Existence, uniqueness and stability of optimal portfolios of eligible assets ArXiv 1702.01936

Michel Baes Department of Mathematics and RiskLab ETH Zurich

Pablo Koch-Medina, Cosimo Munari Center for Finance and Insurance and Swiss Finance Institute University of Zurich

Research Seminar, Institute of Statistics and Mathematics WU Vienna March 23rd, 2018

Introducing optimal value functionals

Throughout the talk we work under the following specifications:

- ${\mathcal X}$ is a topological vector space with partial order \geq
- $\mathcal A$ is a closed subset of $\mathcal X$ such that $0\in \mathcal A$ and

$$X \in \mathcal{A}, Y \ge X \implies Y \in \mathcal{A}$$

- $V_0: \mathbb{R}^N o \mathbb{R}$ is a linear functional
- $V_1: \mathbb{R}^{\mathsf{N}}
 ightarrow \mathcal{X}$ is a linear operator

We focus on functionals $\rho:\mathcal{X}\to [-\infty,\infty]$ defined by

 $\rho(X) = \inf\{V_0(\lambda); \ \lambda \in \mathbb{R}^N, \ X + V_1(\lambda) \in \mathcal{A}\}$

Motivating examples

The setup. We consider a one-period economy where:

• future uncertainty is modeled by a probability space

 $(\Omega, \mathcal{F}, \mathbb{P})$

• the market consists of N frictionless and liquid assets

$$S^i = (S^i_0, S^i_1)$$

• the value of a portfolio $\lambda \in \mathbb{R}^N$ at time t is

$$V_t(\lambda) = \sum_{i=1}^N \lambda^i S_t^i$$

We denote by \mathcal{X} a set of random variables of interest.

Motivating example (1)

Capital Adequacy. Assume that X represents the capital position of a financial institution at time 1. Then

$$\rho(X) = \inf\{V_0(\lambda); \ \lambda \in \mathbb{R}^N, \ X + V_1(\lambda) \in \mathcal{A}\}$$

where

$$\mathcal{A} = \begin{cases} \{X \in \mathcal{X} \; ; \; \operatorname{VaR}_{\alpha}(X) \leq 0\} \; \text{ (Value at Risk)} \\ \{X \in \mathcal{X} \; ; \; \operatorname{ES}_{\alpha}(X) \leq 0\} \; \text{ (Expected Shortfall)} \end{cases}$$

can be interpreted as a capital requirement for X.

Reference: Artzner, Delbaen, Eber, Heath (1999), Föllmer, Schied (2002), Frittelli, Scandolo (2006), Artzner, Delbaen, Koch-Medina (2009), Farkas, Koch-Medina, Munari (2014), Liebrich, Svindland (2107), ...

Motivating example (2)

Pricing/Hedging. Assume X represents a payoff at time 1. Then

$$\rho(-X) = \inf\{V_0(\lambda); \ \lambda \in \mathbb{R}^N, \ V_1(\lambda) - X \in \mathcal{A}\}$$

where

$$\mathcal{A} = \begin{cases} \{X \in \mathcal{X} ; \ \mathbb{P}(X \ge 0) = 1\} & (\text{superhedging}) \\ \{X \in \mathcal{X} ; \ \mathbb{E}[u(X)] \ge k\} & (\text{utility } u) \\ \{X \in \mathcal{X} ; \ \alpha(X) \ge k\} & (\text{acceptability index } \alpha) \end{cases}$$

can be interpreted as a price for X (from a seller's perspective).

Reference: Cochrane, Saa-Requejo (2000), Bernardo, Ledoit (2000), Carr, Geman, Madan (2001), Cherny, Madan (2009,2010), Arai (2011), Arai, Fukasawa (2014), ...

Motivating example (3)

Portfolio Management. Assume X represents a position at time 1. Then

$$\rho(X) = \inf\{r(X + V_1(\lambda) - V_0(\lambda)); \ \lambda \in \mathbb{R}^N\}$$

where

$$r(X) = \begin{cases} \operatorname{VaR}_{\alpha}(X) & (\operatorname{Value \ at \ Risk}) \\ \operatorname{ES}_{\alpha}(X) & (\operatorname{Expected \ Shortfall}) \end{cases}$$

can be interpreted as a market-based risk measure for X.

Reference: Föllmer, Schied (2002), Barrieu, El Karoui (2009), ...

Motivating example (4)

Capital Allocation/Systemic Risk. Assume that $X = (X_1, ..., X_d)$ represents the capital positions of *d* financial entities at time 1. Then

$$\rho(X) = \inf \left\{ \sum_{j=1}^{d} V_0(\lambda_j); \ \lambda_1, \dots, \lambda_d \in \mathbb{R}^N, \\ (X_1 + V_1(\lambda_1), \dots, X_d + V_1(\lambda_d)) \in \mathcal{A} \right\}$$

where

$$\mathcal{A} = \begin{cases} \{X \in \mathcal{X}^d \; ; \; X_j \in \mathcal{A}_j, \; \forall j = 1, \dots, d\} \\ \{X \in \mathcal{X}^d \; ; \; \mathbb{E}[u(X)] \ge k\} \; \; (\text{multivariate utility } u) \end{cases}$$

can be interpreted as a systemic risk measure for X.

Reference: Burgert, Rüschendorf (2006), Ekeland, Schachermayer (2011), Armenti, Crépey, Drapeau, Papapantoleon (2017), Biagini, Fouque, Frittelli, Meyer-Brandis (2017), Feinstein, Rudloff, Weber (2017), ...

Objective of the presentation

Focus. We focus on the set-valued mapping $\mathcal{P} : \mathcal{X} \rightrightarrows \mathbb{R}^N$ defined by

 $\mathcal{P}(X) = \{\lambda \in \mathbb{R}^N; X + V_1(\lambda) \in \mathcal{A}, V_0(\lambda) = \rho(X)\}$

Every element of $\mathcal{P}(X)$ is called an optimal portfolio (of eligible assets).

Goal. We address the following questions:

- existence of optimal portfolios?
- uniqueness of optimal portfolios?
- stability of optimal portfolios?

This requires studying the existence, uniqueness, and stability of the solutions of a nonlinear parametric optimization problem (featuring infinite-dimensional parameters).

Existence of optimal portfolios

Theorem. Define $\mathcal{R}_0 = \{V_1(\lambda); \lambda \in \mathbb{R}^N, V_0(\lambda) = 0\}$. Then, the following are equivalent:

(a) $\mathcal{P}(X) \neq \emptyset$ for every $X \in \mathcal{X}$.

(b) $\mathcal{A} + \mathcal{R}_0$ is closed.

Corollary. Assume that one of the following conditions holds: (1) \mathcal{A} is star-shaped (eg convex or conic) and $\mathcal{A} \cap \mathcal{R}_0 = \{0\}$. (2) \mathcal{A} is polyhedral (ie a finite intersection of halfspaces). (3) $\mathcal{A}^{\infty} \cap \mathcal{R}_0 = \{0\}$ (\mathcal{A}^{∞} is the largest cone in \mathcal{A}). Then, $\mathcal{P}(X) \neq \emptyset$ for every $X \in \mathcal{X}$.

The conditions in red stipulate the absence of (scalable) good deals.

Uniqueness of optimal portfolios

Proposition. Assume that for every distinct $X, Y \in \partial A$ we have

 $X - Y \in \mathcal{R}_0 \implies \lambda X + (1 - \lambda)Y \in int(\mathcal{A}) \text{ for some } \lambda \in (0, 1).$

Then, $|\mathcal{P}(X)| \leq 1$ for every $X \in \mathcal{X}$.

Corollary. Assume that \mathcal{A} is strictly convex. Then, $|\mathcal{P}(X)| \leq 1$ for every $X \in \mathcal{X}$.

Stability of optimal portfolios

Intuitively speaking, we want to ensure that

Y is close to
$$X \implies \mathcal{P}(Y)$$
 is "close" to $\mathcal{P}(X)$.

Definition (1) We say that \mathcal{P} is upper semicontinuous at X if

$$\mathcal{U} \subset \mathbb{R}^N$$
 open : $\mathcal{P}(X) \subset \mathcal{U} \implies \exists$ neighborhood $\mathcal{U}_X : \mathcal{P}(\mathcal{U}_X) \subset \mathcal{U}$.

(2) We say that \mathcal{P} is lower semicontinuous at X if

$$\mathcal{U} \subset \mathbb{R}^N$$
 open : $\mathcal{P}(X) \cap \mathcal{U} \neq \emptyset \implies \begin{cases} \exists \text{ neighborhood } \mathcal{U}_X : \forall Y \in \mathcal{U}_X \\ \mathcal{P}(Y) \cap \mathcal{U} \neq \emptyset. \end{cases}$

The above properties ensure that \mathcal{P} does not shift away and, more specifically, does not explode (1) or shrink (2) as a result of a slight perturbation of X.

Upper semicontinuity

Theorem. The following statements are equivalent:

Corollary. Assume that one of the following conditions holds:

(1) \mathcal{A} is star-shaped and $\mathcal{P}(X)$ is bounded for all $X \in \mathcal{X}$.

(2)
$$\mathcal{A}^{\infty} \cap \mathcal{R}_0 = \{0\}.$$

Then, \mathcal{P} is upper semicontinuous on \mathcal{X} .

Lower semicontinuity

Theorem. The following statements are equivalent: (a) \mathcal{P} is lower semicontinuous on \mathcal{X} . (b) For every $X \in \mathcal{X}$ we have $X_n \to X, \ \lambda \in \mathcal{P}(X) \implies \exists \lambda_n \in \mathcal{P}(X_n) : \lambda_n \to \lambda.$

In other words, lower semicontinuity ensures that

 $Y ext{ is close to } X ext{ and } \lambda \in \mathcal{P}(X) \implies \exists \mu \in \mathcal{P}(Y) ext{ that is close to } \lambda.$

Theorem. If \mathcal{A} is polyhedral, then \mathcal{P} is lower semicontinuous on \mathcal{X} .

Corollary. We have lower semicontinuity if \mathcal{A} is the positive cone or is based on Expected Shortfall provided that we work in finite dimension.

Failure of lower semicontinuity

Example. The map \mathcal{P} fails to be lower semicontinuous on \mathcal{X} in each of the following cases:

- (1) A is based on Value at Risk (both in finite and infinite dimension).
- (2) A is a law-invariant convex cone in infinite dimension (with the exception of the acceptance set induced by the mean), eg:
 - \mathcal{A} is the positive cone
 - *A* is based on Expected Shortfall
 - \mathcal{A} is based on a spectral risk measure
 - A is based on a law-invariant acceptability index
 - \mathcal{A} is based on an expectile

(3) A is convex, law-invariant, and is contained in some acceptance set based on Value at Risk in infinite dimension.

Robust portfolio selections

Definition. A continuous map $P : \mathcal{X} \to \mathbb{R}^N$ such that

 $P(X) \in \mathcal{P}(X)$ for every $X \in \mathcal{X}$

is said to be a continuous portfolio selection.

Michael's Selection Theorem. If \mathcal{P} is lower semicontinuous on \mathcal{X} , then there exists a continuous portfolio selection.

In general, lower semicontinuity is only sufficient for the existence of continuous selections.

Goal. We address the following additional question:

• existence of continuous portfolio selections?

Failure of robust portfolio selections

Example. The optimal portfolio map \mathcal{P} always fails to admit robust portfolio selections if

(1) A is based on Value at Risk (both in finite and infinite dimension).

In addition, ${\mathcal P}$ may fail to admit robust portfolio selections if

(2) \mathcal{A} is convex (both in finite and infinite dimension).

Stability of nearly-optimal portfolios

Focus. We focus on the set-valued mapping $\mathcal{P}_{\varepsilon}: \mathcal{X} \rightrightarrows \mathbb{R}^N$ defined by

 $\mathcal{P}_{\varepsilon}(X) = \{\lambda \in \mathbb{R}^N; \ X + V_1(\lambda) \in \mathcal{A}, \ V_0(\lambda) < \rho(X) + \varepsilon\}, \quad \varepsilon > 0$

Every element of $\mathcal{P}_{\varepsilon}(X)$ is called a nearly-optimal portfolio.

Theorem. Assume the following conditions are both satisfied:

(1) For every $X \in \mathcal{X}$ there exists $\lambda \in \mathbb{R}^N$ such that $X + V_1(\lambda) \in int(\mathcal{A})$.

(2)
$$\operatorname{cl}(\operatorname{int}(\mathcal{A})) = \mathcal{A}$$
 (eg \mathcal{A} is convex).

Then, $\mathcal{P}_{\varepsilon}$ is lower semicontinuous on \mathcal{X} .

Corollary. Assume that one of the following conditions holds:

(1) There exists
$$\lambda \in \mathbb{R}^N$$
 such that $V_1(\lambda) \in int(\mathcal{X}_+)$.

(2) \mathcal{A} is convex and there exists $\lambda \in \mathbb{R}^N$ such that $V_1(\lambda) \in int(\mathcal{A}^\infty)$.

Then, $\mathcal{P}_{\varepsilon}$ is lower semicontinuous on \mathcal{X} .

Conclusions

- We discussed existence, uniqueness, and stability of optimal portfolios in a general one-period economy.
- Stability is understood in the sense of parametric optimization.
- We showed that stability breaks down in many important infinite-dimensional settings, eg:
 - superreplication
 - conic finance
 - pricing with acceptable risk, eg based on VaR and ES
 - (systemic) risk measurement, eg based on VaR and ES
- Stability can be partially restored for nearly-optimal portfolios.
- From qualitative to quantitative stability.
- From a one-period to a multi-period setting.

Thank you very much for your attention!