Collegio Carlo Alberto

università degli studi di torino

From infinity to here: a Bayesian nonparametric perspective of finite mixture models

Raffaele Argiento

ESOMAS Department University of Torino and Collegio Carlo Alberto

$$
\text { Wien, May 17th - } 2019
$$

joint with Maria de Iorio (Yale-NUS Singapore)

Collegio Carlo Alberto

universtrà degli studi di torino

From infinity to here: a Bayesian nonparametric perspective of finite mixture models

Raffaele Argiento

ESOMAS Department University of Torino and Collegio Carlo Alberto

Wien, May 17th - 2019
joint with Maria de Iorio (Yale-NUS Singapore)

Mixture models

- Mixture models are a very powerful and natural statistical tool to model data from heterogeneous populations.
- Observations are assumed to have arisen from one of M (finite or infinite) groups, each group being suitably modelled by a density typically from a parametric family.
- The density of each group is referred to as a component of the mixture and is weighted by the relative frequency (weight) of the group in the population.

Mixture models

- Mixture models are a very powerful and natural statistical tool to model data from heterogeneous populations.
- Observations are assumed to have arisen from one of M (finite or infinite) groups, each group being suitably modelled by a density typically from a parametric family.
- The density of each group is referred to as a component of the mixture and is weighted by the relative frequency (weight) of the group in the population.
- The statistical goals are density estimation and cluster analysis (see Fruhwirth-Schnatter et al. 2019).

Hierachical representation

$$
X_{1}, \ldots, X_{n} \mid \mathbf{w}, \boldsymbol{\tau} \stackrel{i i d}{\sim} \sum_{h=1}^{M} w_{h} f\left(x \mid \tau_{h}\right)
$$

$$
\mathbf{w} \mid M \sim \operatorname{Dirichlet}_{M}(\gamma, \ldots, \gamma)
$$

$$
\tau_{h} \mid M \stackrel{i i d}{\sim} P_{0}(d \tau), \quad M \sim q_{M}
$$

Mixture models - Notation

Hierachical representation

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid j_{1}, \ldots, j_{n} \stackrel{\text { ind }}{\sim} f\left(x \mid \tau_{j_{i}}\right) \\
& j_{1}, \ldots, j_{n} \mid \mathbf{w} \stackrel{\text { iid }}{\sim} \operatorname{Multinomial}_{M}\left(1, w_{1}, \ldots, w_{M}\right) \\
& \mathbf{w} \mid M \sim \operatorname{Dirichlet}_{M}(\gamma, \ldots, \gamma) \\
& \tau_{h} \mid M \stackrel{\text { iid }}{\sim} P_{0}\left(d \tau_{h}\right), \quad M \sim q_{M}
\end{aligned}
$$

Mixture models - Notation

Hierachical representation

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta_{1}, \ldots, \theta_{n} \stackrel{i n d}{\sim} f\left(x_{i} \mid \theta_{i}\right), \quad \theta_{i}=\tau_{j_{i}} \\
& \theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P, \quad P(\cdot) \stackrel{d}{=} \sum_{h=1}^{M} w_{h} \delta_{\tau_{h}}(\cdot) \\
& \mathbf{w} \mid M \sim \operatorname{Dirichlet}_{M}(\gamma, \ldots, \gamma) \\
& \tau_{h} \mid M \stackrel{\text { iid }}{\sim} P_{0}\left(d \tau_{h}\right), \quad M \sim q_{M}
\end{aligned}
$$

Mixture models - Notation

Hierachical representation

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta_{1}, \ldots, \theta_{n} \stackrel{i n d}{\sim} f\left(x_{i} \mid \theta_{i}\right) \\
& \theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P, \quad P(\cdot) \stackrel{d}{=} \sum_{h=1}^{M} w_{h} \delta_{\tau_{h}}(\cdot) \\
& P \sim F D P
\end{aligned}
$$

Hierachical representation

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta_{1}, \ldots, \theta_{n} \stackrel{i n d}{\sim} f\left(x_{i} \mid \theta_{i}\right) \\
& \theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P, \quad P(\cdot) \stackrel{d}{=} \sum_{h=1}^{M} w_{h} \delta_{\tau_{h}}(\cdot) \\
& P \sim F D P
\end{aligned}
$$

\checkmark The density f_{P} of the population variable X is random.
\checkmark The law of this random density is assigned by a mixture model:

$$
X \mid P \sim f_{P}(x)=\int_{\Theta} f(x ; \theta) P(d \theta)=\sum_{h=1}^{M} w_{h} f\left(x, \tau_{h}\right)
$$

Targets:

\star Density estimation: $\mathcal{L}\left(f_{P} \mid X_{1}, \ldots, X_{n}\right)$
\star Cluster analysis: $\mathcal{L}\left(\rho \mid X_{1}, \ldots, X_{n}\right)$
where ρ is the random partition induced by P.

Mixture models - Notation

Hierachical representation

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta_{1}, \ldots, \theta_{n} \stackrel{i n d}{\sim} f\left(x_{i} \mid \theta_{i}\right) \\
& \theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P, \quad P(\cdot) \stackrel{d}{=} \sum_{h=1}^{M} w_{h} \delta_{\tau_{h}}(\cdot) \\
& P \sim N o r m-I F P P
\end{aligned}
$$

\checkmark The density f_{P} of the population variable X is random.
\checkmark The law of this random density is assigned by a mixture model:

$$
X \mid P \sim f_{P}(x)=\int_{\Theta} f(x ; \theta) P(d \theta)=\sum_{h=1}^{M} w_{h} f\left(x, \tau_{h}\right)
$$

Targets:

* Density estimation: $\mathcal{L}\left(f_{P} \mid X_{1}, \ldots, X_{n}\right)$
\star Cluster analysis: $\mathcal{L}\left(\rho \mid X_{1}, \ldots, X_{n}\right)$
where ρ is the random partition induced by P.

In this work:
(a) we introduce a general class of prior for P
(b) we set up a easy blocked Gibbs sampler.

Computation under the parametric approach: $M<\infty$

Prior for the mixing distribution:

$$
P(\cdot)=\sum_{j=1}^{M} w_{j} \delta_{\tau_{j}}(\cdot) \quad \mathrm{M}-F D P
$$

then $\left(w_{1}, \ldots, w_{M}\right) \sim \operatorname{Dirichlet}_{M}(\gamma, \ldots, \gamma), \gamma>0,\left(\tau_{1}, \ldots, \tau_{M}\right) \stackrel{i i d}{\sim} P_{0}$.

- M is fixed: one fits several mixture models for $M=1,2, \ldots, M^{*}$ then choose the best M acccoding to some goodness of fit index.
- M is random: we need MCMCs that allow transitions across dimensions of the state space
\checkmark Revesible jump ([Richardson and Green, 1997]).
\checkmark Point processes representation of the posteriors distribution ([Stephens, 2000]).
\checkmark Borrowing notation from nonparametric literature: Marginal Gibbs sampler ([Miller and Harrison, 2018]).

Computation under the nonparametric approach: $M=\infty$

Prior for the mixing distribution:
P~Dirichlet Process, P~Normalized CRM, P~Stick-breaking Priors.
Critical issues, infinite dimensional parameter $P=\sum_{i=1}^{\infty} w_{i} \delta_{\tau_{i}}$
Marginal Gibbs sampler algorithms [Neal, 2000] [Favaro e Teh, 2013]
\checkmark Integrate out P and resort to generalized Polya urn schemes
\checkmark Inference is limited to the point estimates: predictive $f_{X_{n+1}}\left(\cdot \mid X_{1}, . ., X_{n}\right)$

Conditional methods

\checkmark Use some tricks to build a Gibbs sampler whose state space encompasses P.
\checkmark Full Bayesian posterior analysis.
For instance:
\checkmark Slice sampler [Kalli et al. 2009] \checkmark Retrospective methods [Papaspiliopulos et al., 2008]
\checkmark Truncation (either a-priori or a-posteriori) of the infinite sum defining the r.p.m. P [Argiento et al., 2010, Argiento et al., 2015a]

The number of components and the number of clusters

Q It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

The number of components and the number of clusters

Q It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).
\checkmark This is a plot of a mixture density with $M=5$ five components.

The number of components and the number of clusters

Q It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).
\checkmark I draw a sample of size 500 from the mixture

The number of components and the number of clusters

Q It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).
\checkmark The number of clusters are the allocated components, they are are $K:=M^{(a)}=3$

The number of components and the number of clusters

2 It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).
\checkmark The non-allocated components (empty) are $M^{(n a)}:=M-M^{(a)}=2$.

General Outline

Normalized Independendent Finite Point Processes (Norm-IFPP)

Clustering induced by Norm-IFFP and posterior characterization

Norm-IFPP mixtures

Conditional Algorithm for Norm-IFFP

Illustrative Example (Galaxy Data)

Finite point processes

- A finite point process $S=\left\{S_{1}, \ldots, S_{M}\right\}$ is a random set of unordered points in a metric space \mathcal{S} [see Daley and Vere-Jones (2003)].
- The law of a finite point process is identified by:

Finite point processes

- A finite point process $S=\left\{S_{1}, \ldots, S_{M}\right\}$ is a random set of unordered points in a metric space \mathcal{S} [see Daley and Vere-Jones (2003)].
- The law of a finite point process is identified by:
$\checkmark \begin{aligned} & \left\{q_{m}, m=0,1, \ldots\right\} \\ & M \text { of points of the process. }\end{aligned}$
$\checkmark H_{m}(\cdot)$ For each integer $m \geq 1$ this is a probability distribution on \mathcal{S}^{m} that determines the joint law of the positions of the points of the process, given that their total number is m.
- Since S is unordered, $H_{m}(\cdot)$ should be symmetric,

An alternative notation to identify the law of S, which has some advantages in simplifying combinatorial formulae, utilizes the nonprobability Janossy measure:

$$
\mathbb{J}_{m}\left(A_{1} \times \cdots \times A_{m}\right)=q_{m} \sum_{p e r m} H_{m}\left(A_{i_{1}} \times \cdots \times A_{i_{m}}\right)=m!q_{m} H_{m}\left(A_{1} \times \cdots \times A_{m}\right)
$$

for each $m \geq 0$.
Interpretation: if $\mathcal{X}=\mathbb{R}^{d}$ and $s_{i} \neq s_{j}$ for $i \neq j$, then

$$
\begin{aligned}
\mathbb{J}_{m}\left(d s_{1}, \ldots, d s_{m}\right)= & \mathbb{P}(\text { there are exactly } m \text { points in the process, one in each of the } \\
& \text { distinct infinitesimal regions } \left.\left(s_{i}, s_{i}+d s_{i}\right)\right) .
\end{aligned}
$$

- Janossy densities plays a fundamental role in the study of finite point processes and spatial point patterns, we refer to [see Daley and Vere-Jones (2003)] for more details.

Normalized independent finite point processes (Norm-IFPP)
$P \sim \operatorname{Norm}-\operatorname{IFPP}\left(h,\left\{q_{m}\right\}, P_{0}\right)$, on $\Theta \subset \mathbb{R}^{s}$

Normalized independent finite point processes (Norm-IFPP)

$$
P \sim \operatorname{Norm}-\operatorname{IFPP}\left(h,\left\{q_{m}\right\}, P_{0}\right), \text { on } \Theta \subset \mathbb{R}^{s}
$$

Constructive definition: Normalization of a finite point process

$$
\begin{equation*}
P(\cdot)=\sum_{j \in \mathcal{J}} w_{j} \delta_{\tau_{j}}(\cdot) \stackrel{d}{=} \sum_{j \in \mathcal{J}} \frac{S_{j}}{T} \delta_{\tau_{j}}(\cdot) \tag{1}
\end{equation*}
$$

where $\mathcal{J}=\{1, \ldots, M\}$ and $0<T=\sum_{j \in \mathcal{J}} S_{j}<\infty$.
$\checkmark\left\{S_{1}, \ldots, S_{M}\right\}$ is an independent finite point process with $q_{0}=0$ with Janossy density

$$
\mathbb{J}_{m}\left(d s_{1}, \ldots, d s_{m}\right)=m!q_{m} \prod_{j=1}^{m} h\left(s_{j}\right) d s_{j} . \quad m=1,2, \ldots
$$

where h is a density on \mathbb{R}^{+}.
\checkmark the support $\left\{\tau_{j}\right\}$ is an iid sequence from P_{0};
$\checkmark\left\{S_{j}\right\}$ and $\left\{\tau_{j}\right\}$ are independent.

Normalized independent finite point processes (Norm-IFPP)

where h is a density on \mathbb{R}^{+}.
\checkmark the support $\left\{\tau_{j}\right\}$ is an iid sequence from P_{0};
$\checkmark\left\{S_{j}\right\}$ and $\left\{\tau_{j}\right\}$ are independent.

Normalized independent finite point processes (Norm-IFPP)

where h is a density on \mathbb{R}^{+}.
\checkmark the support $\left\{\tau_{j}\right\}$ is an iid sequence from P_{0};
$\checkmark\left\{S_{j}\right\}$ and $\left\{\tau_{j}\right\}$ are independent.

Normalized independent finite point processes (Norm-IFPP)

where h is a density on \mathbb{R}^{+}.
\checkmark the support $\left\{\tau_{j}\right\}$ is an iid sequence from P_{0};
$\checkmark\left\{S_{j}\right\}$ and $\left\{\tau_{j}\right\}$ are independent.

Normalized independent finite point processes (Norm-IFPP)

A simple example Finite (Poisson) Dirichlet process:
$\begin{gathered}\text { Number of jumps } \\ \mathcal{P}_{1}(\Lambda) m=1,2, \ldots,\end{gathered} q_{m}=\frac{e^{-\Lambda} \Lambda^{m-1}}{(m-1)!} ; \quad \begin{aligned} & \text { Distribution } \\ & \operatorname{Gamma}(\gamma, 1)\end{aligned} \quad h(s)=\frac{1}{\gamma} s^{\gamma-1} e^{-s} ;$

Given $M\left(\frac{S_{1}}{T}, \ldots, \frac{S_{M}}{T}\right) \sim \operatorname{Dirichlet}_{M}(\gamma, \ldots, \gamma) . F D P$

Model for cluster analysis

The variables $\theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P$ where $P \sim$ NormIFPP induce a random partition ρ of data indexes $\{1, \ldots, n\}$.

- Since P is a.s. discrete we observe ties with positive probability:
$\checkmark \theta_{1}^{*}, \ldots, \theta_{K_{n}}^{*}$: unique values in $\theta_{1}, \ldots, \theta_{n}$
$\checkmark \rho=\left\{C_{1}, \ldots, C_{K_{n}}\right\}: \quad i \in C_{j} \Leftrightarrow \theta_{i}=\theta_{j}^{*}, \# C_{j}=n_{j}$

Model for cluster analysis

The variables $\theta_{1}, \ldots, \theta_{n} \mid P \stackrel{i i d}{\sim} P$ where $P \sim$ NormIFPP induce a random partition ρ of data indexes $\{1, \ldots, n\}$.

- Since P is a.s. discrete we observe ties with positive probability:
$\checkmark \theta_{1}^{*}, \ldots, \theta_{K_{n}}^{*}$: unique values in $\theta_{1}, \ldots, \theta_{n}$
$\checkmark \rho=\left\{C_{1}, \ldots, C_{K_{n}}\right\}: \quad i \in C_{j} \Leftrightarrow \theta_{i}=\theta_{j}^{*}, \# C_{j}=n_{j}$

Prior of ρ : exchangeable partition probability function (Pitman 1996)

$$
\mathbb{P}\left(\rho=\left\{C_{1}, \ldots, C_{K_{n}}\right\}\right)=\operatorname{eppf}\left(\sharp C_{1}, \ldots, \sharp C_{K_{n}}\right):=\sum_{j_{1}, \ldots, j_{K_{n}}} \mathbb{E} \prod_{i=1}^{K_{n}} w_{j_{i}}^{\left(\sharp C_{i}\right)}
$$

The eppf of a Norm-IFPP

Theorem 1 - Eppf-characterization

Let $\left(n_{1}, \ldots, n_{k}\right)$ be a vector of positive integers such that $\sum_{i=1}^{k} n_{i}=n$. Then, the eppf associated with a $\operatorname{Norm}-\operatorname{IFPP}\left(h,\left\{q_{n}\right\}, P_{0}\right)$ is

$$
\operatorname{eppf}\left(n_{1}, \ldots, n_{k}\right)=\int_{0}^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) \prod_{i=1}^{k} \kappa\left(n_{i}, u\right) d u
$$

where

$$
\Psi(u, k):=\left\{\sum_{m=0}^{\infty} \frac{(m+k)!}{m!} \psi(u)^{m} q_{m+k}\right\}
$$

moreover, $\psi(u)$ is the Laplace transform of the density $h(s)$, i.e.

$$
\psi(u):=\int_{0}^{\infty} e^{-u s} h(s) d s, \quad \text { and } \quad \kappa\left(n_{i}, u\right):=\int_{0}^{\infty} u^{n_{i}} e^{-u s} h(s) d s=(-1)^{n_{i}} \frac{d}{d u^{n_{i}}} \psi(u)
$$

Why it is important to have an expression of the eppf?

- Computation The eppf fully characterize the predictive structure of P, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ.

Why it is important to have an expression of the eppf?

- Computation The eppf fully characterize the predictive structure of P, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ.
- Interpretation It allows us to compute the prior distribution on the number of clusters, i.e $\overline{\text { for } k=1, \ldots}, n$

$$
\mathbb{P}\left(K_{n}=k\right)=\int_{0}^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) B_{n, k}(\kappa(\cdot, u))
$$

where $B_{n, k}(\kappa(\cdot, u))$ is the partial Bell polynomial

Why it is important to have an expression of the eppf?

- Computation The eppf fully characterize the predictive structure of P, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ.
- Interpretation It allows us to compute the prior distribution on the number of clusters, i.e $\overline{\text { for } k=1, \ldots}, n$

$$
\mathbb{P}\left(K_{n}=k\right)=\int_{0}^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) B_{n, k}(\kappa(\cdot, u))
$$

where $B_{n, k}(\kappa(\cdot, u))$ is the partial Bell polynomial

- Difficulties The analytical expression of the eppf involves:
(1) an integral respect to u;
(2) an infinite sum $\Psi(u, k)$;
(3) the Laplace transform of $h(s)$.

Get rid of the integral

Idea To avoid the analytical computation of the integral respect to u we augment the state space of the process by a latent variable U_{n} - disintegration trick.

The joint law of the partition ρ and U_{n} is

$$
\operatorname{eppf}\left(n_{1}, \ldots, n_{k}, d u\right)=\frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) \prod_{i=1}^{k} \kappa\left(n_{i}, u\right) d u
$$

while the marginal law of U_{n} is

$$
f_{U_{n}}(u ; n)=(-1)^{n} \frac{u^{n-1}}{\Gamma(n)} \frac{d}{d u^{n}} \mathbb{E}\left(\psi(u)^{M}\right)
$$

Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF
\checkmark The first customer sits at table 1 , and $U_{1}=u$ is drawn;

Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF
\checkmark The first customer sits at table 1 , and $U_{1}=u$ is drawn;
\checkmark Given that k tables are occupied by n customer, and $U_{n}=u$, customer $n+1$ sits:

- A new table $k+1$ with probability proportional to

$$
\frac{e p p f\left(n_{1}, \ldots, n_{k}, 1 ; u\right)}{e p p f\left(n_{1}, \ldots, n_{k} ; u\right)}=\frac{\Psi(u, k+1)}{\Psi(u, k)} \kappa(1, u)
$$

Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF
\checkmark The first customer sits at table 1 , and $U_{1}=u$ is drawn;
\checkmark Given that k tables are occupied by n customer, and $U_{n}=u$, customer $n+1$ sits:

- A new table $k+1$ with probability proportional to

$$
\frac{\operatorname{eppf}\left(n_{1}, \ldots, n_{k}, 1 ; u\right)}{\operatorname{eppf}\left(n_{1}, \ldots, n_{k} ; u\right)}=\frac{\Psi(u, k+1)}{\Psi(u, k)} \kappa(1, u)
$$

- at an occupied table $j=1, \ldots k$ with probability proportional to

$$
\frac{\operatorname{eppf}\left(n_{1}, \ldots, n_{j}+1, \ldots, n_{k}, 1 ; u\right)}{\operatorname{eppf}\left(n_{1}, \ldots, n_{j}, \ldots, n_{k} ; u\right)}=\frac{\kappa\left(n_{j}+1, u\right)}{\kappa\left(n_{j}, u\right)}, \quad j=1, \ldots, k
$$

Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF
\checkmark The first customer sits at table 1 , and $U_{1}=u$ is drawn;
\checkmark Given that k tables are occupied by n customer, and $U_{n}=u$, customer $n+1$ sits:

- A new table $k+1$ with probability proportional to

$$
\frac{\operatorname{eppf}\left(n_{1}, \ldots, n_{k}, 1 ; u\right)}{\operatorname{eppf}\left(n_{1}, \ldots, n_{k} ; u\right)}=\frac{\Psi(u, k+1)}{\Psi(u, k)} \kappa(1, u)
$$

- at an occupied table $j=1, \ldots k$ with probability proportional to

$$
\frac{\operatorname{eppf}\left(n_{1}, \ldots, n_{j}+1, \ldots, n_{k}, 1 ; u\right)}{\operatorname{eppf}\left(n_{1}, \ldots, n_{j}, \ldots, n_{k} ; u\right)}=\frac{\kappa\left(n_{j}+1, u\right)}{\kappa\left(n_{j}, u\right)}, \quad j=1, \ldots, k
$$

- we draw $U_{n} \sim f_{U_{n}}\left(u \mid n_{1}, \ldots, n_{k}\right) \propto \operatorname{eppf}\left(n_{1}, \ldots, n_{k} ; u\right)$

The infinite sum - the choice of q_{m}

I just recall that to compute the eppf we need to evaluate the infinite sum

$$
\Psi(u, k):=\left\{\sum_{m=0}^{\infty} \frac{(m+k)!}{m!} \psi(u)^{m} q_{m+k}\right\}
$$

\checkmark We have a closed form expression for three cases (conjugacy):

- If M is assumed Shifted Poisson on $\{1,2, \ldots$,$\} , then$

$$
\Psi(u, k)=\Lambda^{k-1}(\Lambda \psi(u)+k) \exp \{\Lambda(\psi(u)-1)\}
$$

- If M is assumed Negative Binomial with parameters $0 \leq p \leq 1$ and $r>0$

$$
\Psi(u, k)=\frac{\Gamma(r+k-1)}{\Gamma(r)} p^{k-1}(1-p)^{r} \frac{p \psi(u)(r-1)+k}{(1-p \psi(u))^{k+r}}
$$

- If M is assumed fixed, i.e. $M=\widetilde{M} \geq 1$ with probability 1 ,

$$
\Psi(u, k)= \begin{cases}\frac{\widetilde{M}!}{(\widetilde{M}-k)!} \psi(u)^{\widetilde{M}-k} & \text { if } k \leq \widetilde{M} \\ 0 & \text { if } k>\widetilde{M}\end{cases}
$$

The Laplace tranform - the choice of h

Let S_{m} the unnormalized weights, conditionally to $M, S_{m} \stackrel{i i d}{\sim} h(s)$

- $S_{j} \sim \operatorname{Gamma}(\gamma, 1)$ - Finite Dirichlet Process (FDP):

$$
\psi(u)=\frac{1}{(u+1)^{\gamma}}, \quad \kappa\left(u, n_{j}\right)=\frac{1}{(u+1)^{n_{j}+\gamma}} \frac{\Gamma\left(\gamma+n_{j}\right)}{\Gamma(\gamma)}
$$

- $S_{j} \sim \operatorname{Unif}(0,1):$

$$
\psi(u)=\frac{1-e^{u}}{u}, \quad \text { and } \quad \kappa\left(n_{j}, u\right)=\frac{\gamma\left(n_{j}+1, u\right)}{u_{j}^{n_{j}+1}}
$$

The Laplace tranform - the choice of h

Let S_{m} the unnormalized weights, conditionally to $M, S_{m} \stackrel{i i d}{\sim} h(s)$

- $S_{j} \sim \operatorname{Gamma}(\gamma, 1)-\underline{\text { Finite Dirichlet Process (FDP): }}$

$$
\psi(u)=\frac{1}{(u+1)^{\gamma}}, \quad \kappa\left(u, n_{j}\right)=\frac{1}{(u+1)^{n_{j}+\gamma}} \frac{\Gamma\left(\gamma+n_{j}\right)}{\Gamma(\gamma)}
$$

- $S_{j} \sim \operatorname{Unif}(0,1):$

$$
\psi(u)=\frac{1-e^{u}}{u}, \quad \text { and } \quad \kappa\left(n_{j}, u\right)=\frac{\gamma\left(n_{j}+1, u\right)}{u_{j}^{n_{j}+1}}
$$

- Levy Proccesses approach - Fix $\psi(u)=e^{-\int_{0}^{\infty}\left(e^{u x}-1\right) \omega(z) d x}$, where $\omega(z)$ is called Levy intensity, and compute $h(s)$ such that

$$
h(s)=\int_{0}^{s} \omega(z) h(s-z) \frac{z}{s} d z
$$

\Leftrightarrow This latter construction is the finite dimensional version of a Normalized Completely Random Measure (Lijoi et al. 2007)

Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

$$
M \sim q_{m}, \text { and } S_{j} \stackrel{i i d}{\sim} \operatorname{gamma}(\gamma, 1) .
$$

- We will use the notation $P \sim \operatorname{FDP}\left(\gamma, \Lambda, P_{0}\right)$.

Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

$$
M \sim q_{m}, \text { and } S_{j} \stackrel{i i d}{\sim} \operatorname{gamma}(\gamma, 1)
$$

- We will use the notation $P \sim \operatorname{FDP}\left(\gamma, \Lambda, P_{0}\right)$.
\checkmark The eppf of a $\operatorname{FDP}\left(\gamma, \Lambda, P_{0}\right)$ is given by [see also Miller Harrison (2016)]

$$
\operatorname{eppf}\left(n_{1}, \ldots, n_{k}\right)=V(n, k) \prod_{j=1}^{k} \frac{\Gamma\left(\gamma+n_{j}\right)}{\Gamma(\gamma)}
$$

where $V(n, k)=\int_{0}^{\infty} \tilde{f}(u) d u$., and \tilde{f} is a function that depends on the prior on q_{M}.

Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

$$
M \sim q_{m}, \text { and } S_{j} \stackrel{i i d}{\sim} \operatorname{gamma}(\gamma, 1)
$$

- We will use the notation $P \sim \operatorname{FDP}\left(\gamma, \Lambda, P_{0}\right)$.
\checkmark The eppf of a $\operatorname{FDP}\left(\gamma, \Lambda, P_{0}\right)$ is given by [see also Miller Harrison (2016)]

$$
\operatorname{eppf}\left(n_{1}, \ldots, n_{k}\right)=V(n, k) \prod_{j=1}^{k} \frac{\Gamma\left(\gamma+n_{j}\right)}{\Gamma(\gamma)}
$$

where $V(n, k)=\int_{0}^{\infty} \tilde{f}(u) d u$., and \tilde{f} is a function that depends on the prior on q_{M}.

- We will consider M as a Shifted Poisson or a Negative Binomial.
\checkmark Let \mathscr{C} denote the generalized Stirling numbers of second kind, then

$$
P\left(K_{n}=k\right)=V(n, k) \mathscr{C}(n, k, \gamma)
$$

Prior on the number of clusters, $\mathrm{n}=82$ and $\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right)=6$

Number of clusters under the FDP

\checkmark Note that, from the de Finetti Theorem

$$
K_{n} \rightarrow M \text { a.s. for } n \rightarrow \infty
$$

Prior on the number of clusters, $\mathrm{n}=82$ and $\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right)=6$

Again the allocated and non-allocated components

In my illustrative example:
\checkmark The allocated components are $K_{n}=M^{(a)}=3$
\checkmark The non-allocated components (empty) are $M^{(n a)}:=M-M^{(a)}=2$.

Posterior Characterization

Theorem 2 - Posterior law

Let $\left(\theta_{1}, \ldots, \theta_{n}\right)$ be a sample from $P \sim \operatorname{Norm}-\operatorname{IFPP}\left(h,\left\{q_{n}\right\}, P_{0}\right)$, then there exist an auxiliary random variable U such that the conditional law of P, given $\boldsymbol{\theta}^{*}$ and $U_{n}=u$ coincides with the normalization of the following:

$$
\sum_{j \in \mathcal{J}^{(n a)}} S_{j}^{(n a)} \delta_{\tau_{j}}(\cdot)+\sum_{j \in \mathcal{J}^{(a)}} S_{j}^{(a)} \delta_{\theta_{j}^{*}}(\cdot) \quad \tau_{j} \stackrel{i i d}{\sim} P_{0}
$$

(1) Non-allocated jumps: the process $\left\{S^{(n a)}\right\}$ is in IFPP with Janossy density given by

$$
\mathbb{J}_{m}\left(d s_{1}, \ldots, d s_{m}\right)=m!p_{m}^{\star} \prod_{j=1}^{m} h^{\star}\left(s_{j}\right) d s_{j}
$$

$$
h_{u}^{\star}(s) \propto \mathrm{e}^{-u s} h(s) \quad \text { and } \quad q_{m}^{\star} \propto \frac{(m+k)!}{m!} \psi(u)^{m} q_{m+k}, m=0,1,2, \ldots
$$

(2) Allocated jumps: for each $j \in \mathcal{J}^{(a)}=\left\{1, \ldots, K_{n}\right\}$ the distribution of $S_{j}^{(a)}$ is proportional to

$$
s^{n_{j}} \mathrm{e}^{-u s} h(s)
$$

(3) Latent variable:

$$
\left[U_{n} \mid \boldsymbol{S}^{(a)}, \boldsymbol{S}^{(n a)}\right] \sim \operatorname{Gamma}\left(n, \sum_{j} S_{j}\right)
$$

Normalized finite Poisson-Dirichlet mixture

\checkmark We let $\{f(\cdot, \theta), \theta \in \Theta\}$ be the family of Gaussian density.
\checkmark Then, the parameter $\theta=\left(\mu, \sigma^{2}\right)$ and P_{0} is a conjugate prior for θ.

$\left[\right.$| Mixture model |
| :--- |
| $X_{1}, \ldots, X_{n} \mid \theta_{1}, \ldots, \theta_{n} \stackrel{\text { ind }}{\sim} f\left(x_{i} \mid \theta_{i}\right)$ |
| $\theta_{1}, \ldots, \theta_{n} \mid P \stackrel{\text { iid }}{\sim} P$ |
| $P \sim F D P\left(\gamma, \Lambda, P_{0}\right)$ |
| $(\gamma, \Lambda) \sim \operatorname{gamma}\left(a_{1}, b_{1}\right) \times \operatorname{gamma}\left(a_{2}, b_{2}\right)$ |

- When Λ and γ are fixed, we choose them such that $\mathbb{E}\left(K_{n}\right)$ express our prior believes on the number of groups.
- Result: if we let $\gamma=\kappa / \Lambda$ then for $\Lambda \rightarrow \infty$ then P converges in law to the Dirichlet process $D P\left(\kappa, P_{0}\right)$.

Blocked Gibbs sampler: full-conditionals

We augment the state space introducing the r.v. U_{n}

$$
\text { Parameter: } U_{n}, \boldsymbol{\theta}, P, \Lambda, \gamma
$$

Blocked Gibbs sampler: full-conditionals

We augment the state space introducing the r.v. U_{n}

Parameter: $U_{n}, \boldsymbol{\theta}, P, \Lambda, \gamma$

For \mathbf{g} in $1, \ldots, G$:

1. sample $U_{n} \mid$ rest from a $\operatorname{Gamma}\left(n, \sum_{j} S_{j}\right)$
2. Sample $\boldsymbol{\theta} \mid$ rest, for each $i=1, \ldots, n$ from the discrete distribution

$$
\mathbb{P}\left(\theta_{i}=\tau_{j}\right) \propto S_{j} f\left(X_{i} \mid \tau_{j}\right), \quad j \in \mathcal{J}=\{1, \ldots, M\}
$$

3. Update the r.p.m. $\boldsymbol{P} \mid$ rest

Blocked Gibbs sampler: full-conditionals

3a. Update the r.p.m. \boldsymbol{P}, given $\gamma, \Lambda, U, \boldsymbol{\theta}$ we apply Theorem 2

3a.1 Sample $M^{(n a)}$ from q_{m}^{\star} that is the p.m.f.

$$
\frac{(u+1)^{\gamma} k}{(u+1)^{\gamma} k+\Lambda} \mathcal{P}_{1}\left(\Lambda /(u+1)^{\gamma}\right)+\frac{\Lambda}{(u+1)^{\gamma} k+\Lambda} \mathcal{P}_{0}\left(\Lambda /(u+1)^{\gamma}\right),
$$

where \mathcal{P}_{i} is the Shifted Poisson on $\{i, i+1, \ldots\}$.

3a. 2^{\prime} Non-allocated jumps: sample

$$
S_{j}^{(n a)} \stackrel{i i d}{\sim} \operatorname{Gamma}(\gamma, u+1)
$$

3a. 3^{\prime} Non-allocated support points:

$$
\tau_{j} \stackrel{i i d}{\sim} P_{0}\left(d \tau_{j}\right)
$$

3a. $\mathbf{2}^{\prime \prime}$ Allocated jumps: sample

$$
S_{j}^{(a)} \stackrel{i n d}{\sim} \operatorname{Gamma}\left(n_{i}-\gamma, u+1\right)
$$

3a. $3^{\prime \prime}$ Allocated support points: iid as

$$
\tau_{j}=\theta_{j}^{*} \sim \prod_{i \in C_{j}} f\left(X_{i} \mid \theta_{j}^{*}\right) P_{0}\left(d \theta_{j}^{*}\right)
$$

3b. Update γ, Λ, given U and $\boldsymbol{\theta}$

3b.1 Sample Λ from this mixture of gamma densities:

$$
\frac{\psi(u)}{1+b_{2}} \operatorname{Gamma}\left(k+a_{2}+1,1-\psi(u)+b_{2}\right) \frac{1-\psi(u)+b_{2}}{1+b_{2}} \operatorname{Gamma}\left(k+a_{2}, 1-\psi(u)+b_{2}\right)
$$

where $\psi(u)=\frac{1}{(u+1)^{\gamma}}$ is the Laplace transform of a $\operatorname{gamma}(\gamma, 1)$;
3b.2 Sample γ from the law

$$
\mathcal{L}(\gamma) \propto(\Lambda \psi(u)+k) \mathrm{e}^{\Lambda \psi(u)} \frac{1}{\psi(u)^{k}} \prod_{j=1}^{k} \frac{\Gamma\left(\gamma+n_{j}\right)}{\Gamma(\gamma)}
$$

and we have to resort to an Adaptive Metropolis step to sample from this non standard full conditional.

Figure: $\Lambda=10, \gamma=0.21$

Dataset:

$n=82$ galaxy velocities $\left[10^{6} \mathrm{~m} / \mathrm{s}\right]$

$$
\begin{aligned}
& k(\cdot ; \theta)=\mathcal{N}\left(\cdot ; \mu, \sigma^{2}\right) \\
& \begin{array}{l}
P_{0}\left(d \mu, d \sigma^{2}\right)=\mathcal{N}\left(d \mu, \sigma^{2} / k_{0}\right) \\
\quad \times I G\left(d \sigma^{2} \mid a, b\right)
\end{array}
\end{aligned}
$$

$$
\left(m_{0}, k_{0}, a, b\right)=(20.8,0.01,2,1)
$$

+ some robustness analysis

Galaxy data: a comparison with the Reversible Jump

\checkmark We fix Λ and γ such that $\mathbb{E}\left(K_{n}\right)=6$.
\checkmark Reversible Jump via mixAK R-package ([Komárek, 2009]; C++ linked to R). Our Gibbs is implemented in C++ code.
$\checkmark 5000$ burn-inn, 10 thinning and final sample size of 5000 .
\checkmark Integrated autocorrelation time [Kalli, Griffin and Walker, 2011]

$$
\hat{\tau}=\frac{1}{2}+\sum_{l=1}^{C-1} \hat{\rho}_{l},
$$

-A small value of τ implies good mixing and hence an efficient method.

(Λ, γ)	Blocked Gibbs			Reversible Jump		
	time	$\mathbb{E}(M \mid$ data $)$	$\hat{\tau}$	time	$\mathbb{E}(M \mid$ data $)$	$\hat{\tau}$
$(1000,0.0013)$	15.13 min.	1003.47	1.53	22.69 min.	669.33	864.44
$(100,0.0136)$	1.51 min.	103.19	1.51	2.12 min.	98.16	138.40
$(10,0.21)$	12.50 sec.	13.18	1.33	12.03 sec.	10.31	3.45
$(5,5)$	9.60 sec.	9.34	1.26	9.25 sec.	7.10	6.29

Galaxy data: Λ and γ random

$\checkmark \Lambda \sim \operatorname{Gamma}(1,0.01)$ and $\gamma \sim(2,1)$.
\checkmark Performances: time 8.26 sec and $\tau=3.89, \mathbb{E}\left(M^{(n a)} \mid\right.$ data $)=0.86$.

\checkmark Finite mixture model: We have proposed the new class of finite independent normalized point processes (Norm-IFPP) as the mixing measure.
\checkmark We have given an analytical expression of the exchangeable partition probability function, i.e. we characterized the law of the random partition induced by a Norm-IFPP on the data.
\checkmark We have characterized the posterior distribution of Norm-IFFP.
\checkmark We have designed a "conjugate" blocked Gibbs sampler for the Finite Dirichlet Mixture mixture model.
\checkmark Our Gibbs sampler outperforms the reversible jump in term of integrated autocorrelation time.

Thank you!!!

\checkmark Finite mixture model: We have proposed the new class of finite independent normalized point processes (Norm-IFPP) as the mixing measure.
\checkmark We have given an analytical expression of the exchangeable partition probability function, i.e. we characterized the law of the random partition induced by a Norm-IFPP on the data.
\checkmark We have characterized the posterior distribution of Norm-IFFP.
\checkmark We have designed a "conjugate" blocked Gibbs sampler for the Finite Dirichlet Mixture mixture model.
\checkmark Our Gibbs sampler outperforms the reversible jump in term of integrated autocorrelation time.
\Leftrightarrow Argiento, De Iorio (2019) "Is infinity that far? A Bayesian nonparametric perspective of finite mixture models", arXiv:1904.09733

Bibliography

\Leftrightarrow Argiento, De Iorio (2019) "Is infinity that far? A Bayesian nonparametric perspective of finite mixture models", arXiv: 1904.09733
\Leftrightarrow Fruhwirth-Schnatter, S., Celeux, G. and Robert, C. P. (2019) Handbook of mixture analysis.
\Leftrightarrow Frühwirth-Schnatter, S. and Malsiner-Walli, G. (2019) From here to infinity: sparse finite versus dirichlet process mixtures in model-based clustering. Advances in Data Analysis and Classification 13(1), 33-64..
\Leftrightarrow Lijoi, A., Mena, R. H. and Prünster, I. (2007) Controlling the reinforcement in bayesian non-parametric mixture models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69, 715-740.
\Leftrightarrow Miller, J. W. and Harrison, M. T. (2018) Mixture models with a prior on the number of components. Journal of the American Statistical Association, 113, 340-356.
\Leftrightarrow Nobile, A. (2004) On the posterior distribution of the number of components in a finite mixture. The Annals of Statistics, 32, 2044-2073.
\Leftrightarrow Richardson, S. and Green, P. J. (1997) On bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59, 731-792.
\Leftrightarrow Rousseau, J. and Mengersen, K. (2011) Asymptotic behaviour of the posterior distribution in overfitted mixture models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 689-710.

