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Object of study

Consider the following SDE on the Rd :

dXt = µ(Xt)dt + σ(Xt)dBt , X0 = ξ,

where ξ ∈ Rd , µ : Rd → Rd , σ : Rd → Rd×d , B is d-dimensional
Brownian motion.

µ ≡ −1.5
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Object of study

Consider the following SDE on the Rd :

dXt = µ(Xt)dt + σ(Xt)dBt , X0 = ξ.

where ξ ∈ Rd , µ : Rd → Rd , σ : Rd → Rd×d , W is d-dimensional
Brownian motion.
µ ≡ −1.5, σ ≡ 1
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The Euler-Maruyama method

Algorithm

I Choose a time grid 0 = t0 < t1 < · · · < tn = T .

I Start at time 0: X̂t0 = ξ

I Now

X̂tk+1
= X̂tk + µ(X̂tk ) · (tk+1 − tk) + σ(X̂tk ) ·∆k+1

where ∆k+1 ∼ N (0, tk+1 − tk).

Does this method work?

Theorem

If µ and σ are Lipschitz continuous, then the Euler-Maruyama method has
strong convergence order 1/2, that is(

E
[
‖Xt − X̂t‖2

])1/2
≤ c · (max{tk+1 − tk})1/2.
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Are we happy with this?

. . . sure! Let’s call it a day :-)
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Two examples from maths for finance and economics

1. The dividend paying firm (S. 2016):
Dividend payments α(Xt) = 1{Xt≥ threshold}

dXt = (m − α(Xt))dt + σdBt

2. The energy storage manager (Shardin, S. 2016):

dSt = (m − St)dt + σdBt

dFt =
(
1{St≤ threshold1(St ,Ft)} − 1{St≥threshold2(St ,Ft)}

)
dt
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Can discontinuities matter?
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Can discontinuities matter?

dxt = (0.5− 2 sign(xt))dt

x0 = 1



Let us add noise again

dXt = (0.5− 2 sign(Xt))dt + dBt

X0 = 1
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Can discontinuities matter when it comes to numerics?

There are SDEs with smooth and bounded but non-Lipschitz coefficients,
for which there exists no numerical method that converges in finite time!
Or there is the Heston model from finance!

dXt = −(0.5− 2 sign(Xt))dt + dBt

X0 = 0.1
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Can discontinuities matter when it comes to numerics?

There are SDEs with smooth and bounded but non-Lipschitz coefficients,
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An idea

x0

G

G−1
G(x0)

discontinuous drift Lipschitz drift



Assumptions

1. σ : Rd −→ Rd×d is Lipschitz

2. µ : Rd −→ Rd is piecewise Lipschitz with exceptional set Θ

3. Θ is a C 4-hypersurface

4. positive reach property: there is ε > 0 s.t. for every x ∈ Rd with
d(x ,Θ) < ε there is a unique p ∈ Θ with d(x ,Θ) = ‖x − p‖

5. non-parallelity condition: ‖σ(ξ)>n(ξ)‖2 ≥ c0 > 0 for all ξ ∈ Θ

6. µ, σ bounded close to Θ

7. mild additional regularity of µ, σ close Θ and bounded n′′, n′′′



The transformation method

Algorithm (Leobacher, S. 2015, 2017)

I Construct G = Gµ,σ and compute G−1

I Define Z = G (X )

I Apply Euler-Maruyama to compute Ẑ

I Calculate X̄ = G−1(Ẑ )

Theorem (Leobacher, S. 2015, 2017)

The transformation method has strong convergence order 1/2.



The transformation method

Algorithm (Leobacher, S. 2015, 2017)

I Construct G = Gµ,σ and compute G−1

I Define Z = G (X )

I Apply Euler-Maruyama to compute Ẑ
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What about the Euler-Maruyama method?

Remember Z = G (X )

E
[
‖Xt − X̂t‖2

]
= E

[
‖G−1(Zt)− G−1(G (X̂t))‖2

]
≤ 2(LG−1)2E

[
‖Zt − Ẑt‖2

]
+ 2(LG−1)2E

[
‖Ẑt − G (X̂t)‖2

]

Theorem (Leobacher, S. 2018)

The Euler-Maruyama method has essentially strong convergence order 1/4.
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Can we do better?
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An adaptive Euler-Maruyama method

For a stepsize function h : Rd × [0, 1] −→ [0, 1]:

τ0 = 0 ,

τk+1 = τk + h(X̂τk , δ) ,

and

X̂0 = ξ ,

X̂τk+1
= X̂τk + µ(X̂τk )(τk+1 − τk) + σ(X̂τk )(Bτk+1

− Bτk ) .

Computational cost of X̂ proportional to

N(h) = min{k ∈ N : τk ≥ T} .



Stepsize selection

Θε2

Θ

Θε1

Choosing the stepsize in the middle regime optimally yields

h(x , δ) =


δ2 if x ∈ Θε2(

d(x ,Θ)
supx∈Θε0 ‖σ(x)‖·log(δ)

)2
if x ∈ Θε1 \Θε2

δ else

with

ε1 = sup
x∈Θε0

‖σ(x)‖ · log(1/δ)
√
δ, ε2 = sup

x∈Θε0

‖σ(x)‖ · log(1/δ)δ .



So can we do better?

Theorem (Neuenkirch, S., Szpruch (2019))

For all ε > 0 there exist constants C1,C2 > 0 such that

E
[
‖XT − X̂T‖2

]1/2
≤ C1 · (max{tk+1 − tk})1/2−ε ,

and
E[N(h)] ≤ C2 · (max{tk+1 − tk})−1+ε .

Theorem (Müller-Gronbach, Yaroslavtseva 2019+)

In 1D the Euler-Maruyama method has strong convergence order 1/2− ε.
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Convergence rates via Sobolev regularity

Now we consider SDEs of the form

Xt = ξ +

∫ t

0
µ(Xs)ds + Wt , t ∈ [0,T ],

where µ : R→ R is the (not necessarily continuous) drift coefficient.
For the case where µ is bounded and measureable, Zvonkin (1974) proves
existence and uniqueness of a strong solution.



Assumptions

Assume that µ can be decomposed into a regular and an irregular part
a, b : R→ R, that is µ = a + b, satisfying the following assumptions:

1. (boundedness) a, b are bounded

2. (regular part) a ∈ C 2
b (R), i.e. a is twice continuously differentiable

with bounded derivatives

3. (irregular part-1) b ∈ L1(R)



A novel framework for the error analysis

We show how to decompose the error into a discretization error and an
error coming from approximating a quadrature problem for Brownian
motion.

Theorem (Neuenkirch, S. (2019+))

For all ε ∈ (0, 1), there exists cd > 0 such that

E
[
|XT − X̂T |2

]
≤ cd ·

(
(max{tk+1 − tk})2 +W1−ε) ,

where

W = E

[∣∣∣∣∫ T

0
G ′(Ws + ξ)

(
b(Ws + ξ)− b(Ws + ξ)

)
ds

∣∣∣∣2
]

and where G is a Zvonkin-type transform for the irregular part of the drift.



A possible framework for b

4. (irregular part-2) there exists κ ∈ (0, 1) such that

|b|κ :=

(∫
R

∫
R

|b(x)− b(y)|2

|x − y |2κ+1
dx dy

)1/2

<∞,

i.e. b belongs to the fractional Sobolev-Slobodeckij space of order κ

Example (Sign function)

Let µ(x) = sign(x). A decomposition a, b : R→ R, µ(x) = a(x) + b(x),
which satisfies the assumptions for all κ < 1/2, can be chosen as
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Analysis of the quadrature problem

Remember that the total error estimate is of the form

E
[
‖XT − X̂T‖2

]
≤ cd ·

(
(max{tk+1 − tk})2 +W1−ε) .

Theorem (Neuenkirch, S. (2019+))

There exists a constant cq > 0 such that

W ≤ cq ·
log(n)

n1+κ
.



Convergence rate via Sobolev regularity

Corollary (Neuenkirch, S. (2019+))

For all ε ∈ (0, 1) there exists a constant c > 0 such that the
Euler-Maruyama scheme satisfies(

E
[
‖Xt − X̂t‖2

])1/2
≤ c · (max{tk+1 − tk})(1+κ)/2−ε.

Example

For µ(x) = sign(x) the assumptions are satisfied for κ < 1/2 leading to(
E
[
‖Xt − X̂t‖2

])1/2
≤ c · (max{tk+1 − tk})3/4−.



Convergence rate via Sobolev regularity

Corollary (Neuenkirch, S. (2019+))

For all ε ∈ (0, 1) there exists a constant c > 0 such that the
Euler-Maruyama scheme satisfies(

E
[
‖Xt − X̂t‖2

])1/2
≤ c · (max{tk+1 − tk})(1+κ)/2−ε.

Example

For µ(x) = sign(x) the assumptions are satisfied for κ < 1/2 leading to(
E
[
‖Xt − X̂t‖2

])1/2
≤ c · (max{tk+1 − tk})3/4−.



Thank you for your attention!
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