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Motivation

Macroeconomists and policy makers use time series models for structural
inference as an alternative to DSGEs.

robust to explicit theoretical modeling assumptions

guide development of better DSGEs

Main instrument for inference is impulse response functions and forecast
error variance decompositions.

closely linked to the infinite MA representation (i.e. Wold
representation) for multivariate time series data

Key challenge is identifying impulse response functions / structural shocks.
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Motivation

Identification is not only about static orthogonal rotations.

If errors are Gaussian white noise, then the characteristic roots of the
infinite MA representation are not identified.

The two identification problems can be treated separately.
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DSGEs and VARMAs

The equilibrium of a general class of DSGE models can be represented by
a finite order VARMA (Fernandez-Villaverde, et al., 2007, AER).

If the characteristic MA roots are all outside the unit circle, the
representation is fundamental.

then, we can obtain a VAR approximation by inverting the MA part
and truncating lags (SVAR approach)

Many DSGEs (e.g. permanent income model of Hansen et al., 1991) lead
to clearly non-fundamental representations, where at least one root is
inside the unit circle.

But theory is rarely precise on which non-fundamental representation (i.e.
combination of roots inside the unit circle) is appropriate.
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Summarizing the Issue

Fundamental and non-fundamental representations are observationally
equivalent under Gaussian errors.

Standard SVAR approach only identifies fundamental structural shocks,
which is often inconsistent with theory.

Lippi and Reichlin (1994, JoE) argue IRFs and FEVDs should be based on
set identification.

difficult with SVARs because information about characteristic MA
roots is lost when VAR lags are truncated

even with VARMAs, can be computationally infeasible
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Non-Gaussian Errors

Observational equivalence can be eliminated with non-Gaussian errors.

If errors are i.i.d. non-Gaussian, then infinite MA representations are
unique up to scaling, order of shocks, and time shifts (Chan et al., 2006,
Biometrika, Gouriéroux et al., 2017, WP).

Therefore, specifying i.i.d. non-Gaussian errors simultaneously identifies
both:

1 the fundamental or one of the non-fundamental representations,

2 the structural representation (i.e. orthogonal rotations of errors no
longer observationally equivalent).

Could this be a viable solution?
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Problems With Non-Gaussian Errors

Specifying i.i.d. non-Gaussian errors entails a number of practical
problems:

1 Different distributions lead to different representations being
identified, so the question becomes which non-Gaussian distribution
should be employed?

2 VARMAs with non-Gaussian distribution are highly non-linear in
parameters, and no feasible computation methodology is currently
available.

3 Statistically identified structural shocks are difficult to interpret.
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Proposed Alternative

We argue that an alternative approach is to model errors as conditionally
Gaussian by introducing heteroskedastic errors.

A large literature (Clark and Ravazzolo, 2014, JAE; Carriero et al., 2016,
JBES, Chan and Eisenstat, 2018, JAE) has consistently demonstrated that
allowing for stochastic volatility in VARs is crucial in modeling
macroeconomic time series.

Therefore, it is a natural extension to model VARMAs with Gaussian errors
and stochastic volatility.

We prove that under mild regularity conditions, we thus can obtain infinite
MA representations that are unique up to static orthogonal rotations.
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Benefits of VARMAs With Stochastic Volatility

The main advantages the proposed approach are:

1 conditionally Gaussian errors means computation is non-trivial but
feasible: we develop an efficient MCMC algorithm in a Bayesian
state-space setting,

2 characteristic MA roots are identified, but not the structural
representation,

3 structural shocks can be identified using standard theory-driven
restrictions as in the SVAR approach,

4 alternatives stochastic volatility specifications can be evaluated using
Bayesian model comparison methods.
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Structural VARMAs

Consider an n× 1 vector of observations yt, modeled as a VARMA(p, q)
process:

B(L)yt = A(L)εt, εt ∼ N (0, In).

where A(L) and B(L) are polynomial matrices in the back shift operator
L and B0 = In.

Assuming B(z) 6= 0 for all z ∈ C, |z| ≤ 1, the infinite MA representation is

yt = Ψ(L)εt, Ψ(L) = B(L)−1A(L). (1)

The identification issue we focus on arises from the fact that there exist
many D(z) such that D(z)D(z−1)′ = In and

yt = Ψ̃(L)ε̃t, Ψ̃(L) = Ψ(L)D(L), ε̃t = D(L−1)′εt, (2)

where L−1 is the forward shift operator and ε̃t ∼ N (0, In).
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Observational Equivalence

If D(z) = D, DD′ = In, we obtain the standard case where (1) is
observationally equivalent to (2) due static orthogonal rotations.

Even if Ψ0 = Ψ̃0, there exist D(z) such that detΨ(z) = 0 implies either
det Ψ̃(z) = 0 or Ψ̃(z−1) = 0 and (2) is an observationally equivalent
VARMA(p, q) to the one in (1).

D(z) is a Blaschke matrix that “flips” some combination of roots of
detΨ(z) inside /outside the unit circle

there are up to 2nq countable, observationally equivalent
representations generated this way

SVAR approach only considers the fundamental representation and ignores
the (up to 2nq − 1) non-fundamental ones.

this is inconsistent with theory in many settings

Eisenstat (UQ) Structural VARMAs with SV May 2017 11 / 28



Proposed Solutions to Observational Equivalence

Lippi and Reichlin (1994, JoE) suggest set identification of IRFs and
FEVDs based on all fundamental and non-fundamental representations.

becomes computationally infeasible as n, q increase

inference typically imprecise

If structural shocks are i.i.d. not Gaussian then all observational
equivalence vanishes: (1) can be made unique with trivial restrictions on
Ψ0 (i.e., nonzero, non-decreasing diagonal elements).

If reduced form innovations are conditionally Gaussian with heteroskedastic
errors, then the reduced form representation is identified up to static
orthogonal rotations, and the structural representation is identified by
theory-driven restrictions on Ψ0.
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Multivariate Volatility Process

Let {Σt : t ∈ Z} be a stochastic process where:

each Σt a positive definite symmetric matrix,

‖Σt‖ ≤ ς < ∞ almost surely for all t ∈ Z,

{Σt} is a weakly stationary process with an absolutely integrable
inverse spectral density.

Upper bound and stationarity are not necessary and can be replaced other
regularity conditions.

Upper bound allows for clearer proof and is not restrictive in practice
since it can be arbitrarily large (we only need it to be finite).
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Gaussian Scale Mixture Process

The Gaussian scale mixture process (GSMP) is given by {ut : t ∈ Z} such
that

(ut | {Σt})
iid∼ N (0,Σt). (3)

Marginally of {Σt}, ut and ut−j are mean independent for all j.

Marginally of {Σt}, ut and ut−j are stochastically independent if and only
if Σt and Σt−j are stochastically independent.

For any non-singular D, ũt = Dut is also a GSMP.
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VARMAs With GSMP Errors

Consider the reduced form VARMA(p, q):

yt = B(L)−1Θ(L)ut = Φ(L)ut, (ut |Σt) ∼ N (0,Σt), (4)

where {Σt} satisfies the previous assumptions and Θ0 = In and Φ0 = In.

A structural form is obtained by:

yt = B(L)−1Θ(L)Σ
1

2

t Qtεt = Ψt(L)εt, εt ∼ N (0, In),

where QtQ
′
t = In.

Does there exist an alternative VARMA(p, q) process

ỹt = B(L)−1Θ̃(L)ũt = Φ̃(L)ũt, (ũt | Σ̃t) ∼ N (0, Σ̃t), (5)

such that {yt} and {ỹt} are observationally equivalent?
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Uniqueness Result

Theorem

Assume {Σt} satisfies regularity conditions. The process {ỹt} given by

(5) is observationally equivalent to the process {yt} given by (4) if and

only if {ũt} d
= {ut} and Φ̃(L) = Φ(L), where

d
= denotes equivalence in

distribution.

Two comments regarding the proof:

1 Main challenge: ut not stochastically independent.

2 Key insight: if Φ̃(z) 6= Φ(z), then D(z) = Φ̃(z)−1Φ(z) yields
ũt = D(L)ut such that ũt is not mean-independent of ũt−j for some
j; therefore, ũt is not a GSMP.
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Implications

The data uniquely identifies either a fundamental or one of the
non-fundamental representations.

VARs with time-varying volatilities (i.e. Sims and Zha, 2006, AER; Chan
and Eisenstat, 2018, JAE) are over-identified because they enforce
fundamentalness.

this holds even for models with log-volatilities modeled as random
walks (i.e. non-stationary volatility process)

can be shown to hold for TVP-VARs with time-varying coefficients
(though not a trivial extension)

We can test if the fundamentalness restriction is supported by the data.
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Empirical Specification

We consider a Bayesian state-space model given by:

B0yt = µ+B1yt−1 + · · ·+Bpyt−p

+Θ1ut−1 + · · · +Θqut−q, (ut |Σt) ∼ N (0,Σt),

(Σ−1

t |Σt−1) ∼ IW
(
ν,

1

ν
Σ−δ

t−1

)
,

where ν > n and |δ| < 1.

W(·) denotes the Wishart distribution; the state equation defines the
Wishart process of Philipov and Glickman (2006, JBES).

Adding the constraint ‖Σt‖ < ς ensures that this volatility process satisfies
the regularity conditions and has nice properties.
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AR and MA Redundancies

We set B0 to be a lower triangular matrix, with ones on the diagonals.

The free elements of Bl (l = 0, . . . , p) and Θl (l = 1, . . . , q) are modeled
with Stochastic Search Variable Selection priors (George et al., 2008, JoE):

(
Bl,ij | γBl,ij

)
∼
(
1− γBl,ij

)
N (0, τ20,l,ij) + γBl,ijN (0, τ21,l,ij),(

Θl,ij | γΘl,ij
)
∼
(
1− γΘl,ij

)
N (0, τ20,l,ij) + γΘl,ijN (0, τ21,l,ij),

where γBl,ij ∈ {0, 1}, γΘl,ij ∈ {0, 1} and τ2
0,l,ij ≪ τ2

1,l,ij.

This approximates the Echelon form for unique VARMA specifications (see
Chan et al., 2016, JoE).

It is needed because B(L) and Θ(L) have redundant coefficients
when, e.g., [Bp;Θq] has row rank less than n.
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Log Likelihood

Let Θ̃1:t be the nt× n(t+ q) matrix given by

Θ̃1:t =




Θq Θq−1 · · · Θ1 In
Θq Θq−1 · · · Θ1 In

. . .
. . .

. . .
. . .

. . .

Θq Θq−1 · · · Θ1 In


 .

Let Σ̃1−q:t be the n(t+ q)× n(t+ q) matrix given by

Σ̃1−q:t =



Σ1−q

. . .

Σt


 .

Let vt = B0yt − µ+B1yt−1 + · · ·+Bpyt−p and ṽt the nt× 1 vector

ṽ1:t =
(
v′
1
, . . . ,v′

t

)′
.
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Log Likelihood

The log likelihood for the first t observations is given by:

ln p(y1, . . . ,yt | · ) = −1

2
ln(2π)

− 1

2
|Θ̃1:tΣ̃1:tΘ̃

′

1:t| −
1

2
ṽ′
1:t

(
Θ̃1:tΣ̃1:tΘ̃

′

1:t

)−1

ṽ1:t. (6)

The full log likelihood is obtained by replacing t with T .

The term
(
Θ̃1:tΣ̃1:tΘ̃

′

1:t

)−1

complicates computation because it is

nonlinear in Θl and Σt, but the quadratic term is not expensive to
compute.

If the Θ(L) was fundamental, we could set Σ1−q = Σ0 = 0 and simplify
computation (e.g. Chan, 2013, JoE).

We cannot take this approach here because Θ(L) is possibly
non-fundamental; we instead treat Σ1−q, . . . ,Σ0 as parameters.
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Parameters and Priors

The parameters in this specification are the free elements in B0, along
with B1, . . . ,Bp, µ, Θ1, . . . ,Θq, Σ1−q, . . . ,Σ0, {γBl,ij}, {γΘl,ij}, ν and δ.

Along with the priors already discussed, we assign the following:

Pr(γBl,ij = 0) = 0.5,

Pr(γΘl,ij = 0) = 0.5,

µ ∼ N (0, 10),

Σ−1

q−1
∼ W (n+ 1, In) ,

ν − n ∼ G(1, 1),
δ ∼ U(−1, 1),

where G denotes the Gamma distribution and U the Uniform distribution.

Eisenstat (UQ) Structural VARMAs with SV May 2017 22 / 28



MCMC Outline

The MCMC algorithm involves iterating seven sampling steps:

1

(
µ,B0, . . . ,Bp |Θ1, . . . ,Θq, {Σt}, {γBl,ij}

)
,

2

(
Θ1, . . . ,Θq |µ,B0, . . . ,Bp, {Σt}, {γΘl,ij}

)
,

3 (Σ1−q, . . . ,ΣT |µ,B0, . . . ,Bp,Θ1, . . . ,Θq,S, ν, δ),

4

(
γBl,ij |Bl,ij

)
for l = 0, . . . , p, i, j = 1, . . . , n (and i > j for l = 0),

5

(
γΘl,ij |Θl,ij

)
for l = 1, . . . , q, i, j = 1, . . . , n,

6 (ν | {Σt}, δ),
7 (δ | {Σt}, ν).
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Sampling Implementation

Step 1 entails standard sampling from the multivariate Gaussian
distribution.

Steps 4-5 are also standard in the SSVS literature.

Steps 6-7 are provided in Philipov and Glickman (2006, JBES).

Step 3 is efficiently implemented using the particle Gibbs with ancestry
sampling as in Lindsten et al. (2014, JMLR).

Step 2 is the most challenging: we implement an independence MH
sampler based on the Whittle likelihood approach of Dahlhaus (2002,
AoS).
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Whittle Likelihood

Let Θ̌k =
∑q

l=0
Θle

ilλk , where i =
√
−1 and λk = 2πk/T .

Let Ṽk = (v1e
−iλk , . . . ,vT e

−iTλk) and vec(W̃) = Ω vec(Θ̌
−1

k Ṽk), where

Ω =




Σ−1

1
Σ−1

1
· · · · · · Σ−1

⌊ 1+T

2
⌋

Σ−1

1

. . .
. . .

. . .
...

...
. . . Σ−1

⌊ r+c

2
⌋

. . .
...

...
. . .

. . .
. . .

...

Σ−1

⌊ 1+T

2
⌋

· · · · · · · · · Σ−1

T




.

Ω is nT × nT , with r denoting the row, c the column and ⌊·⌋ the floor
operator.
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Whittle Likelihood

The Whittle likelihood is given by:

ln pW (v;θ) = − 1

2T 2

T−1∑

k=0

(
(2n) ln(2π)

T∑

t=1

|Θ̌kΣtΘ̌
∗
k|

+
1

2π
vec(W̃k)

∗ vec(Ṽk)

)
(7)

The score is given by:

d ln pW (v;θ)

dΘ′
l

=
1

T

T−1∑

k=0

Re

[
Θ̌

−1

k +
1

2πT
Θ̌

−1

k ṼkW̃
∗
kΘ̌

−1

k

]
. (8)

Both are relatively easy to evaluate, which means the Whittle likelihood is
easy to maximize.
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MH Proposal

Dahlhaus (2002, AoS) proved that if θ̂ maximizes pW (v;θ) then it
converges to the MLE of the actual likelihood p(v;θ), and it is
asymptotically efficient.

Consequently, we set the proposal density to

θc ∼ N
(
̂̂
θ,− ̂̂H

−1

θ

)
,

where
̂̂
θ maximizes ln p(θ) + ln pW (v;θ) and

̂̂
Hθ =

d2 ln p(θ)

dθdθ′ +
d2 ln pW (v;θ)

dθdθ′ .
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In Progress...

Initial Monte Carlo results that the algorithm is reasonably efficient with
VARMA(2, 2) and up to n = 4 variables.

Extensive Monte Carlo exercise is under way.

Real data application will re-examine SVARs for effects of monetary policy
shocks and news shocks.
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