

From infinity to here: a Bayesian nonparametric perspective of finite mixture models

Raffaele Argiento

ESOMAS Department University of Torino and Collegio Carlo Alberto

Wien, May 17th - 2019

joint with Maria de Iorio (Yale-NUS Singapore)

R. Argiento Wien, May 2019

R. Argiento

Wien, May 2019

From infinity to here: a Bayesian nonparametric perspective of finite mixture models

Raffaele Argiento

ESOMAS Department University of Torino and Collegio Carlo Alberto

Wien, May 17th - 2019

joint with Maria de Iorio (Yale-NUS Singapore)

Mixture models

- Mixture models are a very powerful and natural statistical tool to model data from heterogeneous populations.
- Observations are assumed to have arisen from one of M (finite or infinite) groups, each group being suitably modelled by a density typically from a parametric family.
- The density of each group is referred to as a component of the mixture and is weighted by the relative frequency (weight) of the group in the population.

Mixture models

- Mixture models are a very powerful and natural statistical tool to model data from heterogeneous populations.
- Observations are assumed to have arisen from one of M (finite or infinite) groups, each group being suitably modelled by a density typically from a parametric family.
- The density of each group is referred to as a component of the mixture and is weighted by the relative frequency (weight) of the group in the population.
- The statistical goals are <u>density estimation</u> and <u>cluster analysis</u> (see Fruhwirth-Schnatter et al. 2019).

Hierachical representation

$$X_1,\ldots,X_n \mid \mathbf{w}, \boldsymbol{\tau} \overset{iid}{\sim} \sum_{h=1}^M w_h f(x \mid \tau_h)$$

$$\mathbf{w} \mid M \sim \text{Dirichlet}_M(\gamma, \dots, \gamma)$$

$$\tau_h \mid M \stackrel{iid}{\sim} P_0(d\tau), \quad M \sim q_M$$

 □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ □</td>

 R. Argiento
 Wien, May 2019

Hierachical representation

$$X_1, \dots, X_n \mid j_1, \dots, j_n \stackrel{ind}{\sim} f(x \mid \tau_{j_i})$$

$$j_1, \dots, j_n \mid \mathbf{w} \stackrel{iid}{\sim} \text{Multinomial}_M(1, w_1, \dots, w_M)$$

$$\mathbf{w} \mid M \sim \text{Dirichlet}_M(\gamma, \dots, \gamma)$$

$$\tau_h \mid M \stackrel{iid}{\sim} P_0(d\tau_h), \quad M \sim q_M$$

э

э

R. Argiento

Hierachical representation

$$X_1, \dots, X_n \mid \theta_1, \dots, \theta_n \stackrel{ind}{\sim} f(x_i \mid \theta_i), \quad \theta_i = \tau_{j_i}$$

$$\theta_1, \dots, \theta_n \mid P \stackrel{iid}{\sim} P, \qquad P(\cdot) \stackrel{d}{=} \sum_{h=1}^M w_h \delta_{\tau_h}(\cdot)$$

$$\mathbf{w} \mid M \sim \text{Dirichlet}_M(\gamma, \dots, \gamma)$$

$$\tau_h \mid M \stackrel{iid}{\sim} P_0(d\tau_h), \qquad M \sim q_M$$

Hierachical representation

$$X_1, \dots, X_n \mid \theta_1, \dots, \theta_n \stackrel{ind}{\sim} f(x_i \mid \theta_i)$$

$$\theta_1, \dots, \theta_n \mid P \stackrel{iid}{\sim} P, \qquad P(\cdot) \stackrel{d}{=} \sum_{h=1}^M w_h \delta_{\tau_h}(\cdot)$$

$$P \sim FDP$$

Hierachical representation

$$X_1, \dots, X_n \mid \theta_1, \dots, \theta_n \stackrel{ind}{\sim} f(x_i \mid \theta_i)$$

$$\theta_1, \dots, \theta_n \mid P \stackrel{iid}{\sim} P, \qquad P(\cdot) \stackrel{d}{=} \sum_{h=1}^M w_h \delta_{\tau_h}(\cdot)$$

$$P \sim FDP$$

✓ The density *f_P* of the population variable *X* is **random**.
 ✓ The law of this random density is assigned by a mixture model:

$$X|P \sim f_P(x) = \int_{\Theta} f(x;\theta) P(d\theta) = \sum_{h=1}^{M} w_h f(x,\tau_h)$$

Targets:

★ Density estimation: $\mathcal{L}(f_P|X_1,\ldots,X_n)$

★ Cluster analysis: $\mathcal{L}(\rho|X_1,\ldots,X_n)$

where ρ is the random partition induced by *P*.

R. Argiento Wien, May 2019

Hierachical representation

$$X_1, \dots, X_n \mid \theta_1, \dots, \theta_n \stackrel{ind}{\sim} f(x_i \mid \theta_i)$$

$$\theta_1, \dots, \theta_n \mid P \stackrel{iid}{\sim} P, \qquad P(\cdot) \stackrel{d}{=} \sum_{h=1}^M w_h \delta_{\tau_h}(\cdot)$$

$$P \sim Norm - IFPP$$

 \checkmark The density f_P of the population variable X is **random**. ✓ The law of this random density is assigned by a mixture model:

$$X|P \sim f_P(x) = \int_{\Theta} f(x;\theta) P(d\theta) = \sum_{h=1}^{M} w_h f(x,\tau_h)$$

\star Density estimation: $\mathcal{L}(f_P|X_1,\ldots,X_n)$

\star Cluster analysis: $\mathcal{L}(\rho|X_1,\ldots,X_n)$

In this work:

- (a) we introduce a general class of prior for P
- (b) we set up a easy blocked Gibbs sampler.

R. Argiento

Computation under the parametric approach: $M < \infty$

R. Argiento

Wien, May 2019

Prior for the mixing distribution:

$$P(\cdot) = \sum_{j=1}^{M} w_j \delta_{\tau_j}(\cdot) \quad \mathbf{M} - FDP$$

then (w_1,\ldots,w_M) ~Dirichlet_M $(\gamma,\ldots,\gamma), \gamma > 0, (\tau_1,\ldots,\tau_M) \stackrel{iid}{\sim} P_0.$

- *M* is fixed: one fits several mixture models for $M = 1, 2, ..., M^*$ then choose the best *M* according to some goodness of fit index.
- *M* is random: we need MCMCs that allow transitions across dimensions of the state space
 - ✓ **Revesible jump** ([Richardson and Green, 1997]).
 - ✓ Point processes representation of the posteriors distribution ([Stephens, 2000]).
 - Borrowing notation from nonparametric literature: Marginal Gibbs sampler ([Miller and Harrison, 2018]).

Computation under the nonparametric approach: $M = \infty$

Prior for the mixing distribution:

P~Dirichlet Process, P~Normalized CRM, P~Stick-breaking Priors.

Critical issues, infinite dimensional parameter $P = \sum_{i=1}^{\infty} w_i \delta_{\tau_i}$

Marginal Gibbs sampler algorithms [Neal, 2000] [Favaro e Teh, 2013]

- ✓ Integrate out *P* and resort to generalized Polya urn schemes
- ✓ Inference is limited to the point estimates: **predictive** $f_{X_{n+1}}(\cdot|X_1,..,X_n)$

Conditional methods

- ✓ Use some *tricks* to build a **Gibbs sampler** whose state space encompasses *P*.
- Full Bayesian posterior analysis. 1

For instance:

- ✓ Slice sampler [Kalli et al. 2009] ✓ **Retrospective** methods [Papaspiliopulos et al., 2008]
- ✓ **Truncation** (either a-priori or a-posteriori) of the infinite sum defining the r.p.m. *P* [Argiento et al., 2010, Argiento et al., 2015a]

イロト イポト イラト イラト R. Argiento

It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

 \checkmark This is a plot of a mixture density with M = 5 five components.

R. Argiento

It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

✓ I draw a sample of size 500 from the mixture

R. Argiento

It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

✓ The number of <u>clusters</u> are the allocated components, they are are $K := M^{(a)} = 3$

R. Argiento

It is important to stress the difference between components and clusters (Nobile, 2004; Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

✓ The <u>non-allocated</u> components (empty) are $M^{(na)} := M - M^{(a)} = 2$.

R. Argiento

General Outline

Solution Normalized Independendent Finite Point Processes (Norm-IFPP)

Clustering induced by Norm-IFFP and posterior characterization

Norm-IFPP mixtures

Conditional Algorithm for Norm-IFFP

Illustrative Example (Galaxy Data)

R. Argiento Wien, May 2019

Finite point processes

- A finite point process $S = \{S_1, ..., S_M\}$ is a random set of **unordered** points in a metric space S [see Daley and Vere-Jones (2003)].
- ☞ The law of a finite point process is identified by:

Finite point processes

Wien, May 2019

R. Argiento

- A finite point process S = {S₁,...,S_M} is a random set of unordered points in a metric space S [see Daley and Vere-Jones (2003)].
- The law of a finite point process is identified by:
 - ✓ $\{q_m, m = 0, 1, ...\}$ A discrete probability density determining the law of the total number *M* of points of the process.
 - ✓ $H_m(\cdot)$ For each integer $m \ge 1$ this is a probability distribution on S^m that determines the joint law of the positions of the points of the process, given that their total number is m.
- Since *S* is unordered, $H_m(\cdot)$ should be symmetric,

The Janossy measure

An alternative notation to identify the law of *S*, which has some advantages in simplifying combinatorial formulae, utilizes the nonprobability **Janossy measure**:

 $\mathbb{J}_m(A_1 \times \cdots \times A_m) = q_m \sum_{perm} H_m(A_{i_1} \times \cdots \times A_{i_m}) = m! q_m H_m(A_1 \times \cdots \times A_m).$

for each $m \ge 0$.

Interpretation: if $\mathcal{X} = \mathbb{R}^d$ and $s_i \neq s_j$ for $i \neq j$, then

 $\mathbb{J}_m(ds_1,\ldots,ds_m) = \mathbb{P}(\text{ there are exactly m points in the process, one in each of the distinct infinitesimal regions } (s_i, s_i + ds_i)).$

 Janossy densities plays a fundamental role in the study of finite point processes and spatial point patterns, we refer to [see Daley and Vere-Jones (2003)] for more details.

 $P \sim Norm - IFPP(h, \{q_m\}, P_0), \text{ on } \Theta \subset \mathbb{R}^s$

 $P \sim Norm - IFPP(h, \{q_m\}, P_0), \text{ on } \Theta \subset \mathbb{R}^s$

Constructive definition: Normalization of a finite point process

$$P(\cdot) = \sum_{j \in \mathcal{J}} w_j \delta_{\tau_j}(\cdot) \stackrel{d}{=} \sum_{j \in \mathcal{J}} \frac{S_j}{T} \delta_{\tau_j}(\cdot), \tag{1}$$

where $\mathcal{J} = \{1, \ldots, M\}$ and $0 < T = \sum_{j \in \mathcal{J}} S_j < \infty$.

✓ { S_1 ,..., S_M } is an *independent finite point process* with $q_0 = 0$ with Janossy density

$$\mathbb{J}_m(ds_1,\ldots,ds_m)=m!q_m\prod_{j=1}^mh(s_j)ds_j,\quad m=1,2,\ldots$$

- \checkmark the support $\{\tau_j\}$ is an iid sequence from P_0 ;
- ✓ $\{S_j\}$ and $\{\tau_j\}$ are independent.

- \checkmark the support $\{\tau_j\}$ is an iid sequence from P_0 ;
- ✓ $\{S_j\}$ and $\{\tau_j\}$ are independent.

- \checkmark the support $\{\tau_j\}$ is an iid sequence from P_0 ;
- ✓ $\{S_j\}$ and $\{\tau_j\}$ are independent.

R. Argiento

Wien, May 2019

- \checkmark the support $\{\tau_j\}$ is an iid sequence from P_0 ;
- ✓ $\{S_j\}$ and $\{\tau_j\}$ are independent.

The variables $\theta_1, \ldots, \theta_n | P \stackrel{iid}{\sim} P$ where $P \sim \text{NormIFPP}$ induce a random partition ρ of data indexes $\{1, \ldots, n\}$.

• Since *P* is a.s. discrete we observe ties with positive probability: • $\theta_1^*, \ldots, \theta_{K_n}^*$: **unique values** in $\theta_1, \ldots, \theta_n$ • $\rho = \{C_1, \ldots, C_{K_n}\}$: $i \in C_j \Leftrightarrow \theta_i = \theta_j^*, \ \#C_j = n_j$ The variables $\theta_1, \ldots, \theta_n | P \stackrel{iid}{\sim} P$ where $P \sim \text{NormIFPP}$ induce a random partition ρ of data indexes $\{1, \ldots, n\}$.

• Since *P* is a.s. discrete we observe ties with positive probability: • $\theta_1^*, \ldots, \theta_{K_n}^*$: <u>unique values</u> in $\theta_1, \ldots, \theta_n$ • $\rho = \{C_1, \ldots, C_{K_n}\}$: $i \in C_j \Leftrightarrow \theta_i = \theta_j^*, \ \#C_j = n_j$

Prior of ρ : exchangeable partition probability function (Pitman 1996)

$$\mathbb{P}\left(\rho = \{C_1, \ldots, C_{K_n}\}\right) = eppf(\sharp C_1, \ldots, \sharp C_{K_n}) := \sum_{j_1, \ldots, j_{K_n}} \mathbb{E}\prod_{i=1}^{K_n} w_{j_i}^{(\sharp C_i)}$$

R. Argiento Wien, May 2019

The eppf of a Norm-IFPP

Theorem 1 – Eppf-characterization

Let (n_1, \ldots, n_k) be a vector of positive integers such that $\sum_{i=1}^k n_i = n$. Then, the eppf associated with a Norm-IFPP $(h, \{q_n\}, P_0)$ is

$$eppf(n_1,\ldots,n_k) = \int_0^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u,k) \prod_{i=1}^k \kappa(n_i,u) du$$

where

$$\Psi(u,k) := \left\{ \sum_{m=0}^{\infty} \frac{(m+k)!}{m!} \psi(u)^m q_{m+k} \right\},\,$$

moreover, $\psi(u)$ is the Laplace transform of the density h(s), i.e.

$$\psi(u) := \int_0^\infty e^{-us} h(s) ds$$
, and $\kappa(n_i, u) := \int_0^\infty u^{n_i} e^{-us} h(s) ds = (-1)^{n_i} \frac{d}{du^{n_i}} \psi(u).$

R. Argiento Wien, May 2019

Why it is important to have an expression of the eppf?

• Computation The eppf fully characterize the predictive structure of *P*, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ .

Why it is important to have an expression of the eppf?

- Computation The eppf fully characterize the predictive structure of *P*, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ .
- Interpretation It allows us to compute the prior distribution on the number of clusters, i.e for k = 1, ..., n

$$\mathbb{P}(K_n = k) = \int_0^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) B_{n,k}(\kappa(\cdot, u))$$

where $B_{n,k}(\kappa(\cdot, u))$ is the *partial Bell polynomial*

Why it is important to have an expression of the eppf?

- Computation The eppf fully characterize the predictive structure of *P*, i.e. it provide us with a Chinese Restaurant representation of the clustering ρ .
- Interpretation It allows us to compute the prior distribution on the number of clusters, i.e for k = 1, ..., n

$$\mathbb{P}(K_n = k) = \int_0^{+\infty} \frac{u^{n-1}}{\Gamma(n)} \Psi(u, k) B_{n,k}(\kappa(\cdot, u))$$

where $B_{n,k}(\kappa(\cdot, u))$ is the *partial Bell polynomial*

- <u>Difficulties</u> The analytical expression of the eppf involves:
 - 1 an integral respect to *u*;
 - 2) an infinite sum $\Psi(u,k)$;
 - **3** the Laplace transform of h(s).

Get rid of the integral

Idea To avoid the analytical computation of the integral respect to u we augment the state space of the process by a latent variable $U_n - disintegration trick$.

The joint law of the partition ρ and U_n is

$$eppf(n_1,\ldots,n_k,du) = \frac{u^{n-1}}{\Gamma(n)}\Psi(u,k)\prod_{i=1}^k\kappa(n_i,u)du$$

while the marginal law of U_n is

$$f_{U_n}(u;n) = (-1)^n \frac{u^{n-1}}{\Gamma(n)} \frac{d}{du^n} \mathbb{E}\left(\psi(u)^M\right)$$

To draw a partition ρ from a Norm-IPPF

✓ The first customer sits at table 1, and $U_1 = u$ is drawn;

R. Argiento Wien, May 2019

To draw a partition ρ from a Norm-IPPF

- ✓ The first customer sits at table 1, and $U_1 = u$ is drawn;
- ✓ Given that *k* tables are occupied by *n* customer, and $U_n = u$, customer n + 1 sits:
 - A *new* table k + 1 with probability proportional to

$$\frac{eppf(n_1,\ldots,n_k,1;u)}{eppf(n_1,\ldots,n_k;u)} = \frac{\Psi(u,k+1)}{\Psi(u,k)}\kappa(1,u)$$

R. Argiento Wien, May 2019

To draw a partition ρ from a Norm-IPPF

- ✓ The first customer sits at table 1, and $U_1 = u$ is drawn;
- ✓ Given that *k* tables are occupied by *n* customer, and $U_n = u$, customer n + 1 sits:
 - A *new* table k + 1 with probability proportional to

$$\frac{eppf(n_1,\ldots,n_k,1;u)}{eppf(n_1,\ldots,n_k;u)} = \frac{\Psi(u,k+1)}{\Psi(u,k)}\kappa(1,u)$$

• at an *occupied* table j = 1, ..., k with probability proportional to

$$\frac{eppf(n_1,\ldots,n_j+1,\ldots,n_k,1;u)}{eppf(n_1,\ldots,n_j,\ldots,n_k;u)} = \frac{\kappa(n_j+1,u)}{\kappa(n_j,u)}, \quad j=1,\ldots,k$$

To draw a partition ρ from a Norm-IPPF

- ✓ The first customer sits at table 1, and $U_1 = u$ is drawn;
- ✓ Given that *k* tables are occupied by *n* customer, and $U_n = u$, customer n + 1 sits:
 - A *new* table k + 1 with probability proportional to

$$\frac{eppf(n_1,\ldots,n_k,1;u)}{eppf(n_1,\ldots,n_k;u)} = \frac{\Psi(u,k+1)}{\Psi(u,k)}\kappa(1,u)$$

• at an *occupied* table j = 1, ..., k with probability proportional to

$$\frac{eppf(n_1,\ldots,n_j+1,\ldots,n_k,1;u)}{eppf(n_1,\ldots,n_j,\ldots,n_k;u)} = \frac{\kappa(n_j+1,u)}{\kappa(n_j,u)}, \quad j=1,\ldots,k$$

• we draw $U_n \sim f_{U_n}(u|n_1,\ldots,n_k) \propto eppf(n_1,\ldots,n_k;u)$

R. Argiento Wien, May 2019

I just recall that to compute the eppf we need to evaluate the infinite sum

$$\Psi(u,k) := \left\{ \sum_{m=0}^{\infty} \frac{(m+k)!}{m!} \psi(u)^m q_{m+k} \right\}$$

The infinite sum – the choice of q_m

✓ We have a closed form expression for three cases (*conjugacy*):

• If *M* is assumed <u>Shifted Poisson</u> on $\{1, 2, ..., \}$, then

$$\Psi(u,k) = \Lambda^{k-1}(\Lambda\psi(u) + k) \exp\{\Lambda(\psi(u) - 1)\}\$$

• If *M* is assumed Negative Binomial with parameters $0 \le p \le 1$ and r > 0

$$\Psi(u,k) = \frac{\Gamma(r+k-1)}{\Gamma(r)} p^{k-1} (1-p)^r \frac{p\psi(u)(r-1)+k}{(1-p\psi(u))^{k+r}}$$

• If *M* is assumed <u>fixed</u>, i.e. $M = \widetilde{M} \ge 1$ with probability 1,

$$\Psi(u,k) = \begin{cases} \frac{\widetilde{M}!}{(\widetilde{M}-k)!} \psi(u)^{\widetilde{M}-k} & \text{if } k \le \widetilde{M} \\ 0 & \text{if } k > \widetilde{M} \end{cases}$$

R. Argiento

The Laplace tranform – the choice of h

Let S_m the unnormalized weights, conditionally to M, $S_m \stackrel{iid}{\sim} h(s)$

• $S_j \sim \text{Gamma}(\gamma, 1) - \underline{\text{Finite Dirichlet Process}}$ (FDP):

$$\psi(u) = \frac{1}{(u+1)^{\gamma}}, \quad \kappa(u,n_j) = \frac{1}{(u+1)^{n_j+\gamma}} \frac{\Gamma(\gamma+n_j)}{\Gamma(\gamma)}$$

• $S_j \sim \text{Unif}(0, 1)$:

$$\psi(u) = \frac{1-e^u}{u}$$
, and $\kappa(n_j, u) = \frac{\gamma(n_j+1, u)}{u^{n_j+1}}$

The Laplace tranform - the choice of h

Wien, May 2019

R. Argiento

Let S_m the unnormalized weights, conditionally to M, $S_m \stackrel{iid}{\sim} h(s)$

• $S_j \sim \text{Gamma}(\gamma, 1) - \underline{\text{Finite Dirichlet Process}}$ (FDP):

$$\psi(u) = \frac{1}{(u+1)^{\gamma}}, \quad \kappa(u,n_j) = \frac{1}{(u+1)^{n_j+\gamma}} \frac{\Gamma(\gamma+n_j)}{\Gamma(\gamma)}$$

•
$$S_j \sim \text{Unif}(0, 1)$$
:
 $\psi(u) = \frac{1-e^u}{u}$, and $\kappa(n_j, u) = \frac{\gamma(n_j+1, u)}{u^{n_j+1}}$

• Levy Processes approach – Fix $\psi(u) = e^{-\int_0^\infty (e^{ux} - 1)\omega(z)dx}$, where $\omega(z)$ is called *Levy intensity*, and compute h(s) such that

$$h(s) = \int_0^s \omega(z)h(s-z)\frac{z}{s}dz$$

This latter construction is the finite dimensional version of a Normalized Completely Random Measure (Lijoi et al. 2007)

Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

 $M \sim q_m$, and $S_j \stackrel{iid}{\sim} gamma(\gamma, 1)$.

• We will use the notation $P \sim FDP(\gamma, \Lambda, P_0)$.

Eppf of the Finite Dirichlet process

Wien, May 2019

R. Argiento

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

$$M \sim q_m$$
, and $S_j \stackrel{iid}{\sim} gamma(\gamma, 1)$.

• We will use the notation $P \sim FDP(\gamma, \Lambda, P_0)$.

✓ The eppf of a $FDP(\gamma, \Lambda, P_0)$ is given by [see also Miller Harrison (2016)]

$$eppf(n_1,\ldots,n_k) = V(n,k) \prod_{j=1}^k \frac{\Gamma(\gamma+n_j)}{\Gamma(\gamma)},$$

where $V(n,k) = \int_0^\infty \tilde{f}(u) du$, and \tilde{f} is a function that depends on the prior on q_M .

Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

$$M \sim q_m$$
, and $S_j \stackrel{iid}{\sim} gamma(\gamma, 1)$.

• We will use the notation $P \sim FDP(\gamma, \Lambda, P_0)$.

✓ The eppf of a $FDP(\gamma, \Lambda, P_0)$ is given by [see also Miller Harrison (2016)]

$$eppf(n_1,\ldots,n_k) = V(n,k) \prod_{j=1}^k \frac{\Gamma(\gamma+n_j)}{\Gamma(\gamma)},$$

where $V(n,k) = \int_0^\infty \tilde{f}(u) du$, and \tilde{f} is a function that depends on the prior on q_M .

• We will consider *M* as a Shifted Poisson or a Negative Binomial.

Number of clusters under the FDP

✓ Let 𝒞 denote the generalized Stirling numbers of second kind, then

 $P(K_n = k) = V(n,k)\mathscr{C}(n,k,\gamma)$

Number of clusters under the FDP

✓ Note that, from the de Finetti Theorem

 $K_n \to M$ a.s. for $n \to \infty$

Again the allocated and non-allocated components

In my illustrative example:

✓ The <u>allocated</u> components are $K_n = M^{(a)} = 3$

✓ The <u>non-allocated</u> components (empty) are $M^{(na)} := M - M^{(a)} = 2$.

R. Argiento

Posterior Characterization

R. Argiento

-Wien, May 2019

Theorem 2 – Posterior law

Let $(\theta_1, \ldots, \theta_n)$ be a sample from $P \sim Norm - IFPP(h, \{q_n\}, P_0)$, then there exist an auxiliary random variable U such that the conditional law of P, given θ^* and $U_n = u$ coincides with the normalization of the following:

$$\sum_{j \in \mathcal{J}^{(na)}} S_j^{(na)} \delta_{\tau_j}(\cdot) + \sum_{j \in \mathcal{J}^{(a)}} S_j^{(a)} \delta_{\theta_j^*}(\cdot) \qquad \tau_j \stackrel{iid}{\sim} P_0$$

() Non-allocated jumps: the process $\{S^{(na)}\}$ is in IFPP with Janossy density given by $\mathbb{J}_m(ds_1,\ldots,ds_m)=m!p_m^{\star}\prod_{i=1}^m h^{\star}(s_i)ds_i$

 $h_{u}^{\star}(s) \propto e^{-us}h(s)$ and $q_{m}^{\star} \propto \frac{(m+k)!}{m!}\psi(u)^{m}q_{m+k}, m = 0, 1, 2, \dots$

2 Allocated jumps: for each $j \in \mathcal{J}^{(a)} = \{1, \ldots, K_n\}$ the distribution of $S_i^{(a)}$ is proportional to $s^{n_j}e^{-us}h(s)$.

3 Latent variable: $[U_n | S^{(a)}, S^{(na)}] \sim \text{Gamma}(n, \sum_j S_j)$

Normalized finite Poisson-Dirichlet mixture

Wien, May 2019

R. Argiento

✓ We let $\{f(\cdot, \theta), \theta \in \Theta\}$ be the family of Gaussian density.

✓ Then, the parameter $\theta = (\mu, \sigma^2)$ and P_0 is a *conjugate* prior for θ .

• When Λ and γ are fixed, we choose them such that $\mathbb{E}(K_n)$ express our prior believes on the number of groups.

• **Result**: if we let $\gamma = \kappa / \Lambda$ then for $\Lambda \to \infty$ then *P* converges in law to the Dirichlet process $DP(\kappa, P_0)$.

Blocked Gibbs sampler: full-conditionals

We **augment** the state space introducing the r.v. U_n

Parameter: U_n , θ , P, Λ , γ

Blocked Gibbs sampler: full-conditionals

We **augment** the state space introducing the r.v. U_n

Parameter: U_n , θ , P, Λ , γ

For **g** in $1, \ldots, G$:

1. sample $U_n | rest$ from a Gamma $(n, \sum_j S_j)$

2. Sample θ |*rest*, for each i = 1, ..., n from the discrete distribution

 $\mathbb{P}(\theta_i = \tau_j) \propto S_j f(X_i | \tau_j), \quad j \in \mathcal{J} = \{1, \dots, M\}$

3. Update the r.p.m. *P*|*rest*

R. Argiento Wien, May 2019

Blocked Gibbs sampler: full-conditionals

3a. Update the r.p.m. **P**, given γ , Λ , U, θ we apply Theorem 2

3a.1 Sample $M^{(na)}$ from q_m^* that is the p.m.f.

$$\frac{(u+1)^{\gamma}k}{(u+1)^{\gamma}k+\Lambda}\mathcal{P}_{1}(\Lambda/(u+1)^{\gamma})+\frac{\Lambda}{(u+1)^{\gamma}k+\Lambda}\mathcal{P}_{0}(\Lambda/(u+1)^{\gamma}),$$

where \mathcal{P}_i is the Shifted Poisson on $\{i, i + 1, \ldots\}$.

3a.2' Non-allocated jumps: sample $S_j^{(na)} \stackrel{iid}{\sim} Gamma(\gamma, u+1)$ **3a.2''** Allocated jumps: sample $S_j^{(a)} \stackrel{iid}{\sim} Gamma(n_i - \gamma, u+1)$

3a.3' Non-allocated support points:

$$\tau_j \stackrel{iid}{\sim} P_0(d\tau_j)$$

3a.3" Allocated support points: iid as

$$\tau_j = \theta_j^* \sim \prod_{i \in C_j} f(X_i | \theta_j^*) P_0(d\theta_j^*)$$

R. Argiento

3b. Update γ , Λ , given U and θ

3b.1 Sample Λ from this mixture of gamma densities:

$$\frac{\psi(u)}{1+b_2}Gamma(k+a_2+1,1-\psi(u)+b_2)\frac{1-\psi(u)+b_2}{1+b_2}Gamma(k+a_2,1-\psi(u)+b_2)$$

where $\psi(u) = \frac{1}{(u+1)\gamma}$ is the Laplace transform of a *gamma*(γ , 1); **3b.2** Sample γ from the law

$$\mathcal{L}(\gamma) \propto (\Lambda \psi(u) + k) e^{\Lambda \psi(u)} \frac{1}{\psi(u)^k} \prod_{j=1}^k \frac{\Gamma(\gamma + n_j)}{\Gamma(\gamma)}$$

and we have to resort to an Adaptive Metropolis step to sample from this non standard full conditional.

R. Argiento

Galaxy data

Figure: $\Lambda = 10, \gamma = 0.21$

Dataset:

n = 82 galaxy velocities $[10^6 m/s]$

$$k(\cdot;\theta) = \mathcal{N}(\cdot;\mu,\sigma^2)$$

$$P_0(d\mu, d\sigma^2) = \mathcal{N}(d\mu, \sigma^2/k_0) \\ \times IG(d\sigma^2|a, b)$$

$$(m_0, k_0, a, b) = (20.8, 0.01, 2, 1)$$

+ some robustness analysis

R. Argiento

Galaxy data: a comparison with the Reversible Jump

 \checkmark We fix Λ and γ such that $\mathbb{E}(K_n) = 6$.

- Reversible Jump via mixAK R-package ([Komárek, 2009]; C++ linked to R). Our Gibbs is \checkmark implemented in C++ code.
- \checkmark 5000 burn-inn, 10 thinning and final sample size of 5000.
- Integrated autocorrelation time [Kalli, Griffin and Walker, 2011] ✓

$$\hat{\tau} = \frac{1}{2} + \sum_{l=1}^{C-1} \hat{\rho}_l,$$

• A small value of τ implies good mixing and hence an efficient method.

	Blocked Gibbs			Reversible Jump		
(Λ, γ)	time	$\mathbb{E}(M data)$	$\hat{\tau}$	time	$\mathbb{E}(M data)$	$\hat{\tau}$
(1000,0.0013)	15.13 min.	1003.47	1.53	22.69 min.	669.33	864.44
(100, 0.0136)	1.51 min.	103.19	1.51	2.12 min.	98.16	138.40
(10, 0.21)	12.50 sec.	13.18	1.33	12.03 sec.	10.31	3.45
(5,5)	9.60 sec.	9.34	1.26	9.25 sec.	7.10	6.29

Galaxy data: Λ and γ random

✓ $\Lambda \sim Gamma(1, 0.01)$ and $\gamma \sim (2, 1)$. ✓ Performances: time 8.26 sec and $\tau = 3.89$, $\mathbb{E}(M^{(na)}|data) = 0.86$.

(Λ, γ)	LPLM
(1000,0.0013)	-9.01
(100, 0.0136)	-8.97
(10, 0.21)	-8.96
(5,5)	-8.26
random	-8.86

R. Argiento

Wien, May 2019

R. Argiento

- ✓ Finite mixture model: We have proposed the new class of *finite independent normalized point processes* (Norm-IFPP) as the mixing measure.
- ✓ We have given an analytical expression of the *exchangeable partition probability function*, i.e. we characterized the law of the random partition induced by a Norm-IFPP on the data.
- ✓ We have characterized the posterior distribution of Norm-IFFP.
- ✓ We have designed a "conjugate" blocked Gibbs sampler for the Finite Dirichlet Mixture mixture model.
- ✓ Our Gibbs sampler outperforms the reversible jump in term of integrated autocorrelation time.

Wrap-up

Thank you!!!

R. Argiento

Wien, May 2019

- ✓ Finite mixture model: We have proposed the new class of *finite independent normalized point processes* (Norm-IFPP) as the mixing measure.
- ✓ We have given an analytical expression of the *exchangeable partition probability function*, i.e. we characterized the law of the random partition induced by a Norm-IFPP on the data.
- ✓ We have characterized the posterior distribution of Norm-IFFP.
- ✓ We have designed a "conjugate" blocked Gibbs sampler for the Finite Dirichlet Mixture mixture model.
- ✓ Our Gibbs sampler outperforms the reversible jump in term of integrated autocorrelation time.

Argiento, De Iorio (2019) "Is infinity that far? A Bayesian nonparametric perspective of finite mixture models", arXiv:1904.09733

Bibliography

R. Argiento

-

- Argiento, De Iorio (2019) "Is infinity that far? A Bayesian nonparametric perspective of finite mixture models", arXiv:1904.09733
- Fruhwirth-Schnatter, S., Celeux, G. and Robert, C. P. (2019) Handbook of mixture analysis.
- Frühwirth-Schnatter, S. and Malsiner-Walli, G. (2019) From here to infinity: sparse finite versus dirichlet process mixtures in model-based clustering. *Advances in Data Analysis and Classification* 13(1), 33–64.
- Lijoi, A., Mena, R. H. and Prünster, I. (2007) Controlling the reinforcement in bayesian non-parametric mixture models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69, 715–740.
- Miller, J. W. and Harrison, M. T. (2018) Mixture models with a prior on the number of components. *Journal of the American Statistical Association*, **113**, 340–356.
- Nobile, A. (2004) On the posterior distribution of the number of components in a finite mixture. *The Annals of Statistics*, **32**, 2044–2073.
- Richardson, S. and Green, P. J. (1997) On bayesian analysis of mixtures with an unknown number of components. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 59, 731–792.
- Rousseau, J. and Mengersen, K. (2011) Asymptotic behaviour of the posterior distribution in overfitted mixture models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **73**, 689–710.