tau} \varphi\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=0\}}\right. \\
& \left.+e^{-r(\tau+\vartheta)}\left(p \psi\left(X_{\tau+\vartheta}^{x}\right)+(1-p) v\left(X_{\tau+\vartheta}^{x}\right)\right) \mathbf{1}_{\{\alpha=1\}}\right] . \tag{1}
\end{align*}
$$

Problem 2. Find a continuous function $\tilde{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$that satisfies

$$
\begin{equation*}
\tilde{v}(x)=\sup _{\tau \in \mathcal{T}} \mathrm{E}\left[e^{-r \tau} \max \left\{\varphi\left(X_{\tau}^{x}\right),(\Lambda \tilde{v})\left(X_{\tau}^{x}\right)\right\}\right], \tag{2}
\end{equation*}
$$

where $(\Lambda f)(x):=\int_{0}^{\infty} e^{-r t} \mathrm{E}\left[p \psi\left(X_{t}^{x}\right)+(1-p) f\left(X_{t}^{x}\right)\right] F(\mathrm{~d} t)$, for any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$.

Equivalence of the stopping problems

Lemma

A continuous function $v: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$is a solution of Problem $\mathbf{1}$ if and only if it solves Problem 2.
Sketch of the proof.

$$
\begin{aligned}
v(x) & =\sup _{(\tau, \alpha) \in \mathcal{D}} \mathrm{E}\left[e^{-r \tau} \varphi\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=0\}}\right. \\
& \left.+\int_{0}^{\infty} e^{-r(\tau+t)}\left(p \psi\left(X_{\tau+t}^{x}\right)+(1-p) v\left(X_{\tau+t}^{x}\right)\right) F(\mathrm{~d} t) \mathbf{1}_{\{\alpha=1\}}\right]
\end{aligned}
$$

Use that α is \mathcal{F}_{τ}-measurable, Fubini's theorem and the strong Markov property of X

$$
\begin{aligned}
& \mathrm{E}\left[\int_{0}^{\infty} e^{-r(\tau+t)}\left(p \psi\left(X_{\tau+t}^{x}\right)+(1-p) v\left(X_{\tau+t}^{x}\right)\right) F(\mathrm{~d} t) \mathbf{1}_{\{\alpha=1\}} \mid \mathcal{F}_{\tau}\right] \\
& =e^{-r \tau}(\Lambda v)\left(X_{\tau}^{x}\right) \mathbf{1}_{\{\alpha=1\}} .
\end{aligned}
$$

Finally, the tower property leads to the claim.

The main result

Theorem

- Problem 2 admits a unique solution $v \in \mathcal{A}_{d}$.
- The stopping time

$$
\tau_{*}=\inf \left\{t \geq 0: v\left(X_{t}\right)=\max \left\{\varphi\left(X_{t}\right),(\Lambda v)\left(X_{t}\right)\right\}\right\}
$$

is optimal for (1).

- The process

$$
\left(e^{-r t} v\left(X_{t}\right)\right)_{t \geq 0}
$$

is a right-continuous (non-negative) supermartingale

- The process

$$
\left(e^{-r\left(t \wedge \tau_{*}\right)} v\left(X_{t \wedge \tau_{*}}\right)\right)_{t \geq 0}
$$

is a right-continuous (non-negative) martingale.

Sketch of the proof.

Define the operator

$$
\begin{equation*}
(\Gamma f)(x):=\sup _{\tau \in \mathcal{T}} \mathrm{E}\left[e^{-r \tau} \max \left\{\varphi\left(X_{\tau}^{x}\right),(\Lambda f)\left(X_{\tau}^{x}\right)\right\}\right] \tag{3}
\end{equation*}
$$

Objective: v is the unique fixed point of the operator Γ and an optimal stopping time exists.

- Step 1. The operator Λ maps \mathcal{A}_{d} into itself.
- Step 2. An optimal stopping time in (3) exists and Γf is Isc for every $f \in \mathcal{C}\left(\mathbb{R}^{d} ; \mathbb{R}^{+}\right)$
- Step 3. Γf is usc for every $f \in \mathcal{C}\left(\mathbb{R}^{d} ; \mathbb{R}^{+}\right)$
- Step 4. Γ is a contraction

No delay

If $\mathrm{P}(\vartheta=0)=1$ the optimiser would always choose $\alpha=1$.

- if $\psi(X)$ is not achieved the investor learns immediately and instantly stop again and choose $\alpha=1$
- the mechanism continues (instantaneously) until the payoff is attained

Corollary

If $F(0)=1$ we have

$$
v(x)=\sup _{\tau \in \mathcal{T}} \mathrm{E}_{x}\left[e^{-r \tau} \psi\left(X_{\tau}\right)\right], \quad \text { for } x \in \mathbb{R}^{d} .
$$

Outline

1) Problem formulation

(2) Motivation
(3) Notation and Assumptions
(4) The general case
(5) The 2-dimensional case

Application to trading in the lit/dark pool

The model

$$
\begin{array}{ll}
\mathrm{d} S_{t}=\mu_{1} S_{t} \mathrm{~d} t+\sigma_{1} S_{t} \mathrm{~d} B_{t}^{1}, & S_{0}=s>0 \\
\mathrm{~d} K_{t}=\mu_{2} K_{t} \mathrm{~d} t+\sigma_{2} K_{t} \mathrm{~d} B_{t}^{2}, & K_{0}=k>0
\end{array}
$$

- $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}>0$
- $\left(B_{t}^{1}\right)_{t \geq 0},\left(B_{t}^{2}\right)_{t \geq 0}$ Brownian motions with correlation $\nu \in[-1,1]$.

Application to trading in the lit/dark pool

The model

$$
\begin{array}{ll}
\mathrm{d} S_{t}=\mu_{1} S_{t} \mathrm{~d} t+\sigma_{1} S_{t} \mathrm{~d} B_{t}^{1}, & S_{0}=s>0 \\
\mathrm{~d} K_{t}=\mu_{2} K_{t} \mathrm{~d} t+\sigma_{2} K_{t} \mathrm{~d} B_{t}^{2}, & K_{0}=k>0
\end{array}
$$

- $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}>0$
- $\left(B_{t}^{1}\right)_{t \geq 0},\left(B_{t}^{2}\right)_{t \geq 0}$ Brownian motions with correlation $\nu \in[-1,1]$.

Problem formulation

$$
v(s, k)=\sup _{\tau \in \mathcal{T}} \mathrm{E}\left[e^{-r \tau} \max \left\{\gamma S_{\tau}^{s},(\Lambda v)\left(S_{\tau}^{s}, K_{\tau}^{k}\right)\right\}\right]
$$

where
$(\Lambda f)(s, k):=\int_{0}^{\infty} e^{-r t} \mathrm{E}\left[p\left(S_{t}^{s}+K_{t}^{k}\right)+(1-p) f\left(S_{t}^{s}, K_{t}^{k}\right)\right] F(\mathrm{~d} t)$.

Can we say more?

With no loss of generality take $\gamma=1$.

- The value function is positive homogeneous
- We can reduce dimension (i.e. we get a 1 dimensional recursive optimal stopping problem): alternative characterization of the stopping time and the value function
- The value function u is monotonic, non-decreasing and convex
- The optimal stopping rule can be expressed in terms of two boundaries
- The smooth-fit holds (i.e. the value function is \mathcal{C}^{1})

Thank you for the attention

囯 Colaneri, K. and De Angelis, T. (2019)
A class of recursive optimal stopping problems with applications to stock trading
ArXiv: https://arxiv.org/pdf/1905.02650.pdf

Positive homogeneity

- For all $(s, k) \in \mathbb{R}_{+}^{2}$ we have $v(s, k)=s v(1, k / s)$.
- Define the process $\widehat{Z}_{t}=\frac{K_{t}}{S_{t}}$
- Note that

$$
\begin{aligned}
(\Lambda v)(s, k) & :=\int_{0}^{\infty} e^{-r t} \mathrm{E}\left[p\left(S_{t}^{s}+K_{t}^{k}\right)+(1-p) v\left(S_{t}^{s}, K_{t}^{k}\right)\right] F(\mathrm{~d} t) \\
& :=s \int_{0}^{\infty} e^{-r t} \mathrm{E}\left[S_{t}^{1} p\left(1+\widehat{Z}_{t}^{z}\right)+(1-p) S_{t}^{1} v\left(1, \widehat{Z}_{t}^{z}\right)\right] F(\mathrm{~d} t)
\end{aligned}
$$

- we change the measure "using" the martingale pert of S_{t}^{1}

$$
\left.\frac{\mathrm{dQ}}{\mathrm{dP}}\right|_{\mathcal{F}_{t}}=D_{t}=e^{\sigma^{1} B_{t}^{1}-\frac{\sigma_{1}^{2}}{2} t}
$$

- Then $D_{t}=S_{t}^{1} e^{-\mu_{1} t}$
- Let $\left(Z_{t}\right)_{t \geq 0}$ be the solution of the SDE

$$
\mathrm{d} Z_{t}=Z_{t}\left(\mu_{2}-\mu_{1}\right) \mathrm{d} t+Z_{t} \widetilde{\sigma} \mathrm{~d} \widetilde{B}_{t}, \quad t \in[0, \infty)
$$

where \widetilde{B}_{t} is a P-Brownian motion

- \widehat{Z} under Q has the same distribution of Z under P
- Then:

$$
(\Lambda v)(s, k):=s \int_{0}^{\infty} e^{-\left(r-\mu_{1}\right) t} \mathrm{E}\left[p\left(1+Z_{t}^{z}\right)+(1-p) v\left(1, Z_{t}^{z}\right)\right] F(\mathrm{~d} t)
$$

Reduction to optimal stopping in dimension 1

Define

$$
\begin{equation*}
u(z):=\sup _{\tau} \mathrm{E}\left[e^{-\left(r-\mu_{1}\right) \tau} \max \left\{1,(\Pi u)\left(Z_{\tau}^{z}\right)\right\}\right] \tag{4}
\end{equation*}
$$

where

$$
(\Pi u)(z):=\int_{0}^{\infty} e^{-\left(r-\mu_{1}\right) t} \mathrm{E}\left[p\left(1+Z_{t}^{z}\right)+(1-p) u\left(Z_{t}^{z}\right)\right] F(\mathrm{~d} t)
$$

Then $\mathbf{u}(\mathbf{z})=\mathbf{v}(\mathbf{1}, \mathbf{k} / \mathbf{s})$.
$4 \leftarrow$

The stopping rule

Continuation region:

$$
\mathcal{C}:=\left\{z \in \mathbb{R}_{+}: u(z)>\max [1,(\Pi u)(z)]\right\}
$$

Stopping region:

$$
\mathcal{S}:=\left\{z \in \mathbb{R}_{+}: u(z)=\max [1,(\Pi u)(z)]\right\}
$$

Theorem

Assume $F(0)<1$, then there exist two points $0<a_{*}<b_{*}<+\infty$ such that $\mathcal{C}=\left(a_{*}, b_{*}\right)$.

Corollary

If $F(0)<1$, then there exists optimal $\left(\tau_{*}, \alpha^{*}\right) \in \mathcal{D}$ and
$\tau_{*}=\inf \left\{t \geq 0: K_{t} \notin\left(S_{t} \cdot a_{*}, S_{t} \cdot b_{*}\right)\right\} \quad$ and $\quad \alpha^{*}=\mathbf{1}_{\left\{K_{\tau_{*}} \geq S_{\tau_{*}} \cdot b_{*}\right\}}$.

The Continuation and the Stopping regions

