

A class of recursive optimal stopping problems with applications to stock trading

Katia Colaneri

Vienna, 24 May 2019

joint work with Tiziano De Angelis

Outline

2 Motivation

- **③** Notation and Assumptions
- 4 The general case

Outline

1 Problem formulation

2 Motivation

ONOTATION AND ADDRESS NOTATIONS

4 The general case

The recursive optimal stopping problem

- ► 2 projects: A and B
- Profit of A is described by φ and Profit of B is ψ .
- If project A is chosen then it is realized P-a.s. instantaneously (i.e. at time *τ*)
- \blacktriangleright If project B is chosen then it is realised with probability p at the (delayed) time $\tau + \vartheta$

The recursive optimal stopping problem

- d-dimensional Markov process X
- ▶ $\varphi, \psi : \mathbb{R}^d \to \mathbb{R}$, continuous functions such that $\psi(x) > \varphi(x)$ for all $x \in \mathbb{R}^d$
- $\blacktriangleright \ p \in [0,1]$
- ϑ random variable with CDF F
- (τ,α) controls taking values in $\mathbb{R}^+\times\{0,1\}$

Problem:

$$\begin{aligned} v(x) &= \sup_{(\tau,\alpha)} \mathsf{E} \Biggl[e^{-r\tau} \varphi(X^x_{\tau}) \mathbf{1}_{\{\alpha=\mathbf{0}\}} \\ &+ e^{-r(\tau+\vartheta)} \left(\mathbf{p} \psi(X^x_{\tau+\vartheta}) + (\mathbf{1}-\mathbf{p}) \mathbf{v}(\mathbf{X}^\mathbf{x}_{\tau+\vartheta}) \right) \mathbf{1}_{\{\alpha=\mathbf{1}\}}, \end{aligned}$$

Outline

1 Problem formulation

2 Motivation

Ontation and Assumptions

4 The general case

(5) The 2-dimensional case

Examples

Examples

► project decision for R&D department

Examples

- project decision for R&D department
- ▶ in academia: which journal should we submit our papers?

Examples

- project decision for R&D department
- ▶ in academia: which journal should we submit our papers?
- trading in the lit market and the dark pool

A 2-dimensional model for trading in the lit and the dark pool

- (Bid) price in the lit market S
- price in the dark pool S + K, K is the spread

The problem:

$$\begin{split} v(s,k) &= \sup_{(\tau,\alpha)} \mathsf{E}\bigg[e^{-r\tau} \gamma S^s_\tau \mathbf{1}_{\{\alpha=0\}} \\ &+ e^{-r(\tau+\vartheta)} \big(p(S^s_{\tau+\vartheta} + K^k_{\tau+\vartheta}) + (1-p)v(S^s_{\tau+\vartheta}, K^k_{\tau+\vartheta}) \big) \, \mathbf{1}_{\{\alpha=1\}} \bigg]. \end{split}$$

Here we take:

$$X = (S, K)$$
, $\varphi(X) = \gamma S$ for $0 < \gamma \leq 1$ and $\psi(X) = S + K$.

Literature review

The problem itself is new, however there links with

- ► control problems with recursive utility (initiated by Epstein & Zin (1991), Duffie & Epstein (1992))
- ► optimal multiple stopping problems (Carmona (2008), De Angelis & Kitapbayev (2017))
- impulse control problems with delay (Bayraktar & Egami (2007), Dayanik & Karatzas (2003))

Optimization in dark pools (Kratz & Schöneborn (2014, 2015, 2018), Crisafi & Macrina (2016)) with a different objective.

Contribution

- Study a general *d*-dimensional recursive optimal stopping problem;
- Discuss the 2-dimensional case;
- Derive additional properties of the value function and the stopping rule.

Outline

1 Problem formulation

2 Motivation

4 The general case

Notation

- Filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathsf{P})$;
- ► *d*-dimensional Markov process *X*;
- ϑ random variable with CDF F and $p \in [0, 1]$;
- \mathcal{T} set of \mathbb{F} -stopping times;
- $\mathcal{D} = \{(\tau, \alpha): \tau \in \mathcal{T}, \alpha \in \{0, 1\}, \alpha \in \mathcal{F}_{\tau}\};$
- Banach space

$$\mathcal{A}_d := \left\{ f : f \in C(\mathbb{R}^d; \mathbb{R}_+), \text{ such that } \|f\|_{\mathcal{A}_d} < +\infty \right\},$$

where $||f||^2_{\mathcal{A}_d} := \sup_{x \in \mathbb{R}^d} \frac{|f(x)|^2}{1+|x|^2_d}$.

Assumptions

Assumption

(i) There exists
$$\rho \in (0, 1)$$
 s.t.

$$\widehat{X}_t := e^{-2r(1-\rho)t}(1+|X_t|_d^2),$$
is a P_x -supermartingale for any $x \in \mathbb{R}^d$;
(ii) for any compact $K \subset \mathbb{R}^d$ we have

$$\sup_{x \in K} \mathsf{E}_x \left[\sup_{t \ge 0} e^{-rt} |X_t|_d \right] < \infty;$$
(iii) for any $x \in \mathbb{R}^d$ and $(x_n)_{n \ge 0}$ s.t. $x_n \to x$

$$\lim_{n \to \infty} \mathsf{E} \left[\sup_{t \ge 0} e^{-rt} |X_t^{x_n} - X_t^x|_d \right] = 0;$$

(iv) functions φ and ψ belong to \mathcal{A}_d (with $\varphi \leq \psi$).

Outline

1 Problem formulation

2 Motivation

3 Notation and Assumptions

4 The general case

Two equivalent problem formulations

Problem 1. Find a continuous function $v : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies

$$v(x) = \sup_{(\tau,\alpha)\in\mathcal{D}} \mathsf{E}\Big[e^{-r\tau}\varphi(X^x_{\tau})\mathbf{1}_{\{\alpha=0\}} + e^{-r(\tau+\vartheta)}\left(p\psi(X^x_{\tau+\vartheta}) + (1-p)v(X^x_{\tau+\vartheta})\right)\mathbf{1}_{\{\alpha=1\}}\Big].$$
 (1)

Two equivalent problem formulations

Problem 1. Find a continuous function $v : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies

$$v(x) = \sup_{(\tau,\alpha)\in\mathcal{D}} \mathsf{E}\Big[e^{-r\tau}\varphi(X^x_{\tau})\mathbf{1}_{\{\alpha=0\}} + e^{-r(\tau+\vartheta)}\left(p\psi(X^x_{\tau+\vartheta}) + (1-p)v(X^x_{\tau+\vartheta})\right)\mathbf{1}_{\{\alpha=1\}}\Big].$$
 (1)

Problem 2. Find a continuous function $\tilde{v} : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies

$$\tilde{v}(x) = \sup_{\tau \in \mathcal{T}} \mathsf{E}\Big[e^{-r\tau} \max\left\{\varphi(X^x_{\tau}), (\Lambda \tilde{v})(X^x_{\tau})\right\}\Big],\tag{2}$$

where $(\Lambda f)(x) := \int_0^\infty e^{-rt} \mathsf{E}\left[p\psi(X_t^x) + (1-p)f(X_t^x)\right] F(\mathrm{d}t),$ for any continuous function $f : \mathbb{R}^d \to \mathbb{R}_+.$

Two equivalent problem formulations

Problem 1. Find a continuous function $v : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies

$$v(x) = \sup_{(\tau,\alpha)\in\mathcal{D}} \mathsf{E}\Big[e^{-r\tau}\varphi(X^x_{\tau})\mathbf{1}_{\{\alpha=0\}} + e^{-r(\tau+\vartheta)}\left(p\psi(X^x_{\tau+\vartheta}) + (1-p)v(X^x_{\tau+\vartheta})\right)\mathbf{1}_{\{\alpha=1\}}\Big].$$
 (1)

Problem 2. Find a continuous function $\tilde{v} : \mathbb{R}^d \to \mathbb{R}_+$ that satisfies

$$\tilde{v}(x) = \sup_{\tau \in \mathcal{T}} \mathsf{E}\Big[e^{-r\tau} \max\left\{\varphi(X^x_{\tau}), (\Lambda \tilde{v})(X^x_{\tau})\right\}\Big],\tag{2}$$

where $(\Lambda f)(x) := \int_0^\infty e^{-rt} \mathsf{E}\left[p\psi(X_t^x) + (1-p)f(X_t^x)\right] F(\mathrm{d}t),$ for any continuous function $f : \mathbb{R}^d \to \mathbb{R}_+.$

Equivalence of the stopping problems

Lemma

A continuous function $v : \mathbb{R}^d \to \mathbb{R}_+$ is a solution of **Problem 1** if and only if it solves **Problem 2**.

Sketch of the proof.

$$\begin{split} v(x) &= \sup_{(\tau,\alpha)\in\mathcal{D}}\mathsf{E}\bigg[e^{-r\tau}\varphi(X^x_{\tau})\mathbf{1}_{\{\alpha=0\}} \\ &+ \int_0^\infty e^{-r(\tau+t)}\left(p\psi(X^x_{\tau+t}) + (1-p)v(X^x_{\tau+t})\right)F(\mathrm{d}t)\mathbf{1}_{\{\alpha=1\}}\bigg]. \end{split}$$

Use that α is $\mathcal{F}_{\tau}\text{-measurable},$ Fubini's theorem and the strong Markov property of X

$$\mathsf{E}\left[\int_{0}^{\infty} e^{-r(\tau+t)} \left(p\psi(X_{\tau+t}^{x}) + (1-p)v(X_{\tau+t}^{x})\right) F(\mathrm{d}t) \mathbf{1}_{\{\alpha=1\}} \middle| \mathcal{F}_{\tau}\right]$$
$$= e^{-r\tau} (\Lambda v)(X_{\tau}^{x}) \mathbf{1}_{\{\alpha=1\}}.$$

Finally, the tower property leads to the claim.

The main result

Theorem

- Problem 2 admits a unique solution $v \in A_d$.
- The stopping time

$$\tau_* = \inf \left\{ t \ge 0 : v(X_t) = \max \left\{ \varphi(X_t), (\Lambda v)(X_t) \right\} \right\}$$

is optimal for (1).

The process

$$\left(e^{-rt}v(X_t)\right)_{t\geq 0}$$

is a right-continuous (non-negative) supermartingale

The process

$$\left(e^{-r(t\wedge\tau_*)}v(X_{t\wedge\tau_*})\right)_{t\geq 0}$$

is a right-continuous (non-negative) martingale.

Sketch of the proof.

Define the operator

$$(\Gamma f)(x) := \sup_{\tau \in \mathcal{T}} \mathsf{E}\left[e^{-r\tau} \max\left\{\varphi(X^x_{\tau}), (\Lambda f)(X^x_{\tau})\right\}\right].$$
(3)

Objective: v is the unique fixed point of the operator Γ and an optimal stopping time exists.

- Step 1. The operator Λ maps \mathcal{A}_d into itself.
- Step 2. An optimal stopping time in (3) exists and Γf is lsc for every f ∈ C(ℝ^d; ℝ⁺)
- Step 3. Γf is use for every $f \in \mathcal{C}(\mathbb{R}^d; \mathbb{R}^+)$
- Step 4. Γ is a contraction

No delay

If $\mathsf{P}(\vartheta=0)=1$ the optimiser would always choose $\alpha=1.$

- \blacktriangleright if $\psi(X)$ is not achieved the investor learns immediately and instantly stop again and choose $\alpha=1$
- ► the mechanism continues (instantaneously) until the payoff is attained

Corollary

If F(0) = 1 we have

$$v(x) = \sup_{\tau \in \mathcal{T}} \mathsf{E}_x \left[e^{-r\tau} \psi(X_\tau) \right], \quad \text{for } x \in \mathbb{R}^d.$$

Outline

1 Problem formulation

2 Motivation

③ Notation and Assumptions

4 The general case

Application to trading in the lit/dark pool

The model

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dB_t^1, \qquad S_0 = s > 0,$$

$$dK_t = \mu_2 K_t dt + \sigma_2 K_t dB_t^2, \qquad K_0 = k > 0.$$

- $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$
- ► $(B_t^1)_{t \ge 0}$, $(B_t^2)_{t \ge 0}$ Brownian motions with correlation $\nu \in [-1, 1]$.

Application to trading in the lit/dark pool

The model

$$dS_t = \mu_1 S_t dt + \sigma_1 S_t dB_t^1, \qquad S_0 = s > 0,$$

$$dK_t = \mu_2 K_t dt + \sigma_2 K_t dB_t^2, \qquad K_0 = k > 0.$$

•
$$\mu_1, \mu_2 \in \mathbb{R}$$
 and $\sigma_1, \sigma_2 > 0$

► $(B_t^1)_{t \ge 0}$, $(B_t^2)_{t \ge 0}$ Brownian motions with correlation $\nu \in [-1, 1]$.

Problem formulation

$$v(s,k) = \sup_{\tau \in \mathcal{T}} \mathsf{E}\left[e^{-r\tau} \max\left\{\gamma S^s_\tau, (\Lambda v)(S^s_\tau,K^k_\tau)\right\}\right]$$

where

$$(\Lambda f)(s,k) := \int_0^\infty e^{-rt} \mathsf{E}\left[p(S^s_t + K^k_t) + (1-p)f(S^s_t, K^k_t)\right] F(\mathrm{d}t).$$

Can we say more?

With no loss of generality take $\gamma = 1$.

- The value function is positive homogeneous
- We can reduce dimension (i.e. we get a 1 dimensional recursive optimal stopping problem): alternative characterization of the stopping time and the value function
- \blacktriangleright The value function u is monotonic, non-decreasing and convex
- ► The optimal stopping rule can be expressed in terms of two boundaries ►→
- The smooth-fit holds (i.e. the value function is C^1)

Thank you for the attention

COLANERI, K. AND DE ANGELIS, T. (2019) A class of recursive optimal stopping problems with applications to stock trading ArXiv: https://arxiv.org/pdf/1905.02650.pdf

Positive homogeneity

- $\bullet \ \, \text{For all} \ \, (s,k)\in \mathbb{R}^2_+ \ \, \text{we have} \ \, v(s,k)=s\,v(1,k/s).$
- Define the process $\widehat{Z}_t = \frac{K_t}{S_t}$
- Note that

$$\begin{split} (\Lambda v)(s,k) &:= \int_0^\infty e^{-rt} \mathsf{E} \left[p(S_t^s + K_t^k) + (1-p)v(S_t^s, K_t^k) \right] F(\mathrm{d}t) \\ &:= s \int_0^\infty e^{-rt} \mathsf{E} \left[S_t^1 p(1+\widehat{Z}_t^z) + (1-p)S_t^1 v(1,\widehat{Z}_t^z) \right] F(\mathrm{d}t) \end{split}$$

• we change the measure "using" the martingale pert of S_t^1

$$\frac{\mathrm{d}\mathsf{Q}}{\mathrm{d}\mathsf{P}}|_{\mathcal{F}_t} = D_t = e^{\sigma^1 B_t^1 - \frac{\sigma_1^2}{2}t}$$

• Then $D_t = S_t^1 e^{-\mu_1 t}$

• Let $(Z_t)_{t\geq 0}$ be the solution of the SDE

$$\mathrm{d}Z_t = Z_t(\mu_2 - \mu_1)\mathrm{d}t + Z_t\widetilde{\sigma}\mathrm{d}\widetilde{B}_t, \qquad t \in [0,\infty),$$

where \widetilde{B}_t is a P-Brownian motion

- + \widehat{Z} under Q has the same distribution of Z under P
- ► Then:

$$(\Lambda v)(s,k) := s \int_0^\infty e^{-(r-\mu_1)t} \mathsf{E}\left[p(1+Z_t^z) + (1-p)v(1,Z_t^z)\right] F(\mathrm{d}t)$$

 $\blacktriangleleft \leftarrow$

Reduction to optimal stopping in dimension 1

Define

$$u(z) := \sup_{\tau} \mathsf{E}\left[e^{-(r-\mu_1)\tau} \max\{1, (\Pi u)(Z_{\tau}^z)\}\right]$$
(4)

where

$$(\Pi u)(z) := \int_0^\infty e^{-(r-\mu_1)t} \mathsf{E}\left[p(1+Z_t^z) + (1-p)u(Z_t^z)\right] F(\mathrm{d}t).$$

Then $\mathbf{u}(\mathbf{z}) = \mathbf{v}(\mathbf{1}, \mathbf{k/s}).$

The stopping rule

Continuation region:

$$\mathcal{C} := \{ z \in \mathbb{R}_+ : u(z) > \max[1, (\Pi u)(z)] \}$$

Stopping region:

$$S := \{ z \in \mathbb{R}_+ : u(z) = \max[1, (\Pi u)(z)] \}$$

Theorem

Assume F(0) < 1, then there exist two points $0 < a_* < b_* < +\infty$ such that $C = (a_*, b_*)$.

Corollary

If F(0) < 1, then there exists optimal $(\tau_*, \alpha^*) \in \mathcal{D}$ and

 $\tau_* = \inf\{t \geq 0: K_t \notin (S_t \cdot a_*, S_t \cdot b_*)\} \quad \text{and} \quad \alpha^* = \mathbf{1}_{\{K_{\tau_*} \geq S_{\tau_*} \cdot b_*\}}.$

The Continuation and the Stopping regions

