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London smog 1952

I 5-9 Dec 1952.
I Black smoke

(particulates) and
sulphur from
domestic coal fires.

I 4-12 thousand
premature deaths.

I Clean air act 1956.



Black smoke monitoring from 1961. . .
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I 4 decades of daily ‘black smoke’
monitoring at a variable subset of the
2400+ stations shown.

I Epidemiological studies need
estimates of daily exposure away
from stations.

I O(107) measurements and suitable
smooth latent Gaussian models have
O(104) coefficients with 10-30
variance parameters.

I Previously computationally
infeasible (in mgcv or INLA)



Daily BS data
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The model class

I Concentrate on models of the form yi ∼ EF(µi, φ)

g(µi) = Aiθ +
∑

j

fj(xji) + Zib

A,Z are model matrices, fj are smooth functions, θ is
parameters, b contains independent Gaussian random effects. g
is a known link function. xj may be vector.

I Represent smooth functions, f , using spline basis expansions
with coefficients β

f (x) =

K∑
k=1

βkbk(x)

I . . . and define a quadratic smoothing penalty, e.g.∫
f ′′2dx = βTSβ (suggesting K = O(n1/9−1/5)).



Wide range of basis penalty smoothers available
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Estimation of model coefficients

I Given bases for the smooths, the model can be written as

yi ∼ EF(µi, φ), g(µi) = Xiβ = ηi

where X (n× p) contains A, Z and evaluated basis functions, and
β is a combined coefficient vector.

I The combined penalty can be written
∑

j λjβ
TSjβ, where the λj

are smoothing parameters.
I Then β̂ = argmaxβl(β)−

∑
j λjβ

TSjβ/2.
I . . . this penalized log likelihood can be given Bayesian

motivation using the prior1

β ∼ N{0, (
∑

j

λjSj)
−}.

1which also covers simple Gaussian random effects.



Full fitting algorithm (PQL)

I Iterate. . .

1. Let zi = g′(µ̂i)(yi − µ̂i) + η̂i, W−1
ii = V(µ̂i)g′(µ̂i)

2 and
ηi = g(µi). V is a known and determined by EF.

2. Use the prior on β and estimate

z = Xβ + ε, β ∼ N(0,S−λ ) ε ∼ N(0,W−1φ),

including λ, as a linear mixed model (this is PQL2).
Sλ =

∑
λjSj. λ estimation uses REML.

I But ε ∼ N(0,W−1φ) is not true!
I Let QR =

√
WX and f = QT

√
Wz. Assume φ = 1.

I n/p→∞⇒ f ∼ N(Rβ, I) and appropriate -2 × REML is

V = ‖f− Rβ̂λ‖2 + β̂T
λSλβ̂λ + log |RTR + Sλ| − log |Sλ|+

. . . same as REML in 2. (Relaxing φ = 1 is easy).

2Breslow & Clayton, 1993, JASA
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Naive parallelization of GAM fit method

I Aim: parallelize preceding method.
I Hope: 24 cores turns one day of computing into 1 hour.
I Reality: what happened when we parallelized all steps of flop

cost ≥ O(p3) in preceding (mgcv:bam) method. . .
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The messy realities of parallel computing
1. Hyper-threading can make parallel slower than serial. . .

FPUFPU

INT

CPU core

faster than serial execution

FPUFPU

INT

CPU core

slower than serial execution

2. Dynamic core clock speed management for power efficiency can
make low work thread take most time.

CPU

core 1

slow fast
light workload finished later!

core 2

slow fast
heavy workload finished earlier!

3. Thermal limits: n cores are not n times faster than 1 core.
CPU

slow fast slow fast

slow fastslow fast

CPU

slow fast slow fast

slow fastslow fast

CPU

slow fast slow fast

slow fastslow fast

CPU would fry itself!!

4. Most data-intensive computations are limited by the speed of
data retrieval from memory (RAM) not by CPU speed. More
cores does not help this.



Latency, bandwidth, Cache and block algorithms

I Reading main memory takes 10− 20× as long as a flop.
I If data used only once, memory retrieval can’t keep up with

single core, let alone several.
I Cache is small fast memory between CPU and main memory.
I Big speed up if most flops involve data already in Cache.
I Consider two 106 flop computations

1. C is a 1000× 1000 matrix, and y a 1000-vector. Compute Cy.
Each of 106 elements of C read once, no re-use.

2. A and B are both 100× 100 matrices. Form AB. Repeatedly
revisits the 2× 104 elements of A and B.

. . . provided A and B fit in Cache, 2 is much faster.
I Structure algorithms around Cache friendly blocks! e.g.[

A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]



Consequence: Cholesky only methods

I Our main problem is optimizing the REML objective

V = ‖f− Rβ̂λ‖2 + β̂T
λSλβ̂λ + log |RTR + Sλ| − log |Sλ|+

where QR =
√

WX.
I Actually R is also the Cholesky factor of XTWX, and there exist

good parallelizable block Cholesky3 algorithms.
I But stable computation of log |RTR + Sλ| requires eigen and QR

methods that are not so block oriented and do not parallelize well
— we must avoid log(‘numerical zero’).

I Simple idea: optimize V without evaluating the log
determinants: no need for QR and eigen decompositions.

3Lucas 2004, LAPACK working paper



Gradient only Newton optimization

I Newton step, ∆, uses only 1st and 2nd derivatives of V .
I Function values only required for step control

I ‘halve ∆ if V(λ+ ∆) > V(λ).’

I Instead ‘halve ∆ if ∆T∇V(λ+ ∆) > 0’.
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I This eliminates the ‘log(0) problem’. e.g., if ρ = logλ,

∂ log |XTWX +
∑
λjSj|

∂ρj
= tr

{
(XTWX +

∑
λjSj)

−1Sjλj

}



Simple idea 2

1. Don’t fit the working model at each PQL iteration, just take one
Newton step improving its fit.

2. . . . because you will discard the previous working model at the
next PQL step anyway.

3. Step control slightly involved, but provably convergent for some
cases (unlike original PQL!).



Simple idea 3: discrete covariate methods

I The methods so far scale like the pivoted Cholesky (rather than
QR) and turn months of computing into days-weeks.

I Formation of XTWX is the leading order cost: O(np2).
I Lang et al.4 point out that for a single 1D smooth, f (x), the

product XTWX is very efficiently computable if x has only
m� n discrete values.

I As statisticians we should be prepared to discretise x to
m = O(

√
n) bins.

I It is possible to find (novel) efficient computational methods for
the multiple discretised covariate case, both for multiple 1D
smooths and for ‘tensor product’ smooths of multiple covariates.

4Lang, Umlauf, Wechselberger, Harttgen & Kneib, 2014, Statistics & Computing.



Simple discrete method example

I For a single smooth, its n× pj model matrix becomes

Xj(i, l) = X̄j(kj(i), l)

where X̄j is an mj × pj matrix evaluating the smooth at the
corresponding gridded values.

I Then, for example

XT
j y = X̄T

j ȳ where ȳl =
∑

kj(i)=l

yi

Cost: O(n) + O(mjpj) – for mj � n this a factor of pj saving.



Discrete cross-product example

I Let XA and XB be model matrices for two different smooths.
I To form XT

Adiag(w)XB

1. Set mA × mB matrix W̄ to 0.
2. For l = 1 . . . n do W̄[kA(l), kB(l)] += w(l)
3. Form X̄T

AW̄X̄B.

. . . such terms make up XTWX, which carries the dominant cost
of fitting. Cost reduced by factor up to O(pApB).

I What if mA × mB � n (i.e. W̄ too big)? Two options:
1. W̄ has n non zero elements: sparse representation (via hash table).
2. Accumulate W̄X̄B or X̄T

AW̄ directly.



Discrete method complications

I Model matrices for tensor product smooth interactions are made
up of row Kronecker products of marginal model matrices from
marginal univariate smooths.

I To maintain accuracy we discretize each margin: not jointly.
I Algorithms must deal with row Kronecker structure on the fly.
I Identifiability constraints then have to be applied on the fly too.
I . . . also terms may involve linear functionals of smooths. . .
I A library of such algorithms needed + Cache friendly

implementation.



Black smoke modelling

I Method based on parallel Cholesky, determinant free iteration
and discretization of covariates implemented in mgcv function
bam(...,discrete=TRUE).

I The current ‘best’ daily black smoke model is

log(bsi) = f1(yi) + f2(doyi) + f3(dowi)

+ f4(yi,doyi) + f5(yi,dowi) + f6(doyi,dowi)

+ f7(ni,ei) + f8(ni,ei,yi) + f9(ni,ei,doyi) + f10(ni,ei,dowi)

+f11(hi)+f12(T0
i ,T

1
i )+f13(T̄1i, T̄2i)+f14(ri)+αk(i)+bid(i)+ei

The model has around 104 coefficients and r2 = 0.79.
I With the new parallel discretised methods fit time is around 5

minutes. We estimate that previous methods would have required
> 1 month. Memory footprint is about 15Gb.



Daily black smoke model - 10 day timestep



BS residuals in time
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BS variograms in space
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I Black solid is raw data, open is model residuals.
I Lines are permutation based reference intervals.
I Top row, day 40. Bottom row, day 200.



Derived maps — Posterior exceedance probabilities
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I Map shows average daily probability of exceeding current EU
daily limit, for 4 years in the 1960s.

I Notice how the switch from coal to gas for domestic heating
cleans up the London area quite quickly.

I The northern industrial city areas take longer.



Conclusions

I Possible to obtain three orders of magnitude computational
speed-up in large additive model fitting by combining

1. A new iterative algorithm for REML based additive model
estimation. Requires only Cholesky decomposition, and avoids
evaluation of unstable log determinants.

2. OpenMP parallelization of modern pivoted block Cholesky.
3. New methods to efficiently compute all the model matrix

products required in fitting, based on discretization of covariates
(including tensor product smooths).

I The methods facilitate the first daily models of UK black smoke
densities based on the multi-decade daily data from the UK black
smoke monitoring network.

I See Wood, Li, Shaddick & Augustin (2017) JASA, and Li &
Wood (2019) Statistics and Computing.



Aside: penalty choice matters - a bad model movie


