Location-adjusted Wald statistics

Ioannis Kosmidis

■ IKosmidis_

☑ ioannis.kosmidis@warwick.ac.uk

Attp://ucl.ac.uk/~ucakiko

Reader in Data Science

University of Warwick & The Alan Turing Institute

in collaboration with Claudia Di Caterina University of Padova

04 May 2018 Institute for Statistics and Mathematics WU Wien

Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Wald statistic for scalar parameters

Data

$$(y_i, x_i^\top)$$
 $(i = 1, ..., n)$
 $x_i = (x_{i1}, ..., x_{ik})^\top \in \Re^k$ is a vector of explanatory variables for y_i

Model

Independent random variables Y_1, \ldots, Y_n with pdf/pmf $p_Y(y_i|x_i;\theta)$ Parameter $\theta \in \Theta \subset \Re^p$ with $\theta = (\psi, \lambda^{\top})^{\top}$, where $\psi \in \Re$ is of interest

Task

Draw inference about ψ

Wald statistic

Log-likelihood¹

$$I(\theta) = \sum_{i=1}^{n} \log p_{Y}(y_{i}|x_{i};\theta)$$

Wald statistic for testing $\psi = \psi_0$

$$t = rac{\hat{\psi} - \psi_0}{\kappa(\hat{ heta})} \stackrel{\mathsf{appr}}{\sim} \mathcal{N}(0,1)$$

Maximum likelihood estimator (MLE)

$$\hat{\theta} = (\hat{\psi}, \hat{\lambda}^\top)^\top = \arg\max_{\theta \in \Theta} I(\theta)$$

Standard error

 $\kappa(\theta)$ is the square root of the (ψ, ψ) element of the variance-covariance $\{i(\theta)\}^{-1}$ of the (asymptotic) null distribution of $\hat{\theta}$

 $i(\theta)$ is typically taken to be the expected information $E\{\nabla I(\theta)\nabla I(\theta)^{\top}\}$ or some "robust" variant

¹subject to usual regularity conditions; see, Pace and Salvan (1997, §4.3)

Wald statistic

Asymptotically equivalent alternatives

Signed root of the likelihood ratio statistic

$$r = \operatorname{sign}(\hat{\psi} - \psi_0) \{ I(\hat{\psi}, \hat{\lambda}) - I(\psi_0, \hat{\lambda}_{\psi_0}) \}^{1/2} \stackrel{\mathsf{appr}}{\sim} \mathsf{N}(0, 1)$$

Signed root of the score statistic

$$s = \operatorname{sign}(\hat{\psi} - \psi_0) \frac{\partial I(\psi_0, \hat{\lambda}_{\psi_0})}{\partial \psi} \kappa(\psi_0, \hat{\lambda}_{\psi_0}) \stackrel{\mathsf{appr}}{\sim} \mathcal{N}(0, 1)$$

where $\hat{\lambda}_{\psi_0} = \arg\max_{\lambda} I(\psi_0, \lambda)$ is the constrained MLE for λ

Pros of t

Computational convenience

z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.37540 0.68957 -0.5444 0.58617 lullyes 1.43237 0.73414 1.9511 0.05105 day2 -0.113941.04442 -0.1091 0.91313 -0.58487 day3 1.13343 -0.5160 0.60584 day4 -1.71670 day5 1.82912 1.30168 1.4052 day6 0.24783 0.94155 0.2632 day7 0.94994 0.99256 0.9571 0.46505 day8 0.96850 0.4802 0.63111 day9 0.88646 1.11872 0.7924 day10 1.66815 1.05172 1.5861 0.11271

Cons of t

Inferential performance depends on the properties of $\hat{\theta}$ (bias, efficiency, etc)

Lack of reparameterization invariance

Reading accuracy IQ and dyslexia

Data

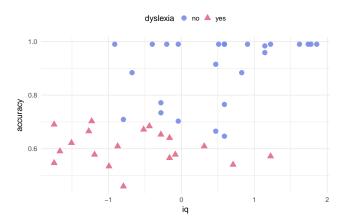
Reading accuracy for 44 nondyslexic and dyslexic Australian children² Ages between 8 years+5 months and 12 years+3 months

Variables

the score on a reading accuracy test accuracy

standardized score on a nonverbal intelligent quotient test iq

dyslexia whether the child is dyslexic or not



Aim

Investigate the relative contribution of nonverbal IQ to the distribution the reading scores, controlling for the presence of diagnosed dyslexia

Reading accuracy IQ and dyslexia

Model

Score of the *i*-th child is from a Beta distribution with mean μ_i and variance $\mu_i(1-\mu_i)/(1+\phi_i)$ with

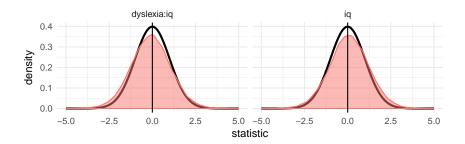
$$\log \frac{\mu_i}{1 - \mu_i} = \beta_1 + \sum_{j=2}^4 \beta_j x_{ij}$$
 and $\log \phi_i = \gamma_1 + \sum_{j=2}^3 \gamma_j x_{ij}$

- x_{i2} takes value -1 if the *i*th child is dyslexic and 1 if not
- \blacksquare x_{i3} is the nonverbal IQ score, and
- $x_{i4} = x_{i2}x_{i3}$ is the interaction between dyslexia and iq

```
Call:
betareg(formula = accuracy ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,
   type = "ML")
Standardized weighted residuals 2:
   Min
          1Q Median
                         3Q
                               Max
-2.3900 -0.6416 0.1572 0.8524 1.6446
Coefficients (mean model with logit link):
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1232 0.1428 7.864 3.73e-15 ***
dyslexia -0.7416 0.1428 -5.195 2.04e-07 ***
iq 0.4864 0.1331 3.653 0.000259 ***
Phi coefficients (precision model with log link):
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.3044 0.2227 14.835 < 2e-16 ***
dyslexia 1.7466 0.2623 6.658 2.77e-11 ***
iq
           1.2291 0.2672 4.600 4.23e-06 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Type of estimator: ML (maximum likelihood)
Log-likelihood: 65.9 on 7 Df
Pseudo R-squared: 0.5756
Number of iterations: 25 (BFGS) + 1 (Fisher scoring)
```

³see Grün, Kosmidis, and Zeileis (2012) for a range of modelling strategies and learning methods based on beta regression using the betarregd R- package usted Wald statistics 10/45

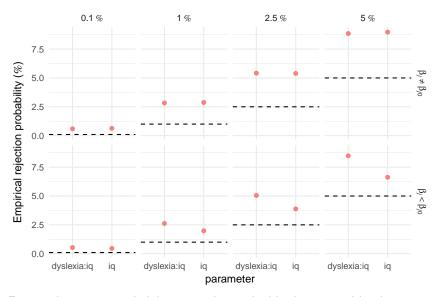
Null distribution of Wald statistic for $\beta_i = \beta_{0i}$



parameter	mean	sd
dyslexia:iq	-0.09	1.15
iq	0.08	1.15

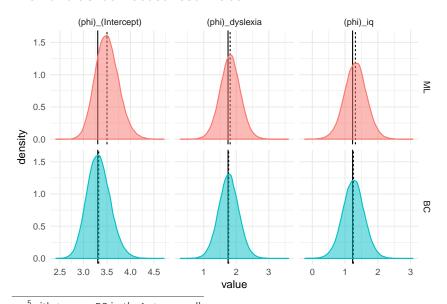
⁴figures based on 50 000 simulated samples under the maximum likelihood fit

Empirical null rejection probabilities



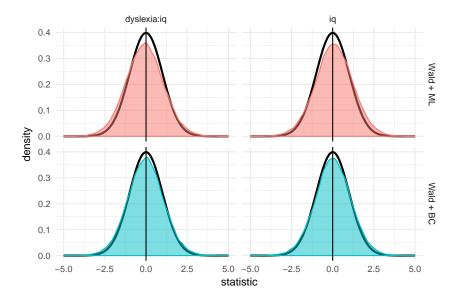
Empirical rejection probabilities are almost double the nominal level

MLE and bias corrected estimator⁵

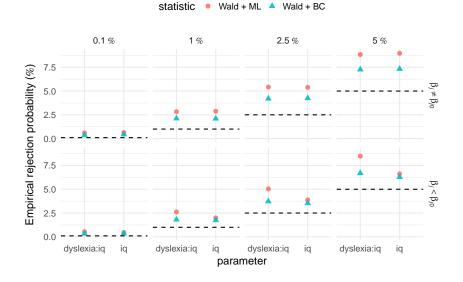


⁵with type = BC in the betareg call see, Grün, Kosmidis, and Zeileis (2012) for details on bias correction

Null distribution of Wald statistic using BC estimators⁶



Empirical null rejection probabilities



⁷figures based on 50 000 simulated samples under the maximum likelihood fit

Recap on Wald statistics with improved estimators

Use of improved estimators when forming Wald statistics can improve N(0,1) approximation and hence inferential performance⁸

But

Merely an observation, and in a few models Rather indirect way to improving Wald inference Better estimators in $t \implies$ null distribution of t closer to N(0,1)

⁸see, e.g., Kosmidis and Firth (2010)

Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Wald statistic as an estimator

Wald Transform

$$T(\theta; \psi_0) = \frac{\psi - \psi_0}{\kappa(\theta)}$$

$$\downarrow \downarrow$$

The Wald statistic
$$t = T(\hat{\theta}; \psi_0)$$
 is the MLE of $T(\theta; \psi_0)$

Core idea

Bias reduction techniques to bring asymptotic mean of t "closer" to 0

Bias of t

Under regularity conditions⁹ it can be shown that

$$E\{T(\hat{\theta}; \psi_0) - T(\theta; \psi_0)\} = B(\theta; \psi_0) + O(n^{-3/2})$$

where

First-order bias of t

$$B(\theta; \psi_0) = b(\theta)^{\top} \nabla T(\theta; \psi_0) + \frac{1}{2} \operatorname{trace} \left[\{ i(\theta) \}^{-1} \nabla \nabla^{\top} T(\theta; \psi_0) \right]$$

First-order bias of $\hat{\theta}$

$$b(\theta)$$
 such that $E(\hat{\theta} - \theta) = b(\theta) + o(n^{-1})$

⁹to guarantee that $T(\theta, \psi_0)$ is > 3 times differentiable wrt θ and $\hat{\theta}$ is consistent

Location-adjusted Wald statistic

Key result

The location-adjusted Wald statistic

$$t^* = T(\hat{\theta}; \psi_0) - B(\hat{\theta}; \psi_0)$$

has null expectation of order $O(n^{-3/2})$

Quantities in the bias of t

 $i(\theta)$ and $b^u(\theta)$ are readily available for a wide range of models, including generalized linear and nonlinear models¹⁰

Gradient and Hessian of the Wald transform

$$\nabla T(\theta; \psi_0) = \{1_p - T(\theta; \psi_0) \nabla \kappa(\theta)\} / \kappa(\theta)$$

$$\nabla \nabla^\top T(\theta; \psi_0) = -\left[\nabla \kappa(\theta) \{\nabla T(\theta; \psi_0)\}^\top + \nabla T(\theta; \psi_0) \{\nabla \kappa(\theta)\}^\top + T(\theta; \psi_0) \nabla \nabla^\top \kappa(\theta)\right] / \kappa(\theta)$$

 $\nabla \kappa(\theta)$ and $\nabla \nabla^{\top} \kappa(\theta)$ can be computed either analytically, or using automatic or numerical differentiation

Example: Exponential with mean $e^{-\theta}$

Cornish-Fisher expansions (Hall, 1992, \S 2.5) of the α -level quantiles q_{α} and q_{α}^* of the distribution of t and t^* in terms of the corresponding standard normal quantiles z_{α} are

$$\begin{split} q_{\alpha} &= z_{\alpha} + n^{-1/2} \frac{z_{\alpha}^{2} + 2}{6} - n^{-1} \frac{11z_{\alpha}^{3} - 65z_{\alpha}}{144} + O(n^{-3/2}), \\ q_{\alpha}^{*} &= z_{\alpha} + n^{-1/2} \frac{z_{\alpha}^{2} - 1}{6} - n^{-1} \frac{11z_{\alpha}^{3} - 65z_{\alpha}}{144} + O(n^{-3/2}), \end{split}$$

provided that $\epsilon < \alpha < 1 - \epsilon$ for any $0 < \epsilon < 1/2$

ightarrow Quantiles of t^* are closer to those of N(0,1) than t

Computational complexity and implementation

No extra matrix inversions (beyond $\{i(\theta)\}^{-1}$) or optimisation when computing t^* ; only extra matrix multiplications

In its analytical form, t^* has the computational complexity $O(p^4)$, whence t has $O(p^3)$

Time complexity can be reduced drastically by exploiting sparsity in $i(\theta)$ in specific models and vectorising operations

Evaluation of t^* for each of the model parameters can be done post-fit and **in parallel**

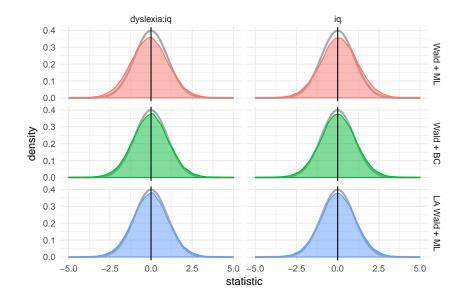
Implementation with numerical derivatives of $\kappa(\theta)$

As implemented in the **waldi** R package https://github.com/ikosmidis/waldi¹¹

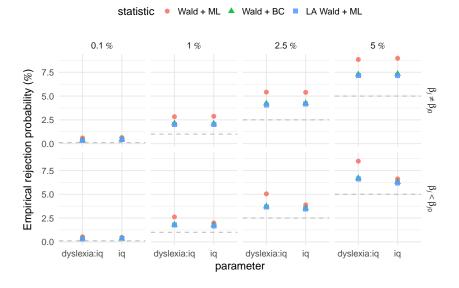
```
R> bias <- enrichwith::get_bias_function(object)
R> info <- enrichwith::get_information_function(object)</pre>
R.>
R> t <- coef(summary(object))[, "z value"]</pre>
R> theta_hat <- coef(object)</pre>
R> b <- bias(theta hat)
R> inverse_i_hat <- solve(info(theta_hat))</pre>
R.>
R> kappa <- function(theta, j) {
      inverse_i <- solve(info(theta))</pre>
      sqrt(inverse_i[j, j])
R>
R> adjusted t <- function(j) {
      u <- numDeriv::grad(kappa, theta_hat, j = j)
      V <- numDeriv::hessian(kappa, theta_hat, j = j)</pre>
      a <- -t[i] * u
      a[i] \leftarrow 1 + a[i]
      t[j] - sum(a * b)/ses[j] +
              (sum(inverse_i_hat * (tcrossprod(a, u)))/ses[j] +
               0.5 * t[j] * sum(inverse_i_hat * V))/ses[j]
```

¹¹Using R packages enrichwith (Kosmidis, 2017) and numDeriv (Gilbert and Varadhan, 2016)
Ioannis Kosmidis - Location-adjusted Wald statistics 24/45

Beta regression: Reading accuracy and dyslexia



Empirical null rejection probabilities

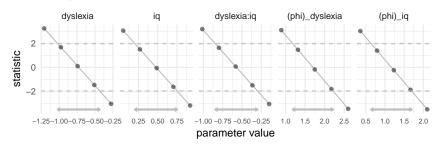


Confidence intervals based on t^*

 $100(1-\alpha)\%$ confidence intervals based on t^* can be obtained by finding all ψ such that

$$|T(\hat{\theta};\psi) - B(\hat{\theta};\psi)| \le z_{1-\alpha/2}$$

where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of N(0,1)



Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Wald statistics with bias-corrected estimators

$$\tilde{t} = T(\tilde{\theta}; \psi_0)$$

with $\tilde{\theta}$ being a bias-corrected estimator with

$$E(\tilde{\theta} - \theta) = o(n^{-1})$$

Bias of
$$\tilde{t}$$

$$E\{T(\tilde{\theta};\psi_0) - T(\theta;\psi_0)\} = \tilde{B}(\theta;\psi_0) + o(n^{-1/2}) \text{ with}$$

$$\tilde{B}(\theta;\psi_0) = b(\theta)^\top \nabla T(\theta;\psi_0) + \frac{1}{2} \text{trace} \left[\{i(\theta)\}^{-1} \nabla \nabla^\top T(\theta;\psi_0)\right]$$

Use of bias-corrected estimators **eliminates a term**, but bias of Wald statistic is still $O(n^{-1/2})$

Models with categorical responses

Location-adjustment of \tilde{t} is still fruitful

Categorical response models, where bias-correction leads to estimates that are always finite even in case where the MLE is infinite.

Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Lulling babies

Data

18 **matched pairs** of binomial observations on the effect of lulling on the crying of babies

Matching is per day and each day pair consists of the number of babies not crying out of a fixed number of control babies, and the outcome of lulling on a single child

Experiment involves 143 babies

Variables

crying crying status of the baby (1 not crying; 0 crying)

day the day of the experiment lull has the baby been lulled?

Aim: Test the effect of lulling on the crying of children

Logistic regression: lulling babies

Model

 Y_{ij} is a Bernoulli random variable for the crying status of baby j in day i with probability μ_{ij} of not crying

$$\log \frac{\mu_{ij}}{1 - \mu_{ij}} = \beta_i + \gamma z_{ij}$$

 \blacksquare z_{ii} is 1 if the jth child on day i was lulled, and 0 otherwise

Task

Test $\gamma = 0$ accounting for heterogeneity between days

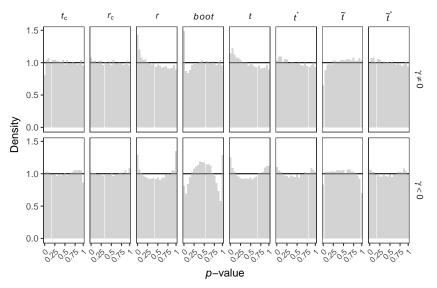
Testing for $\gamma = 0$

	t_c	r _c	r	t	t*	ĩ	$ ilde{t}^*$
statistic	1.8307	2.0214	2.1596	1.9511	1.9257	1.7362	1.9064
<i>p</i> -value	0.0671	0.0432	0.0308	0.0510	0.0541	0.0825	0.0566

 t_c is the Wald statistic based on the maximum conditional likelihood estimator

r and r_c are the signed roots of the likelihood and conditional likelihood ratio statistics

Empirical p-value distribution

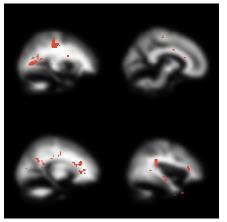


¹²based on 50 000 samples from the mdoel with $\beta_1, \ldots, \beta_{18}$ set to their maximum likelihood estimates and $\gamma = 0$ Ioannis Kosmidis - Location-adjusted Wald statistics 35/45

Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Mass univariate regression for brain lesions



Sample lesion maps for 50 patients¹³

Patient characteristics
multiple sclerosis type
(MS)¹⁴
age
gender
disease duration (DD)
two disease severity measures
(PASAT and EDSS)

resolution: $91 \times 109 \times 91$ (902 629 voxels)

Aim: Construct significance maps, highlighting voxels according to the evidence against the null hypothesis of no covariate effect

¹⁴from the supplementary material of Ge et al. (2014)

¹⁵0 for relapsing-remitting and 1 for secondary progressive multiple sclerosis

Voxel-wise probit regressions

Lesion occurence in voxel *i* for patient *i*

$$Y_{ij} \sim \mathsf{Bernoulli}(\pi_{ij})$$

Lesion probability

$$\Phi^{-1}(\pi_{ij}) = \beta_{j0} + \beta_{j1} \mathsf{MS}_i + \beta_{j2} \mathsf{age}_i + \beta_{j3} \mathsf{gender}_i + \beta_{j4} \mathsf{DD}_i + \beta_{j5} \mathsf{PASAT}_i + \beta_{j6} \mathsf{EDSS}_i$$

Results

Occurrence of infinite estimates

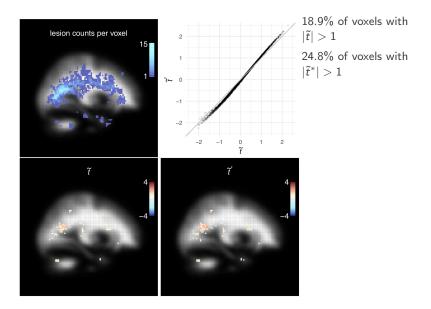
Failures in evaluation of r

Covariate	Occurrence	
MS	75.5%	
age	63.7%	
gender	78.3%	
DD	63.7%	
PASAT	63.6%	
EDSS	63.2%	

Covariate	Occurrence
MS	19.2%
age	20.5%
sex	22.4%
DD	18.1%
PASAT	16.8%
EDSS	10.3%

¹⁵summaries based on voxels with lesion occurrence for at least one lesion across patients

Significance map for disease duration



Outline

- 1 Wald inference
- 2 Location-adjusted Wald statistic
- 3 Wald inference and bias-corrected estimators
- 4 Logistic regression with structural parameters
- 5 Brain lesions
- 6 Recap

Recap

Location-adjustment can deliver **substantial improvements** to Wald inference

Extra computational overhead is mainly due to matrix multiplications

Location adjustment with "robust" 16 variance-covariance matrices

Location adjustment with alternative estimators of estimator bias, including bootstrap and jackknife; particularly useful, e.g., for generalized linear mixed effects models

Extensions to other pivotal quantities, including Wald statistics for composite hypotheses, score statistics, or even directly *p*-values

¹⁶see, for example, MacKinnon and White (1985) Ioannis Kosmidis - Location-adjusted Wald statistics 42/45

References I

- Cook, R. D., C.-L. Tsai, and B. C. Wei (1986). Bias in nonlinear regression. Biometrika 73, 615–623.
- Cordeiro, G. and M. Toyama Udo (2008). Bias correction in generalized nonlinear models with dispersion covariates. *Communications in Statistics: Theory and Methods 37*, 2219–225.
- Cordeiro, G. M. and P. McCullagh (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B: Methodological 53, 629–643.
- Cordeiro, G. M. and K. L. P. Vasconcellos (1997). Bias correction for a class of multivariate nonlinear regression models. Statistics & Probability Letters 35, 155–164.
- Ge, T., N. Müller-Lenke, K. Bendfeldt, T. E. Nichols, and T. D. Johnson (2014). Analysis of multiple sclerosis lesions via spatially varying coefficients. *Annals of Applied Statistics* 8(2), 1095–1118.
- Gilbert, P. and R. Varadhan (2016). numDeriv: Accurate Numerical Derivatives. R package version 2016.8-1.
- Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in R: Shaken, stirred, mixed, and partitioned. *Journal of Statistical Software 48*, 1–25.
- Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer.
- Kosmidis, I. (2017). enrichwith: Methods to enrich list-like R objects with extra components. R package version 0.1.
- Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96, 793–804.
- Kosmidis, I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. *Electronic Journal of Statistics* 4, 1097–1112.
- MacKinnon, J. G. and H. White (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. *Journal of econometrics* 29, 305–325.

References II

- Pace, L. and A. Salvan (1997). Principles of Statistical Inference: From a Neo-Fisherian Perspective. London: World Scientific.
- Simas, A. B., W. Barreto-Souza, and A. V. Rocha (2010). Improved estimators for a general class of beta regression models. *Computational Statistics & Data Analysis* 54, 348–366.
- Smithson, M. and J. Verkuilen (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. *Psychological Methods* 11, 54–71.

Location-adjusted Wald statistic

$$t^* = T(\hat{\theta}; \psi_0) - B(\hat{\theta}; \psi_0)$$

Preprint

Di Caterina C and Kosmidis I (2017). Location-adjusted Wald statistic for scalar parameters. ArXiv e-prints. arXiv:1710.11217

Software

waldi R package¹⁷ (soon in CRAN!) for computing t^* for standard model classes, including GLMs (glm, brglm2) and beta regression (betareg)

- TKosmidis
- ✓ ioannis.kosmidis@warwick.ac.uk
- Attp://ucl.ac.uk/~ucakiko

