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Mixture models

• Mixture models are a very powerful and natural statistical tool to model data from
heterogeneous populations.

• Observations are assumed to have arisen from one of M (finite or infinite) groups, each
group being suitably modelled by a density typically from a parametric family.

• The density of each group is referred to as a component of the mixture and is weighted
by the relative frequency (weight) of the group in the population.

• The statistical goals are density estimation and cluster analysis (see Fruhwirth-Schnatter
et al. 2019).

R. Argiento Wien, May 2019
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Mixture models – Notation

Hierachical representation

X1, . . . ,Xn | w, τ iid∼
∑M

h=1 whf (x | τh)

w | M ∼ DirichletM(γ, . . . , γ)

τh | M iid∼ P0(dτ), M ∼ qM

R. Argiento Wien, May 2019



Mixture models – Notation

Hierachical representation

X1, . . . ,Xn | j1, . . . , jn
ind∼ f (x | τji )

j1, . . . , jn | w iid∼ MultinomialM(1,w1, . . . ,wM)

w | M ∼ DirichletM(γ, . . . , γ)

τh | M iid∼ P0(dτh), M ∼ qM
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Mixture models – Notation

Hierachical representation

X1, . . . ,Xn | θ1, . . . , θn
ind∼ f (xi | θi), θi = τji

θ1, . . . , θn | P iid∼ P, P(·) d
=
∑M

h=1 whδτh (·)
w | M ∼ DirichletM(γ, . . . , γ)

τh | M iid∼ P0(dτh), M ∼ qM
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h=1 whδτh (·)
P ∼ FDP

3 The density fP of the population variable X is random.
3 The law of this random density is assigned by a mixture model:

X|P ∼ fP(x) =
∫

Θ
f (x; θ)P(dθ) =

∑M
h=1 whf (x, τh)

Targets:

H Density estimation: L(fP|X1, . . . ,Xn)

H Cluster analysis: L(ρ|X1, . . . ,Xn)

where ρ is the random partition induced by P.
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In this work:

(a) we introduce a general class of
prior for P

(b) we set up a easy blocked Gibbs
sampler.



Computation under the parametric approach: M <∞

Prior for the mixing distribution:

P(·) =
∑M

j=1 wjδτj (·) M−FDP

then (w1, . . . ,wM) ∼DirichletM(γ, . . . , γ), γ > 0, (τ1, . . . , τM)
iid∼ P0.

* M is fixed: one fits several mixture models for M = 1, 2, . . . ,M∗ then choose the best M
acccoding to some goodness of fit index.

* M is random: we need MCMCs that allow transitions across dimensions of the state
space

3 Revesible jump ([Richardson and Green, 1997]).
3 Point processes representation of the posteriors distribution ([Stephens, 2000]).
3 Borrowing notation from nonparametric literature: Marginal Gibbs sampler ([Miller and

Harrison, 2018]).

R. Argiento Wien, May 2019



Computation under the nonparametric approach: M = ∞

Prior for the mixing distribution:

P∼Dirichlet Process, P∼Normalized CRM, P∼Stick-breaking Priors.

Critical issues, infinite dimensional parameter P =
∑∞

i=1 wiδτi

Marginal Gibbs sampler algorithms [Neal, 2000] [Favaro e Teh, 2013]

3 Integrate out P and resort to generalized Polya urn schemes

3 Inference is limited to the point estimates: predictive fXn+1 (·|X1, ..,Xn)

Conditional methods
3 Use some tricks to build a Gibbs sampler whose state space encompasses P.

3 Full Bayesian posterior analysis.
For instance:

3 Slice sampler [Kalli et al. 2009] 3 Retrospective methods [Papaspiliopulos et al., 2008]

3 Truncation (either a-priori or a-posteriori) of the infinite sum defining the r.p.m. P [Argiento
et al., 2010, Argiento et al., 2015a]

R. Argiento Wien, May 2019



The number of components and the number of clusters

. It is important to stress the difference between components and clusters (Nobile, 2004;
Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).
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The number of components and the number of clusters

. It is important to stress the difference between components and clusters (Nobile, 2004;
Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

3 This is a plot of a mixture density with M = 5 five components.
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The number of components and the number of clusters

. It is important to stress the difference between components and clusters (Nobile, 2004;
Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

3 I draw a sample of size 500 from the mixture
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The number of components and the number of clusters

. It is important to stress the difference between components and clusters (Nobile, 2004;
Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

3 The number of clusters are the allocated components, they are are K := M(a) = 3
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The number of components and the number of clusters

. It is important to stress the difference between components and clusters (Nobile, 2004;
Rousseau and Mengersen, 2011; Frühwirth-Schnatter and Malsiner-Walli 2019).

3 The non-allocated components (empty) are M(na) := M −M(a) = 2.
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General Outline

+ Normalized Independendent Finite Point Processes (Norm-IFPP)

+ Clustering induced by Norm-IFFP and posterior characterization

+ Norm-IFPP mixtures

+ Conditional Algorithm for Norm-IFFP

+ Illustrative Example (Galaxy Data)

R. Argiento Wien, May 2019



Finite point processes

* A finite point process S = {S1, . . . , SM} is a random set of unordered points in a
metric space S [see Daley and Vere-Jones (2003)].

* The law of a finite point process is identified by:

3 {qm,m = 0, 1, . . . } A discrete probability density determining the law of the total number
M of points of the process.

3 Hm(·) For each integer m ≥ 1 this is a probability distribution on Sm that determines the
joint law of the positions of the points of the process, given that their total number is m.

* Since S is unordered, Hm(·) should be symmetric,
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The Janossy measure

An alternative notation to identify the law of S, which has some advantages in simplifying
combinatorial formulae, utilizes the nonprobability Janossy measure:

Jm(A1×· · ·×Am) = qm
∑

perm Hm(Ai1×· · ·×Aim ) = m!qmHm(A1×· · ·×Am).

for each m ≥ 0.

Interpretation: if X = Rd and si 6= sj for i 6= j, then

Jm(ds1, . . . , dsm) = P( there are exactly m points in the process, one in each of the
distinct infinitesimal regions (si, si + dsi)).

* Janossy densities plays a fundamental role in the study of finite point processes and
spatial point patterns, we refer to [see Daley and Vere-Jones (2003)] for more details.

R. Argiento Wien, May 2019



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

IFPP M=80

Support τj

 

* ** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

IFPP M=80

Support τj

J
u

m
p

s
  

S
j

*** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

IFPP M=80

Support τj

J
u

m
p

s
  

S
j

*** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **
−2 −1 0 1 2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

NormIFPP M=80

Support τj

J
u

m
p

s
  

S
j/ ∑

S
j

*** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **



Normalized independent finite point processes (Norm-IFPP)

P ∼ Norm− IFPP(h, {qm},P0), on Θ ⊂ Rs

Constructive definition: Normalization of a finite point process

P(·) =
∑
j∈J

wjδτj (·)
d
=
∑
j∈J

Sj

T
δτj (·), (1)

where J = {1, . . . ,M} and 0 < T =
∑

j∈J Sj <∞.

3 {S1, . . . , SM} is an independent finite point process with q0 = 0 with Janossy density

Jm(ds1, . . . , dsm) = m!qm

m∏
j=1

h(sj)dsj. m = 1, 2, . . .

where h is a density on R+.

3 the support {τj} is an iid sequence from P0;

3 {Sj} and {τj} are independent.

R. Argiento Wien, May 2019

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

IFPP M=80

Support τj

J
u

m
p

s
  

S
j

*** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **
−2 −1 0 1 2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

NormIFPP M=80

Support τj

J
u

m
p

s
  

S
j/ ∑

S
j

*** * **** *** ** * *** * ** * *** *** ** ** *** ** *** * **** ** * ** * *** * *** ** * *** * ** ** ** ** ** * ** * ** **** *** *** * ** * ** ** *** **

Number of jumps
qm = e−ΛΛm−1

(m−1)! ;
Distribution

h(s) = 1
γ

sγ−1e−s;P1(Λ) m = 1, 2, . . . , Gamma(γ, 1)

Given M ( S1
T , . . . ,

SM
T ) ∼ DirichletM(γ, . . . , γ). FDP

A simple example Finite (Poisson) Dirichlet process:



Model for cluster analysis

The variables θ1, . . . , θn|P
iid∼ P where P ∼ NormIFPP induce a random partition ρ

of data indexes {1, . . . , n}.

* Since P is a.s. discrete we observe ties with positive probability:

3 θ∗1 , . . . , θ
∗
Kn : unique values in θ1, . . . , θn

3 ρ = {C1, . . . ,CKn}: i ∈ Cj ⇔ θi = θ∗j , #Cj = nj

Prior of ρ : exchangeable partition probability function (Pitman 1996)

P (ρ = {C1, . . . ,CKn}) = eppf (]C1, . . . , ]CKn ) :=
∑

j1,...,jKn

E
Kn∏

i=1

w(]Ci)
ji

R. Argiento Wien, May 2019
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The eppf of a Norm-IFPP

Theorem 1 – Eppf-characterization

Let (n1, . . . , nk) be a vector of positive integers such that
∑k

i=1 ni = n. Then, the eppf
associated with a Norm-IFPP(h, {qn},P0) is

eppf (n1, . . . , nk) =

∫ +∞

0

un−1

Γ(n)
Ψ(u, k)

k∏
i=1

κ(ni, u)du

where

Ψ(u, k) :=

{
∞∑

m=0

(m + k)!

m!
ψ(u)mqm+k

}
,

moreover, ψ(u) is the Laplace transform of the density h(s), i.e.

ψ(u) :=

∫ ∞
0

e−ush(s)ds, and κ(ni, u) :=

∫ ∞
0

uni e−ush(s)ds = (−1)ni d
duni

ψ(u).

R. Argiento Wien, May 2019



Why it is important to have an expression of the eppf?

• Computation The eppf fully characterize the predictive structure of P, i.e. it provide us
with a Chinese Restaurant representation of the clustering ρ.

• Interpretation It allows us to compute the prior distribution on the number of clusters, i.e
for k = 1, . . . , n

P(Kn = k) =

∫ +∞

0

un−1

Γ(n)
Ψ(u, k)Bn,k(κ(·, u))

where Bn,k(κ(·, u)) is the partial Bell polynomial

• Difficulties The analytical expression of the eppf involves:
1 an integral respect to u;
2 an infinite sum Ψ(u, k);
3 the Laplace transform of h(s).

R. Argiento Wien, May 2019
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Get rid of the integral

Idea To avoid the analytical computation of the integral respect to u we augment the state
space of the process by a latent variable Un – disintegration trick.

The joint law of the partition ρ and Un is

eppf (n1, . . . , nk, du) =
un−1

Γ(n)
Ψ(u, k)

k∏
i=1

κ(ni, u)du

while the marginal law of Un is

fUn (u; n) = (−1)n un−1

Γ(n)

d
dun E

(
ψ(u)M)

R. Argiento Wien, May 2019



Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF

3 The first customer sits at table 1, and U1 = u is drawn;

3 Given that k tables are occupied by n customer, and Un = u, customer n + 1 sits:

• A new table k + 1 with probability proportional to

eppf (n1,...,nk,1;u)
eppf (n1,...,nk;u)

=
Ψ(u,k+1)

Ψ(u,k) κ(1, u)

• at an occupied table j = 1, . . . k with probability proportional to

eppf (n1,...,nj+1,...,nk,1;u)
eppf (n1,...,nj,...,nk;u)

=
κ(nj+1,u)
κ(nj,u)

, j = 1, . . . , k

• we draw Un ∼ fUn (u|n1, . . . , nk) ∝ eppf (n1, . . . , nk; u)

C11 C2 C3 C4 C5
. . .

R. Argiento Wien, May 2019



Generalized Chinese restaurant process

To draw a partition ρ from a Norm-IPPF
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The infinite sum – the choice of qm

I just recall that to compute the eppf we need to evaluate the infinite sum

Ψ(u, k) :=

{
∞∑

m=0

(m + k)!

m!
ψ(u)mqm+k

}

R. Argiento Wien, May 2019



The infinite sum – the choice of qm

3 We have a closed form expression for three cases (conjugacy):

• If M is assumed Shifted Poisson on {1, 2, . . . , }, then

Ψ(u, k) = Λk−1(Λψ(u) + k) exp{Λ(ψ(u)− 1)}

• If M is assumed Negative Binomial with parameters 0 ≤ p ≤ 1 and r > 0

Ψ(u, k) =
Γ (r + k − 1)

Γ (r)
pk−1 (1− p)r pψ(u)(r − 1) + k

(1− pψ(u))k+r

• If M is assumed fixed, i.e. M = M̃ ≥ 1 with probability 1,

Ψ(u, k) =

{
M̃!

(M̃−k)!
ψ(u)M̃−k if k ≤ M̃

0 if k > M̃

R. Argiento Wien, May 2019



The Laplace tranform – the choice of h

Let Sm the unnormalized weights, conditionally to M, Sm
iid∼ h(s)

• Sj ∼ Gamma(γ, 1) – Finite Dirichlet Process (FDP):

ψ(u) = 1
(u+1)γ , κ(u, nj) = 1

(u+1)nj+γ

Γ(γ+nj)

Γ(γ)

• Sj ∼ Unif(0, 1):
ψ(u) = 1−eu

u , and κ(nj, u) =
γ(nj+1,u)

unj+1

• Levy Proccesses approach – Fix ψ(u) = e−
∫∞

0 (eux−1)ω(z)dx, where ω(z) is called Levy
intensity, and compute h(s) such that

h(s) =

∫ s

0
ω(z)h(s− z)

z
s

dz

/ This latter construction is the finite dimensional version of a Normalized Completely
Random Measure (Lijoi et al. 2007)
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Eppf of the Finite Dirichlet process

Let P be a finite Dirichlet process, i.e. a Norm-IFPP such that

M ∼ qm, and Sj
iid∼ gamma(γ, 1).

* We will use the notation P ∼ FDP(γ,Λ,P0) .

3 The eppf of a FDP(γ,Λ,P0) is given by [see also Miller Harrison (2016)]

eppf (n1, . . . , nk) = V(n, k)

k∏
j=1

Γ(γ + nj)

Γ(γ)
,

where V(n, k) =
∫∞

0 f̃ (u)du., and f̃ is a function that depends on the prior on qM .

* We will consider M as a Shifted Poisson or a Negative Binomial.
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Number of clusters under the FDP

3 Let C denote the generalized Stirling numbers of second kind, then

P(Kn = k) = V(n, k)C (n, k, γ)
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Number of clusters under the FDP

3 Note that, from the de Finetti Theorem

Kn → M a.s. for n→∞
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Again the allocated and non-allocated components

In my illustrative example:

3 The allocated components are Kn = M(a) = 3

3 The non-allocated components (empty) are M(na) := M −M(a) = 2.
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Posterior Characterization

Theorem 2 – Posterior law
Let (θ1, . . . , θn) be a sample from P ∼ Norm− IFPP(h, {qn},P0), then there exist an
auxiliary random variable U such that the conditional law of P, given θ∗ and Un = u
coincides with the normalization of the following:∑

j∈J (na)

S(na)
j δτj (·) +

∑
j∈J (a)

S(a)
j δθ∗j (·) τj

iid∼ P0

1 Non-allocated jumps: the process {S(na)} is in IFPP with Janossy density given by

Jm(ds1, . . . , dsm) = m!p?m
∏m

j=1 h?(sj)dsj

h?u (s) ∝ e−ush(s) and q?m ∝ (m+k)!
m!

ψ(u)mqm+k, m = 0, 1, 2, . . .

2 Allocated jumps: for each j ∈ J (a) = {1, . . . ,Kn} the distribution of S(a)
j is

proportional to snj e−ush(s) .

3 Latent variable: [Un|S(a), S(na)] ∼ Gamma(n,
∑

j Sj)

R. Argiento Wien, May 2019



Normalized finite Poisson-Dirichlet mixture

3 We let {f (·, θ), θ ∈ Θ} be the family of Gaussian density.

3 Then, the parameter θ = (µ, σ2) and P0 is a conjugate prior for θ.

X1, ...,Xn|θ1, ..., θn
ind∼ f (xi|θi)

θ1, ..., θn|P
iid∼ P

P ∼ FDP(γ,Λ,P0)

(γ,Λ) ∼ gamma(a1, b1)× gamma(a2, b2)

* When Λ and γ are fixed, we choose them such that E(Kn) express our prior believes on
the number of groups.

* Result: if we let γ = κ/Λ then for Λ→∞ then P converges in law to the Dirichlet
process DP(κ,P0).

R. Argiento Wien, May 2019

Mixture model



Blocked Gibbs sampler: full-conditionals

We augment the state space introducing the r.v. Un

Parameter: Un, θ, P, Λ, γ

For g in 1, . . . ,G:

1. sample Un|rest from a Gamma(n,
∑

j Sj)

2. Sample θ|rest, for each i = 1, . . . , n from the discrete distribution

P(θi = τj) ∝ Sjf (Xi|τj), j ∈ J = {1, . . . ,M}

3. Update the r.p.m. P|rest

R. Argiento Wien, May 2019
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Blocked Gibbs sampler: full-conditionals

3a. Update the r.p.m. P, given γ, Λ, U, θ we apply Theorem 2

3a.1 Sample M(na) from q?m that is the p.m.f.

(u + 1)γk
(u + 1)γk + Λ

P1(Λ/(u + 1)γ) +
Λ

(u + 1)γk + Λ
P0(Λ/(u + 1)γ),

where Pi is the Shifted Poisson on {i, i + 1, . . .}.

3a.2′ Non-allocated jumps: sample

S(na)
j

iid∼ Gamma(γ, u + 1)

3a.2′′ Allocated jumps: sample

S(a)
j

ind∼ Gamma(ni − γ, u + 1)

3a.3′ Non-allocated support points:

τj
iid∼ P0(dτj)

3a.3′′ Allocated support points: iid as

τj = θ∗j ∼
∏
i∈Cj

f (Xi|θ∗j )P0(dθ∗j )

R. Argiento Wien, May 2019



3b. Update γ, Λ, given U and θ

3b.1 Sample Λ from this mixture of gamma densities:

ψ(u)

1 + b2
Gamma(k + a2 + 1, 1−ψ(u)+ b2)

1− ψ(u) + b2

1 + b2
Gamma(k + a2, 1−ψ(u)+ b2)

where ψ(u) = 1
(u+1)γ is the Laplace transform of a gamma(γ, 1);

3b.2 Sample γ from the law

L(γ) ∝ (Λψ(u) + k) eΛψ(u) 1
ψ(u)k

k∏
j=1

Γ(γ + nj)

Γ(γ)

and we have to resort to an Adaptive Metropolis step to sample from this non standard
full conditional.

R. Argiento Wien, May 2019



Galaxy data

Figure: Λ = 10, γ = 0.21

Dataset:
n = 82 galaxy velocities [106m/s]

k(·; θ) = N (·;µ, σ2)

P0(dµ, dσ2) = N (dµ, σ2/k0)

×IG(dσ2|a, b)

(m0, k0, a, b) = (20.8, 0.01, 2, 1)

+ some robustness analysis

R. Argiento Wien, May 2019



Galaxy data: a comparison with the Reversible Jump

3 We fix Λ and γ such that E(Kn) = 6.

3 Reversible Jump via mixAK R-package ([Komárek, 2009]; C++ linked to R). Our Gibbs is
implemented in C++ code.

3 5000 burn-inn, 10 thinning and final sample size of 5000.

3 Integrated autocorrelation time [Kalli, Griffin and Walker, 2011]

τ̂ =
1
2

+

C−1∑
l=1

ρ̂l,

*A small value of τ implies good mixing and hence an efficient method.

Blocked Gibbs Reversible Jump
(Λ, γ) time E(M|data) τ̂ time E(M|data) τ̂

(1000,0.0013) 15.13 min. 1003.47 1.53 22.69 min. 669.33 864.44
(100, 0.0136) 1.51 min. 103.19 1.51 2.12 min. 98.16 138.40
(10, 0.21) 12.50 sec. 13.18 1.33 12.03 sec. 10.31 3.45
(5,5) 9.60 sec. 9.34 1.26 9.25 sec. 7.10 6.29

R. Argiento Wien, May 2019



Galaxy data: Λ and γ random

3 Λ ∼ Gamma(1, 0.01) and γ ∼ (2, 1).
3 Performances: time 8.26 sec and τ = 3.89, E(M(na)|data) = 0.86.

R. Argiento Wien, May 2019
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Wrap-up

3 Finite mixture model: We have proposed the new class of finite independent normalized
point processes (Norm-IFPP) as the mixing measure.

3 We have given an analytical expression of the exchangeable partition probability
function, i.e. we characterized the law of the random partition induced by a Norm-IFPP
on the data.

3 We have characterized the posterior distribution of Norm-IFFP.

3 We have designed a “conjugate” blocked Gibbs sampler for the Finite Dirichlet Mixture
mixture model.

3 Our Gibbs sampler outperforms the reversible jump in term of integrated autocorrelation
time.

R. Argiento Wien, May 2019
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Thank you!!!

/ Argiento, De Iorio (2019) “Is infinity that far? A Bayesian nonparametric perspective of finite
mixture models”, arXiv:1904.09733
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