Elimination of systemic risk in financial markets

Stefan Thurner

www.complex-systems.meduniwien.ac.at www.santafe.edu

wien mar 1 2019

Collaborators

Sebastian Poledna Peter Klimek Serafin Martinez-Jamarillo Jose-Luis Molina Balboa Marco van der Leij Abraham Hinteregger

- \bullet nodes i characterized by states, $\sigma_i^\beta(t)$
- links multiplex network, $M^{\alpha}_{ij}(t)$

Complex system=co-evolving multiplex network

$$\begin{aligned} \frac{d}{dt} \sigma_i^{\alpha}(t) &\sim F\left(M_{ij}^{\alpha}(t), \sigma_j^{\beta}(t)\right) \\ & \text{and} \\ \frac{d}{dt} M_{ij}^{\alpha}(t) &\sim G\left(M_{ij}^{\alpha}(t), \sigma_j^{\beta}(t)\right) \end{aligned}$$

- states are observable (big data)
- networks are observable (big data)
- context is there

Complex system=co-evolving multiplex network

- algorithmic
- path dependent
- context dependent
- open-ended
- adaptive
- cascading dynamics

Complex systems are intrinsically instable

complex systems are intrinsically stochastic

statistics of complex systems is the **statistics of power laws**

• large number of large outliers – outliers are normal

 \rightarrow non-managable

Can we control systemic risk?

given we know all details

The three types of financial risk

- economic risk: investment in business idea does not pay off
- credit-default risk: you don't get back what you have lent
- **systemic risk:** system stops functioning due to local defaults and subsequent cascading (massive restructuring of links)

The 2 origins of systemic risk

• **synchronisation of behaviour**: herding, fire sales, margin calls, various amplification effects – may involve networks

• networks of contracts: this is what the financial system is

Systemic risk is created on multi-layer networks

layer 1: lending-borrowing loans

- layer 2: derivative networks
- layer 3: collateral networks
- layer 4: securities networks
- layer 5: cross-holdings
- layer 6: overlapping pfolios

layer 7: liquidity: over-night loans

layer 8: FX transactions

Quantification of SR

Systemic risk – quantification

Wanted: systemic risk-value for every financial institution

given: transaction network + capitalization

Google had similar problem: value for importance of web-pages

 \rightarrow page is important if many important pages point to it

 \rightarrow number for importance \rightarrow <code>PageRank</code>

page is **important** if many **important** pages point to it

source Wikipedia cc-license

institution system. risky if system. risky institutions lend to it

Systemic risk factor – DebtRank R

... is a "different Google" – adapted to context of systemic risk (S. Battiston et al. 2012)

superior to: eigenvector centrality, page-rank, Katz rank ...

Why?

- economic value in network that is affected by node's default
- capitalization/leverage of banks taken into account
- cycles taken into account: no multiple defaults

DebtRank

- recursive method
- corrects Katz rank for loops in the exposure network

• if i defaults and can not repay loans, j loses L_{ij} . If j has not enough capital to cover that loss $\rightarrow j$ defaults

• impact of bank i on neighbors $I_i = \sum_j W_{ij} v_j$ with $W_{ij} = \min\left[1, \frac{L_{ij}}{C_j}\right]$, ouststanding loans $L_i = \sum_j L_{ji}$, and $v_i = L_i / \sum_j L_j$

ullet impact on nodes at distance two and higher \rightarrow recursive

$$I_i = \sum_j W_{ij} v_j + \beta \sum_j W_{ij} I_j,$$

If the network W_{ij} contains cycles the impact can exceed one \rightarrow DebtRank (S. Battiston et al. (2012))

• nodes have two state variables, $h_i(t) \in [0,1]$ and $s_i(t) \in \{Undistress, Distress, Inactive\}$

• Dynamics: $h_i(t) = \min\left[1, h_i(t-1) + \sum_{j|s_j(t-1)=D} W_{ji}h_j(t-1)\right]$

$$s_i(t) = \begin{cases} D & \text{if } h_i(t) > 0; s_i(t-1) \neq I \\ I & \text{if } s_i(t-1) = D \\ s_i(t-1) & \text{otherwise} \end{cases}$$

• DebtRank of set S_f (set of nodes in distress), is

$$R_S = \sum_j h_j(t)v_j - \sum_j h_j(1)v_j$$

Measures distress in the system, excluding initial distress. If S_f is a single node, DebtRank measures its systemic impact on the network.

• DebtRank of S_f containing only the single node i is

$$R_i = \sum_j h_j(t)v_j - h_i(1)v_i$$

Systemic risk of nodes

Input: Network of contracts between banks

Compute = DebtRank; think of a complicated first eigenvector

Output: all banks *i* get damage value R_i (% of total damage)

Systemic risk spreads by borrowing

Systemic risk spreads by borrowing

DebtRank Austria Sept 2009

note: size is not proportional to systemic risk note: core-periphery structure

Systemic risk profile

Austria

Systemic risk profile

*with Serafin Martinez-Jaramillo and his team at Banco de Mexico, 2014

How big is the next financial crisis?

Expected systemic loss [Euro / Year]

ESL =
$$\sum_{i} p_{\text{default}}(i)$$
. DebtRank(i)

$$\begin{aligned} \mathrm{EL}^{\mathrm{syst}} &= V \sum_{S \in \mathcal{P}(B)} \prod_{i \in S} p_i \prod_{j \in B \setminus S} (1 - p_j) \left(R_S \right) \\ &\approx V \sum_{S \in \mathcal{P}(B)} \prod_{i \in S} p_i \prod_{j \in B \setminus S} (1 - p_j) \left(\sum_{i \in S} R_i \right) \\ &= V \sum_{i=1}^b \left(\sum_{J \in \mathcal{P}(B \setminus \{i\})} \prod_{j \in J} p_j \prod_{k \in B \setminus \{J \cup \{i\})} (1 - p_k) \right) p_i R_i \\ &= V \sum_{i=1}^b p_i R_i \end{aligned}$$

Expected systemic loss index for Mexico*

*with Serafin Martinez-Jaramillo and team at Banco de Mexico, 2014

Observation

Systemic risk of a node changes with every transaction

Austria all interbank loans

Mexican data

 $\Delta EL^{\rm syst} > \Delta EL^{\rm credit} \to$ defaults do not only affect lenders but involves third parties

systemic risk is an externality

Management of systemic risk

• systemic risk is a network property

 \rightarrow manage systemic risk: **re-structure financial networks** such that cascading failure becomes unlikely / impossible

systemic risk management = re-structure networks

Systemic risk elimination

- systemic risk spreads by borrowing from risky agents
- how risky is a transaction? \rightarrow increase of expected syst. loss
- ergo: restrict transactions with high systemic risk
- \rightarrow tax those transactions that increase systemic risk

Systemic risk tax

• tax transactions according to their systemic risk contribution

- \rightarrow agents look for deals with agents with low systemic risk
- \rightarrow liability networks re-arrange \rightarrow eliminate cascading

no-one should pay the tax – tax serves as incentive to re-structure networks

- size of tax = expected systemic loss of transaction (government is neutral)
- if system is risk free: no tax

• credit volume MUST not be reduced by tax

Self-stabilisation of systemic risk tax

- those who can not lend become systemically safer
- those who are safe can lend and become unsafer
- $\bullet \rightarrow$ new equilibrium where systemic risk is distributed evenly across the network (cascading minimal)
- \rightarrow self-organized critical

Mathematical proof:

SR-free equilibrium under SRT exists

Proposition Systemic Risk under Systemic Risk Tax.

Let $(\mathcal{B}_t, \mathcal{L}_t, \mathbf{P})$ be a market for liquidity at time t. Given a net exposure matrix \overline{A}_{t-1} at time t-1, let $\overline{A}_t^{*,\mathcal{T}}$, $\overline{A}_t^{*,\kappa}$ and \overline{A}_t^* be the net exposure matrices formed at time t with a SRT \mathcal{T} , with a Tobin-like tax κ and without tax by the equilibrium matchings $\mu_t^{*,\mathcal{T}}$, $\mu_t^{*,\kappa}$ and μ_t^* , respectively. Then,

- (i) for any $\mu_t^* \in \mathcal{EQ}_t$, such that $Vol(\mu_t^*) = \nu$, there exists \mathcal{T} such that $ESL(\bar{A}_t^{*,\mathcal{T}}, \vec{E}_t) \leq ESL(\bar{A}_t^*, \vec{E}_t)$ and $Vol(\mu_t^{*,\mathcal{T}}) \geq Vol(\mu_t^*)$; In particular, there exists \mathcal{T} such that $\mu_t^{*,\mathcal{T}}$ is systemic risk efficient.
- (ii) for any $\mu_t^{*,\kappa} \in \mathcal{EQ}_t^{\kappa}$, such that $Vol(\mu_t^{*,\kappa}) = \nu$, there exists \mathcal{T} such that $ESL(\bar{A}_t^{*,\mathcal{T}}, \vec{E}_t) \leq ESL(\bar{A}_t^{*,k}, \vec{E}_t)$ and $Vol(\mu_t^{*,\mathcal{T}}) \geq Vol(\mu_t^{*,k})$.

wien mar 1 2019 39

To see efficacy of tax: agent-based-model

The agents

- firms: ask bank for loans: random size, maturity au, $r^{\mathrm{f-loan}}$
- \rightarrow firms sell products to households: realise profit/loss
- \rightarrow if surplus \rightarrow deposit it bank accounts, for $r^{\rm f-deposit}$
- \rightarrow firms are bankrupt if insolvent, or capital is below threshold
- \rightarrow if firm is bankrupt, bank writes off outstanding loans
- banks try to provide firm-loans. If they do not have enough
- \rightarrow approach other banks for interbank loan at interest rate $r^{\rm ib}$
- \rightarrow bankrupt if insolvent or equity capital below zero
- \rightarrow bankruptcy may trigger other bank defaults

• households single aggregated agent: receives cash from firms (through firm-loans) and re-distributes it randomly in banks (household deposits, $r^{\rm h}$), and among other firms (consumption)

For comparison: implement Tobin-like tax

- tax all transactions regardless of their risk contribution
- 0.2% of transaction (\sim 5% of interest rate)

Model results: systemic risk profile

Model results: systemic risk of individual loans

Model results: distribution of losses

SRT eliminates systemic risk. How?

Model results: cascading is suppressed

Model results: credit volume

Tobin tax reduces risk by reducing credit volume

Basel III does not reduce SR

wien mar 1 2019 48

Basel III

• Indicator approach: five categories (equal weights ω^i): size, interconnectedness, financial institution infrastructure, cross-jurisdictional activity and complexity. Sub-indicators (equal weights)

$$S_{j} = \sum_{i \in I} \omega^{i} \frac{D_{j}^{i}}{\sum_{j}^{B} D_{j}^{i}} 10,000$$

Bucket	Score range	Bucket thresholds	Higher loss-absorbency
			requirement
5	D-E	530-629	3.50%
4	C-D	430-529	2.50%
3	B-C	330-429	2.00%
2	A-B	230-329	1.50%
1	Cutoff point-A	130-229	1.00%

• Cross-jurisdictional activity (20%)	Cross-jurisdictional claims	10%
•Size (20%)	Cross-jurisdictional liabilities Total exposures for use in Basel III leverage ratio	10% 20%
Interconnectedness (20%)	Intra-financial system assets	6.67%
•Substitutability / financial institu- tion infrastructure (20%)	Intra-financial system liabilities Securities outstanding Assets under custody	6.67% 6.67% 6.67%
•Complexity (20%)	Payments activity Underwritten transactions in debt and equity markets (Notional) OTC derivatives	6.67% 6.67% 6.67%
	Level 3 assets Trading and available-for-sale securities	6.67% 6.67%

Basel III

- Size: total exposures of banks
- Interconnectedness: use directed and weighted networks
- Substitutability/ financial institution infrastructure: payment activity of banks. The payment activity is measured by the sum of all outgoing payments of banks.
- **Complexity:** not modelled (weight 0)
- **Cross-jurisdiction activity:** not modelled (weight 0)

Basel III does not reduce SR !

MEDICAL UNIVERSITY SANTA FE INSTITUTE

Basel III works under tremendous costs

What is the optimal network?

example: overlapping portfolio layer

Market depth and linear price impact

• market depth
$$D_k = c \; rac{\langle \mathrm{vol}_k
angle_{\mathrm{day}}}{\sigma_k}$$

• total portfolio value of bank i, $V_i = \sum_k \beta_{ki} p_k$

If bank *i* sells V_{ki} of asset *k*, price is depressed by $\frac{V_{ki}}{D_k}$ If bank *j* owns V_{kj} of asset $k \rightarrow$ face loss of $V_{kj} \frac{V_{ki}}{D_k}$

$$\rightarrow w_{ij} = \sum_{k=1}^{K} V_{kj} V_{ki} \frac{1}{D_k}$$

European stress testing data 2016 (EBA)

- 51 relevant European banks (49 included in analysis)
- 44 sovereign bond investment categories (36 included)

Re-organize networks directly

wien mar 1 2019 59

Minimize SR, subject to portfolios get better

Quadratically Constrained Quadratic Programming problem

$$\begin{split} \min_{V_{ki} \ge 0 \ \forall k,i} \quad f(x) &= \sum_{i} \sum_{j} \frac{1}{C_{j}} \sum_{k} V_{ki} V_{kj} \frac{1}{D_{k}} \\ \text{subject to } V_{i} &= \sum_{k} V_{ki}, \quad \forall i, \\ S_{k} &= \sum_{k} V_{ki}, \quad \forall k, \\ \tilde{r_{i}} &\leq \sum_{k} V_{ki} r_{k}, \quad \forall i, \text{return not less} \\ \tilde{\sigma_{i}}^{2} &\geq \sum_{k} \sum_{l} V_{ki} V_{li} \sigma_{kl}^{2}, \quad \forall i, \text{variance not more} \end{split}$$

wien mar 1 2019 60

original network

after optimization

Conclusions

- economies can be described without aggregation and statistics
- systemic risk is a network property—endogenously created
- can be measured for each institution / transaction: DebtRank
- can be eliminated by SRT; networks don't allow for cascading
- SRT should **not be payed!** evasion re-structures networks
- SRT does not reduce credit volume; re-ordering transactions
- Basel III does not reduce SR; 3-fold works
- SR tax is technically feasible

S. Thurner, J.D. Farmer, J. Geanakoplos Quantitative Finance 12 (2012) 695

S. Thurner, S. Poledna Scientific Reports 3 (2013) 1888

S. Poledna, S. Thurner, J. D. Farmer, J. Geanakoplos J Banking and Finance 42 (2014) 199

P. Klimek, S. Poledna, J.D. Farmer, S. Thurner J Economic Dynamics and Control 50 (2014) 144

S. Poledna, J.L. Molina-Borboa, M. van der Leij, S. Martinez-Jaramillo, S. Thurner J Financial Stability 20 (2015) 70

S. Poledna, S. Thurner Quantitative Finance 16 (2016) 1599

S. Poledna, O. Bochmann, S. Thurner J Economic Dynamics and Control 77 (2017) 230

M. Leduc, S. Thurner J Economic Dynamics and Control 82 (2017) 44

A. Hinteregger, S. Poledna, S. Thurner Identifying systemically relevant firms in the entire liability network of a small economy, 2018 in review

S. Poledna, S. Hochrainer-Stigler, M.G. Miess, P. Klimek, S. Schmelzer, E. Shchekinova, E. Rovenskaya, J. Linnerooth-Bayer, U. Dieckmann, S. Thurner When does a natural disaster become a systemic event? Estimating indirect economic losses from natural disasters, 2018 in review

A. Pichler, S. Poledna, S. Thurner Systemic-risk-efficient asset allocation: Minimization of systemic risk as a network optimization problem, 2018 in review

1:1 ABMs

1:1 data-driven ABM of Austria

- 10 million households
- 200.000 companies (70.000 balance sheet histories)
- 1.000 banks
- 1000s of government agents

SR of companies

Companies ranked by DebtRank

more than half of the total financial SR comes from companies

wien mar 1 2019 70

1:1 ABMs in combination with external shocks

Optimal shock size? (preliminary)

S. Thurner, J.D. Farmer, J. Geanakoplos Quantitative Finance 12 (2012) 695

S. Thurner, S. Poledna Scientific Reports 3 (2013) 1888

S. Poledna, S. Thurner, J. D. Farmer, J. Geanakoplos J Banking and Finance 42 (2014) 199

P. Klimek, S. Poledna, J.D. Farmer, S. Thurner J Economic Dynamics and Control 50 (2014) 144

S. Poledna, J.L. Molina-Borboa, M. van der Leij, S. Martinez-Jaramillo, S. Thurner J Financial Stability 20 (2015) 70

S. Poledna, S. Thurner Quantitative Finance 16 (2016) 1599

S. Poledna, O. Bochmann, S. Thurner J Economic Dynamics and Control 77 (2017) 230

M. Leduc, S. Thurner J Economic Dynamics and Control 82 (2017) 44

A. Hinteregger, S. Poledna, S. Thurner Identifying systemically relevant firms in the entire liability network of a small economy, 2018 in review

S. Poledna, S. Hochrainer-Stigler, M.G. Miess, P. Klimek, S. Schmelzer, E. Shchekinova, E. Rovenskaya, J. Linnerooth-Bayer, U. Dieckmann, S. Thurner When does a natural disaster become a systemic event? Estimating indirect economic losses from natural disasters, 2018 in review

A. Pichler, S. Poledna, S. Thurner Systemic-risk-efficient asset allocation: Minimization of systemic risk as a network optimization problem, 2018 in review

Alternatives to systemic risk tax

• Mandatory CDS

 Markose: taxes banks – not transactions – according to eigenvalue centrality

Problem 1 eigenvector is not economically reasonable number

Problem 2 blind to cycles in contract networks

Problem 3 absurd size (up to 30% of capital)

• Tax size: misses small SR institutions, SR improvement at tremendous economic cost

Markose proposal in macro-financial ABM

	No tax	SRT	SST (α=0.1)	SST (α=0.67)
Output	128.458 ± 1.792	128.382 ± 2.038	127.506 ± 3.278	106.877 ± 20.706
Unemployment	0.0017 ± 0.0102	0.0020 ± 0.0121	0.0059 ± 0.0204	0.1520 ± 0.1533
Credits (firms)	128.174 ± 18.990	121.435 ± 17.303	120.193 ± 19.397	87.943 ± 29.958
Interest (firms)	0.0238 ± 0.0015	0.0243 ± 0.0016	0.0241 ± 0.0017	0.0248 ± 0.0023

Statistical measures

- CoVAR: descriptive not predictive!
- SES, SRISK: related to leverage and size
- DIP: market based markets do not see NW-based SR

pro data publicly available, easy to implement

contra 'conditional' hard to define without knowledge of networks, descriptive, non-predictive

