Evaluating CDF and PDF of the Sum of Lognormals by Monte Carlo Simulation

Kemal Dinçer Dingeç¹ Wolfgang Hörmann²

¹Department of Industrial Engineering, Altınbaş University, İstanbul, Turkey ²Department of Industrial Engineering, Boğaziçi University, İstanbul, Turkey

May 24, 2018

Research Seminar of Institute for Statistics and Mathematics, WU Wien

Outline

- Problem Definition: Sum of Lognormals
- Efficient Monte Carlo simulation of the cumulative distribution function (CDF) of sum of lognormals
- Simulation of probability density function (PDF)
- Sum of i.i.d. lognormals
- Conclusions and possible extensions

Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed

(日) (四) (三) (三)

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed
- Examples:

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed
- Examples:
 - Finance: Returns of financial assets in a portfolio

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed
- Examples:
 - Finance: Returns of financial assets in a portfolio
 - Stochastic Activity Networks: Arc times in a path

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed
- Examples:
 - Finance: Returns of financial assets in a portfolio
 - Stochastic Activity Networks: Arc times in a path
 - Wireless Netwoks (many papers on sum of lognormals)

- Let's assume X_i ~ N(v_i, σ²_i), i = 1,...,d with possibly non-zero correlations Corr(X_i, X_j) = ρ_{ij}
- Sum of normals: $(\sum_{i=1}^{d} X_i) \sim N(v_S, \sigma_S^2)$
- Lognormal random variables: $e^{X_i} \sim LN(v_i, \sigma_i^2), i = 1, \dots, d$
 - Positive
 - Skewed
- Examples:
 - Finance: Returns of financial assets in a portfolio
 - Stochastic Activity Networks: Arc times in a path
 - Wireless Netwoks (many papers on sum of lognormals)
- $P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ for some small $\gamma > 0$.

▲日▼ ▲母▼ ▲目▼ ▲目▼ 目 ろの⊙

• $P(\sum_{i=1}^{d} e^{X_i} < \gamma)$

イロト イロト イヨト イヨト

• $P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ • $\sum_{i=1}^{d} e^{X_i} \sim ?$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$P(\sum_{i=1}^{d} e^{X_i} < \gamma)$$

•
$$\sum_{i=1}^{d} e^{X_i} \sim ?$$

• No closed formula for CDF: $F(\gamma) = P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ PDF: $f(\gamma) = \frac{dF}{d\gamma}$

イロト 不得下 イヨト イヨト

•
$$P(\sum_{i=1}^{d} e^{X_i} < \gamma)$$

•
$$\sum_{i=1}^d e^{X_i} \sim ?$$

- No closed formula for CDF: $F(\gamma) = P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ PDF: $f(\gamma) = \frac{dF}{d\gamma}$
- Numerical methods

イロト 不得下 イヨト イヨト

•
$$P(\sum_{i=1}^{d} e^{X_i} < \gamma)$$

•
$$\sum_{i=1}^d e^{X_i} \sim ?$$

- No closed formula for CDF: $F(\gamma) = P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ PDF: $f(\gamma) = \frac{dF}{d\gamma}$
- Numerical methods
 - Approximations

・ 何 ト ・ ヨ ト ・ ヨ ト

•
$$P(\sum_{i=1}^{d} e^{X_i} < \gamma)$$

•
$$\sum_{i=1}^d e^{X_i} \sim ?$$

- No closed formula for CDF: $F(\gamma) = P(\sum_{i=1}^{d} e^{X_i} < \gamma)$ PDF: $f(\gamma) = \frac{dF}{d\gamma}$
- Numerical methods
 - Approximations
 - Monte Carlo simulation

• Estimation of an unknown parameter: $\theta = E[Y]$

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n
- The estimator: $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n
- The estimator: $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- To quantify the error $\bar{Y} \theta$:

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n

• The estimator:
$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

• To quantify the error $\bar{Y} - \theta$:

▶ Central Limit Theorem:
$$\frac{\bar{Y}-\theta}{s/\sqrt{n}} \Rightarrow N(0,1)$$
 as $n \to \infty$.

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n
- The estimator: $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- To quantify the error $\bar{Y} \theta$:
 - ▶ Central Limit Theorem: $\frac{\bar{Y}-\theta}{s/\sqrt{n}} \Rightarrow N(0,1)$ as $n \to \infty$.
 - Large sample $100(1-\alpha)\%$ Confidence Interval:

$$\bar{Y} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $z_{\alpha/2} = \Phi^{-1}(1-\alpha/2)$ and $\Phi(\cdot)$ is the CDF of $\mathit{N}(0,1)$

イロト 不得下 イヨト イヨト 二日

- Estimation of an unknown parameter: $\theta = E[Y]$
- Generation of i.i.d. sample Y_1, Y_2, \ldots, Y_n
- The estimator: $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- To quantify the error $\bar{Y} \theta$:
 - ▶ Central Limit Theorem: $\frac{\bar{Y}-\theta}{s/\sqrt{n}} \Rightarrow N(0,1)$ as $n \to \infty$.
 - Large sample $100(1-\alpha)\%$ Confidence Interval:

$$\bar{Y} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $z_{\alpha/2} = \Phi^{-1}(1-\alpha/2)$ and $\Phi(\cdot)$ is the CDF of $\mathit{N}(0,1)$

• Probabilistic error bound: $z_{\alpha/2} \frac{s}{\sqrt{n}}$

イロト 不得下 イヨト イヨト 二日

• Tail probability
$$p = P\left(\sum_{i=1}^d e^{X_i} < \gamma\right) = \mathrm{E}\left[\mathbf{1}_{\{\sum_{i=1}^d e^{X_i} < \gamma\}}
ight]$$

Image: A match the second s

• Tail probability
$$p = P\left(\sum_{i=1}^d e^{X_i} < \gamma\right) = \mathrm{E}\left[\mathbf{1}_{\{\sum_{i=1}^d e^{X_i} < \gamma\}}
ight]$$

• The standard error $\sqrt{p(1-p)/n}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Tail probability
$$p = P\left(\sum_{i=1}^{d} e^{X_i} < \gamma\right) = \mathbb{E}\left[\mathbf{1}_{\{\sum_{i=1}^{d} e^{X_i} < \gamma\}}\right]$$

• The standard error
$$\sqrt{p(1\!-\!p)/n}$$

• Relative error
$$\frac{\sqrt{p(1-p)/n}}{p} = O(1/\sqrt{pn})$$

イロト イヨト イヨト イヨト

• Tail probability
$$p = P\left(\sum_{i=1}^{d} e^{X_i} < \gamma\right) = \mathbb{E}\left[\mathbf{1}_{\{\sum_{i=1}^{d} e^{X_i} < \gamma\}}\right]$$

• The standard error $\sqrt{p(1-p)/n}$

• Relative error
$$\frac{\sqrt{p(1-p)/n}}{p} = O(1/\sqrt{pn})$$

• Rare-event setting: For small *p*, naive Monte Carlo becomes impractical.

・ 同・ ・ ヨ・

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

イロト イ理ト イヨト イヨト

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

- For $\gamma = 0.5$,
 - The probability is p = 0.15

-

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%
- For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%
- For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%

• For $\gamma = 0.1$,

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%
- For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%
- For $\gamma = 0.1$,
 - The probability is p = 5.6e 6

Naive Monte Carlo

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%
- For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%

• For $\gamma = 0.1$,

- The probability is p = 5.6e 6
- ▶ For n = 100, the relative error of naive Mote Carlo is 4680%

Naive Monte Carlo

• A simple example:

$$p = P(e^{Z_1} + e^{Z_2} < \gamma)$$

for two i.i.d standard normals $Z_i \sim N(0, 1)$

• For $\gamma = 0.5$,

- The probability is p = 0.15
- For n = 100, the relative error of naive Mote Carlo is 23%
- For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%

• For $\gamma = 0.1$,

- The probability is p = 5.6e 6
- ▶ For n = 100, the relative error of naive Mote Carlo is 4680%
- ▶ For n = 1,000,000, the relative error of naive Mote Carlo is 46.80%

• Variance reduction method: Importance Sampling (IS)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$q(Z), \quad Z \sim f$$

Example: $q(Z) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$ and $f(\cdot)$ is bivariate standard normal density.

(日) (四) (日) (日) (日)

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$q(Z), \quad Z \sim f$$

Example: $q(Z) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$ and $f(\cdot)$ is bivariate standard normal density.

IS estimator

$$q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim g$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$q(Z), \quad Z \sim f$$

Example: $q(Z) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$ and $f(\cdot)$ is bivariate standard normal density.

IS estimator

$$q(Z)rac{f(Z)}{g(Z)}, \quad Z \sim g$$

• A well-known IS method is Mean Shifting:

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$q(Z), \quad Z \sim f$$

Example: $q(Z) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$ and $f(\cdot)$ is bivariate standard normal density.

IS estimator

$$q(Z)rac{f(Z)}{g(Z)}, \quad Z \sim g$$

- A well-known IS method is Mean Shifting:
 - ► Change the distribution of multi-normal vector X = (X₁,...,X_d) by adding a shift µ.

(日) (四) (日) (日) (日)

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$q(Z), \quad Z \sim f$$

Example: $q(Z) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$ and $f(\cdot)$ is bivariate standard normal density.

IS estimator

$$q(Z)rac{f(Z)}{g(Z)}, \quad Z \sim g$$

- A well-known IS method is Mean Shifting:
 - ► Change the distribution of multi-normal vector X = (X₁,...,X_d) by adding a shift µ.
 - Multiply the output with Likelihood Ratio

(日) (四) (日) (日) (日)

Dingeç, Hörmann

 ★ ▲ 클 ▶ 클
 ∽ へ ○

 May 24, 2018
 9 / 40

Dingeç, Hörmann

May 24, 2018 10 / 40

э

Dingeç, Hörmann

May 24, 2018 11 / 40

э

May 24, 2018 12 / 40

э

Let

$$S(Z) \equiv \sum_{i=1}^{d} e^{v_i + \sigma_i \sum_{j=1}^{i} L_{ij} Z_j}$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0,I)$. (*L* is the Cholesky factor of the correlation matrix of *X*)

Let

$$S(Z) \equiv \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i \sum_{j=1}^{i} L_{ij} Z_j}$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0,I)$. (*L* is the Cholesky factor of the correlation matrix of *X*)

• The simulation output is $q(z) = \mathbf{1}_{\{S(z) \le \gamma\}}$ for some small $\gamma > 0$.

Let

$$S(Z) \equiv \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i \sum_{j=1}^{i} L_{ij} Z_j}$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0,I)$. (*L* is the Cholesky factor of the correlation matrix of *X*)

- The simulation output is $q(z) = \mathbf{1}_{\{S(z) \le \gamma\}}$ for some small $\gamma > 0$.
- Naive estimator

 $q(Z), \quad Z \sim N(\mathbf{0}, I)$

- 4 周 ト - 4 日 ト - 4 日 ト

Let

$$S(Z) \equiv \sum_{i=1}^{d} e^{\mathbf{v}_i + \sigma_i \sum_{j=1}^{i} L_{ij} Z_j}$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0,I)$. (*L* is the Cholesky factor of the correlation matrix of *X*)

- The simulation output is $q(z) = \mathbf{1}_{\{S(z) \le \gamma\}}$ for some small $\gamma > 0$.
- Naive estimator

$$q(Z), \quad Z \sim N(\mathbf{0}, I)$$

IS estimator

$$q(Z)\frac{f(Z)}{g(Z)}, \quad Z \sim N(\boldsymbol{\mu}, I)$$

 $f(\cdot)$ is the density of $\mathit{N}(0,\mathit{I}),\,g(\cdot)$ is the density of $\mathit{N}(\mu,\mathit{I})$

• Optimal (zero-variance) IS density is proportional to q(z)f(z)

- Optimal (zero-variance) IS density is proportional to q(z)f(z)
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$\max_{z} \left[q(z) f(z) \right] = \max_{z} \left[\mathbf{1}_{\{S(z) \le \gamma\}} e^{-\sum_{i=1}^{d} z_i^2} \right]$$

- Optimal (zero-variance) IS density is proportional to q(z)f(z)
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$\max_{z} \left[q(z)f(z) \right] = \max_{z} \left[\mathbf{1}_{\{S(z) \le \gamma\}} e^{-\sum_{i=1}^{d} z_i^2} \right]$$

• which is equivalent to

(P1) min
$$\sum_{i=1}^{d} z_i^2$$

s.t. $\sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i \sum_{j=1}^{i} L_{ij} z_j} = \gamma$

- Optimal (zero-variance) IS density is proportional to q(z)f(z)
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$\max_{z} \left[q(z)f(z) \right] = \max_{z} \left[\mathbf{1}_{\{S(z) \le \gamma\}} e^{-\sum_{i=1}^{d} z_i^2} \right]$$

• which is equivalent to

(P1) min
$$\sum_{i=1}^{d} z_i^2$$

s.t. $\sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i \sum_{j=1}^{i} L_{ij} z_j} = \gamma$

• In this problem, the distance between the origin and the set $\{z|S(z) = \gamma\}$ is minimized.

Finding optimal mean shift

• Sak et al. (2010), A numerical method for the solution of (P1)

<**A**₽ ► < **B** ►

Finding optimal mean shift

- Sak et al. (2010), A numerical method for the solution of (P1)
- Cont and Tankov (2013) Finding a shift μ that guarantees asymptotic optimality (logarithmic efficiency)

• Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P(e^{Z_1} + e^{Z_2} < \gamma)$

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P(e^{Z_1} + e^{Z_2} < \gamma)$
 - Naive estimator $q(Z_1, Z_2) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$

• • = • • =

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P(e^{Z_1} + e^{Z_2} < \gamma)$
 - ► Naive estimator $q(Z_1, Z_2) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$
 - CMC estimator:

$$\mathbf{E}[q(Z_1, Z_2)|Z_2] = \mathbf{E}[\mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}|Z_2] = P(e^{Z_1} + e^{Z_2} < \gamma|\mathbf{Z}_2)$$

 $(Z_1 \text{ is smoothed out})$

• • = • • =

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P(e^{Z_1} + e^{Z_2} < \gamma)$
 - ► Naive estimator $q(Z_1, Z_2) = \mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}$
 - CMC estimator:

$$\mathbf{E}[q(Z_1, Z_2)|Z_2] = \mathbf{E}[\mathbf{1}_{\{e^{Z_1} + e^{Z_2} < \gamma\}}|Z_2] = P(e^{Z_1} + e^{Z_2} < \gamma|\mathbf{Z}_2)$$

 $(Z_1 \text{ is smoothed out})$

 $Var(q(Z_1, Z_2)) = Var(E[q(Z_1, Z_2)|Z_2]) + E[Var(q(Z_1, Z_2)|Z_2]]$ $\leq Var(E[q(Z_1, Z_2)|Z_2])$

CMC always yields some variance reduction

Dingeç, Hörmann

• Lognormal sum

$$S(\mathbf{Z}) = \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i(\mathbf{L}\mathbf{Z})_i}$$

イロト イヨト イヨト イヨト

Lognormal sum

$$S(\mathbf{Z}) = \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i(\mathbf{L}\mathbf{Z})_i}$$

• Normal distribution is spherical: $Z \stackrel{d}{=} AZ$ for any orthonormal rotation matrix A.

$$S(\mathbf{Z}) = \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i (\mathbf{LAZ})_i}.$$

Lognormal sum

$$S(\mathbf{Z}) = \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i(\mathbf{L}\mathbf{Z})_i}$$

 Normal distribution is spherical: Z^d=AZ for any orthonormal rotation matrix A.

$$S(\mathbf{Z}) = \sum_{i=1}^{d} e^{\mathbf{v}_i + \mathbf{\sigma}_i (\mathbf{LAZ})_i}.$$

• Our proposal: The first column of A is selected as

$$A_1 = \mu / ||\mu||$$

 μ is the mean shift of IS.

• After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.

- After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$E[\mathbf{1}_{\{S(Z)<\gamma\}} | Z_2, \dots, Z_d] = \int_{-\infty}^{+\infty} \mathbf{1}_{\{S(z_1, Z_2, \dots, Z_d) < \gamma\}} \phi(z_1) \, dz_1$$

= $\Phi(r(Z_2, \dots, Z_d))$

- After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$E[\mathbf{1}_{\{S(Z)<\gamma\}} | Z_2, \dots, Z_d] = \int_{-\infty}^{+\infty} \mathbf{1}_{\{S(z_1, Z_2, \dots, Z_d) < \gamma\}} \phi(z_1) dz_1$$

= $\Phi(r(Z_2, \dots, Z_d))$

• $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S(z_1, z_2, \dots, z_d) - \gamma = 0$ for z_1 .

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$E[\mathbf{1}_{\{S(Z)<\gamma\}} | Z_2, \dots, Z_d] = \int_{-\infty}^{+\infty} \mathbf{1}_{\{S(z_1, Z_2, \dots, Z_d)<\gamma\}} \phi(z_1) dz_1$$

= $\Phi(r(Z_2, \dots, Z_d))$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S(z_1, z_2, \dots, z_d) \gamma = 0$ for z_1 .
- If all correlations are nonnegative, S(z₁, z₂,..., z_d) γ = 0 is monotone wrt z₁ and so, there is a single root.

- After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$E[\mathbf{1}_{\{S(Z)<\gamma\}} | Z_2, \dots, Z_d] = \int_{-\infty}^{+\infty} \mathbf{1}_{\{S(z_1, Z_2, \dots, Z_d)<\gamma\}} \phi(z_1) dz_1$$

= $\Phi(r(Z_2, \dots, Z_d))$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S(z_1, z_2, \dots, z_d) \gamma = 0$ for z_1 .
- If all correlations are nonnegative, S(z₁, z₂,..., z_d) γ = 0 is monotone wrt z₁ and so, there is a single root.
- Newton's method can be used for root calculation. Derivative of $S(\cdot)$ wrt z_1 is also available in closed form

(日) (四) (日) (日) (日)

NEW IDEA

- After rotation, Z₁ becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$E[\mathbf{1}_{\{S(Z)<\gamma\}} | Z_2, \dots, Z_d] = \int_{-\infty}^{+\infty} \mathbf{1}_{\{S(z_1, Z_2, \dots, Z_d)<\gamma\}} \phi(z_1) dz_1$$

= $\Phi(r(Z_2, \dots, Z_d))$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S(z_1, z_2, \dots, z_d) \gamma = 0$ for z_1 .
- If all correlations are nonnegative, S(z₁, z₂,..., z_d) γ = 0 is monotone wrt z₁ and so, there is a single root.
- Newton's method can be used for root calculation. Derivative of $S(\cdot)$ wrt z_1 is also available in closed form
- The root *r* can be calculated in closed form for sum of i.i.d. lognormals.

• Optimal mean shift $\mu = (\log(\gamma/2), \log(\gamma/2))$

- Optimal mean shift $\mu = (\log(\gamma/2), \log(\gamma/2))$
- Orthonormal matrix

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

- Optimal mean shift $\mu = (\log(\gamma/2), \log(\gamma/2))$
- Orthonormal matrix

۲

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

$$\begin{aligned} P(e^{Z_1} + e^{Z_2} < \gamma) \\ &= P\left(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < \gamma\right) \\ &= E\left[P\left(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < \gamma \mid Z_2\right)\right] \\ &= E\left[\Phi\left(\sqrt{2}\log(\gamma/2) - \sqrt{2}\log\left[(e^{Z_2/\sqrt{2}} + e^{-Z_2/\sqrt{2}})/2\right]\right)\right] \end{aligned}$$

Dingeç, Hörmann

- Optimal mean shift $\mu = (\log(\gamma/2), \log(\gamma/2))$
- Orthonormal matrix

۲

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

$$P(e^{Z_1} + e^{Z_2} < \gamma)$$

= $P\left(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < \gamma\right)$
= $E\left[P\left(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < \gamma \mid Z_2\right)\right]$
= $E\left[\Phi\left(\sqrt{2}\log(\gamma/2) - \sqrt{2}\log\left[(e^{Z_2/\sqrt{2}} + e^{-Z_2/\sqrt{2}})/2\right]\right)\right]$

• CMC estimator: $\Phi\left(\sqrt{2}\log(\gamma/2) - \sqrt{2}\log\left[(e^{\mathbf{Z}_2/\sqrt{2}} + e^{-\mathbf{Z}_2/\sqrt{2}})/2\right]\right)$

(日) (四) (日) (日) (日)

May 24, 2018 20 / 40

э

< ∃→

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

$$P(e^{Z_1} + e^{Z_2} < 0.5) = P(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < 0.5)$$

Z1

글 > 글

A B > A B >

$$P(e^{Z_1} + e^{Z_2} < 0.5) = P(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < 0.5)$$

Z1

2

< ∃→

A B > A B >

$$P(e^{Z_1} + e^{Z_2} < 0.5) = P(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < 0.5)$$

Z1

글 > 글

< □ > < @ > < 注

$$P(e^{Z_1} + e^{Z_2} < 0.5) = P(e^{(Z_1 + Z_2)/\sqrt{2}} + e^{(Z_1 - Z_2)/\sqrt{2}} < 0.5)$$

Dingeç, Hörmann

May 24, 2018 24 / 40

э

э

<20 > < 3

CMC or IS?

- Simple algebra shows that variance of mean shift IS is greater than (or equal to) the variance of CMC using the same mean shift as direction.
- Numerical Results for CDF: Sum of d = 10 independent lognormals, $\sigma_k^2 = k, v_k = k - d$ for $k = 1, \dots, d$. Sample size: $n = 10^6$

	IS-OPT		CMC-OPT		
γ	Estimate	RE(%)	Estimate	RE(%)	VRF
1	1.25E-01	0.23	1.25E-01	0.11	4.7
1E-01	2.75E-03	0.44	2.73E-03	0.19	5.2
1E-02	7.05E-07	1.03	7.08E-07	0.39	6.9
1E-03	8.90E-14	3.31	8.72E-14	0.88	14.0
1E-04	9.50E-26	5.35	1.03E-25	1.88	8.1
1E-05	1.06E-43	12.10	1.06E-43	3.59	11.4
1E-06	5.42E-68	25.15	4.50E-68	5.63	19.9

Slow-down factor ≈ 6

PDF Estimation

• PDF : $f(\gamma) = \frac{dF}{d\gamma}$ Smooth simulation output with respect to γ Infinitesimal Perturbation Analysis: The order of derivative and expectation can be interchanged if estimator is smooth.

.

PDF Estimation

- PDF : $f(\gamma) = \frac{dF}{d\gamma}$ Smooth simulation output with respect to γ Infinitesimal Perturbation Analysis: The order of derivative and expectation can be interchanged if estimator is smooth.
- PDF estimator

$$\frac{\mathrm{d}}{\mathrm{d}\gamma} \mathbf{E} \left[\mathbf{1}_{\{S(Z) < \gamma\}} \right] = \frac{\mathrm{d}}{\mathrm{d}\gamma} \mathbf{E} \left[\mathbf{E} \left[\mathbf{1}_{\{S(Z) < \gamma\}} \left| Z_2, \dots, Z_d \right] \right] \\ = \mathbf{E} \left[\frac{\mathrm{d}}{\mathrm{d}\gamma} \mathbf{E} \left[\mathbf{1}_{\{S(Z) < \gamma\}} \left| Z_2, \dots, Z_d \right] \right]$$

.

• Sum of IID lognormals: $X_i \sim N(\nu, \sigma^2)$, for i = 1, ..., d and $Cov(X_i, X_j) = 0$ for $i \neq j$

(日) (四) (日) (日) (日)

- Sum of IID lognormals: $X_i \sim N(\nu, \sigma^2)$, for i = 1, ..., d and $Cov(X_i, X_j) = 0$ for $i \neq j$
- The CMC estimator simplifies to

$$\Phi\left[\frac{\log(\gamma/d)-\nu}{\sigma/\sqrt{d}}-\frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{d}\sum_{i=1}^{d}e^{\sigma\sum_{j=2}^{d}A_{ij}Z_{j}}\right)\right]$$

- Sum of IID lognormals: $X_i \sim N(v, \sigma^2)$, for i = 1, ..., d and $Cov(X_i, X_j) = 0$ for $i \neq j$
- The CMC estimator simplifies to

$$\Phi\left[\frac{\log(\gamma/d)-\nu}{\sigma/\sqrt{d}}-\frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{d}\sum_{i=1}^{d}e^{\sigma\sum_{j=2}^{d}A_{ij}Z_{j}}\right)\right]$$

• The first column of orthonormal matrix A is $\frac{1}{\sqrt{d}}(1,...,1)$

• If d = 2 or a multiple of 4, a Hadamard matrix can be used $A = \frac{1}{\sqrt{d}}H$

• If d = 2 or a multiple of 4, a Hadamard matrix can be used $A = \frac{1}{\sqrt{d}}H$ • For d = 2,

$$H = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$$

If d = 2 or a multiple of 4, a Hadamard matrix can be used A = ¹/_{√d}H
For d = 2,

$$H = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$$

• For d = 4,

(日) (四) (日) (日) (日)

• If d = 2 or a multiple of 4, a Hadamard matrix can be used $A = \frac{1}{\sqrt{d}}H$ • For d = 2,

$$H = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$$

- CMC estimator for d = 2 or a multiple of 4

$$\hat{\ell} = \Phi\left(\frac{\log\left(\frac{\gamma}{d}\right) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}Z_{j}}\right]\right)$$

Dingeç, Hörmann

• • = • • =

If d = 2 or a multiple of 4, a Hadamard matrix can be used A = ¹/_{√d}H
For d = 2,

$$H = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$$

- CMC estimator for d = 2 or a multiple of 4

$$\hat{\ell} = \Phi\left(\frac{\log\left(\frac{\gamma}{d}\right) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}Z_{j}}\right]\right)$$

• Logarithmically efficient

$$\lim_{\gamma \to 0} \frac{\log \mathbb{E}\left[\hat{\ell}^2\right]}{\log \mathbb{E}\left[\hat{\ell}\right]} = 2.$$

(日) (四) (日) (日) (日)

• The multivariate optimal IS density of (Z_2, \ldots, Z_d) is

$$g(z) \propto \Phi\left[\frac{\log(\gamma/d) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}z_{j}}\right)\right]e^{-\frac{1}{2}\sum_{j=2}^{d}z_{j}^{2}}$$

(日) (四) (三) (三)

• The multivariate optimal IS density of (Z_2, \ldots, Z_d) is

$$g(z) \propto \Phi\left[\frac{\log(\gamma/d) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}z_{j}}\right)\right]e^{-\frac{1}{2}\sum_{j=2}^{d}z_{j}^{2}}$$

• The *j*th one-dimensional conditional density is

$$g_{j}(z) \propto \Phi\left[\frac{\log(\gamma/d) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{d}\left[e^{\frac{\sigma}{\sqrt{d}}H_{1j}z} + \dots + e^{\frac{\sigma}{\sqrt{d}}H_{dj}z}\right]\right)\right]\phi(z)$$
$$= \Phi\left[\frac{\log(\gamma/d) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\left(\frac{1}{2}\left[e^{\frac{\sigma}{\sqrt{d}}z} + e^{-\frac{\sigma}{\sqrt{d}}z}\right]\right)\right]\phi(z)$$
$$= \Phi\left(\frac{\log(\gamma/d) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\cosh\left[\frac{\sigma}{\sqrt{d}}z\right]\right)\phi(z)$$

Dingeç, Hörmann

э

• Our idea is to use $\prod_{j=2}^{d} g(z_j)$ as an approximation of multivariate optimal IS density $g(z_2, \dots, z_d)$

- Our idea is to use $\prod_{j=2}^d g(z_j)$ as an approximation of multivariate optimal IS density $g(z_2,\ldots,z_d)$
- Random variate generation from one dimensional density $g_j(z)$ PINV (Polynomial Inversion), TDR (Transformed density rejection)

- Our idea is to use $\prod_{j=2}^d g(z_j)$ as an approximation of multivariate optimal IS density $g(z_2,\ldots,z_d)$
- Random variate generation from one dimensional density $g_j(z)$ PINV (Polynomial Inversion), TDR (Transformed density rejection)
- The CMC+IS estimator is

$$\mu^{d-1} \frac{\Phi\left(\frac{\log\left(\frac{\gamma}{d}\right)-\nu}{\sigma/\sqrt{d}}-\frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}Z_{j}}\right]\right)}{\prod_{j=2}^{d}\Phi\left(\frac{\log\left(\frac{\gamma}{d}\right)-\nu}{\sigma/\sqrt{d}}-\frac{\sqrt{d}}{\sigma}\log\cosh\left[\frac{\sigma}{\sqrt{d}}Z_{j}\right]\right)}, \quad Z_{j} \sim g, \ j = 2, \dots, d,$$

where

$$\mu \equiv \int_{-\infty}^{+\infty} \Phi\left(\frac{\log\left(\frac{\gamma}{d}\right) - \nu}{\sigma/\sqrt{d}} - \frac{\sqrt{d}}{\sigma}\log\cosh\left[\frac{\sigma}{\sqrt{d}}z\right]\right) \phi(z) dz$$

• Moreover, since $log cosh(\cdot)$ is an even function, antithetic variates (AV) can be used easily

$$\mu^{d-1} \frac{1}{\prod_{j=2}^{d} \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log \cosh\left[\frac{\sigma}{\sqrt{d}}Z_{j}\right]\right)} \times \frac{1}{2} \left\{ \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}Z_{j}}\right]\right) + \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d}\sum_{i=1}^{d}e^{-\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d}H_{ij}Z_{j}}\right]\right) \right\}$$

where $Z_j \sim g, \ j = 2, \dots, d$, and

$$t = \frac{\log\left(\frac{\gamma}{d}\right) - \nu}{\sigma/\sqrt{d}}$$

3

(日) (四) (日) (日) (日)

• We propose to use the same estimator even for the case that *d* is not a multiple of 4

$$\mu^{d-1} \frac{1}{\prod_{j=2}^{d} \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log \cosh\left[\frac{\sigma}{\sqrt{d}}Z_{j}\right]\right)} \times \frac{1}{2} \left\{ \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d}\sum_{i=1}^{d} e^{\sigma\sum_{j=2}^{d}A_{ij}Z_{j}}\right]\right) + \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d}\sum_{i=1}^{d} e^{-\sigma\sum_{j=2}^{d}A_{ij}Z_{j}}\right]\right) \right\}$$

Image: Image:

Numerical results

$$d = 5, \sigma = 1, \nu = \log(1/d), n = 10^5,$$

		CMC+IS			CMC+IS+AV			
d	γ	Estimate	RE (%)	VRF	Estimate	RE (%)	VRF	VRF-Total
5	0.5	1.61E-02	0.13	17.6	1.61E-02	0.04	11.0	194
	0.4	4.50E-03	0.13	21.3	4.50E-03	0.04	11.0	236
	0.3	6.36E-04	0.14	25.9	6.35E-04	0.05	6.7	172
	0.2	2.16E-05	0.15	31.6	2.16E-05	0.05	10.7	339
	0.1	1.17E-08	0.15	51.0	1.17E-08	0.05	7.5	382
10	0.7	1.52E-02	0.21	11.1	1.53E-02	0.11	3.9	43
	0.6	4.52E-03	0.21	14.0	4.52E-03	0.10	4.9	68
	0.5	8.34E-04	0.22	17.9	8.34E-04	0.09	6.4	115
	0.4	7.20E-05	0.24	21.9	7.19E-05	0.08	8.6	189
	0.3	1.60E-06	0.25	31.3	1.60E-06	0.09	7.7	242

Implementation using PINV is about 30 times slower than pure CMC. Speed-up is possible if TDR is used

э

Why is AV useful?

• Let's consider the simulation output of CMC estimator as function of $Z = (Z_2, \ldots, Z_d) \sim N(0, I_{d-1})$

$$q(Z) \equiv \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} A_{ij} Z_{j}}\right]\right)$$

Why is AV useful?

• Let's consider the simulation output of CMC estimator as function of $Z = (Z_2, \ldots, Z_d) \sim N(0, I_{d-1})$

$$q(Z) \equiv \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d}\sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}}\sum_{j=2}^{d} A_{ij}Z_{j}}\right]\right)$$

AV estimator

$$q_{\rm AV}(Z) = \frac{1}{2}[q(Z) + q(-Z)]$$

Why is AV useful?

• Let's consider the simulation output of CMC estimator as function of $Z = (Z_2, \ldots, Z_d) \sim N(0, I_{d-1})$

$$q(Z) \equiv \Phi\left(t - \frac{\sqrt{d}}{\sigma} \log\left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} A_{ij} Z_j}\right]\right)$$

AV estimator

$$q_{\rm AV}(Z) = \frac{1}{2}[q(Z) + q(-Z)]$$

• The contour plots of q(Z) and $q_{\rm AV}(Z)$ for $d=3, \sigma=1, \nu=\log(1/3)$, and $\gamma=0.4$

The contour plot of $q(Z_2, Z_3)$

Dingeç, Hörmann

< ∃→ May 24, 2018 35 / 40

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The contour plot of $q_{AV}(Z_2, Z_3)$

Dingeç, Hörmann

36 / 40 May 24, 2018

▲ 同 ▶ ▲ 目

э

• Let's write the simulation output as a function of the radius R and the direction $\Theta = (\Theta_2, \dots, \Theta_d) \in \mathbb{S}^{d-2}$

$$Q(R,\Theta) \equiv q(R\Theta) = \Phi\left(t - \frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}R\sum_{j=2}^{d}A_{ij}\Theta_{j}}\right]\right)$$

and

$$Q_{\rm AV}(R,\Theta) = \frac{1}{2} [Q(R,\Theta) + Q(R,-\Theta)] = \frac{1}{2} [q(R\Theta) + q(-R\Theta)]$$

• Let's write the simulation output as a function of the radius R and the direction $\Theta = (\Theta_2, \dots, \Theta_d) \in \mathbb{S}^{d-2}$

$$Q(R,\Theta) \equiv q(R\Theta) = \Phi\left(t - \frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^{d}e^{\frac{\sigma}{\sqrt{d}}R\sum_{j=2}^{d}A_{ij}\Theta_{j}}\right]\right)$$

and

$$Q_{\rm AV}(R,\Theta) = \frac{1}{2}[Q(R,\Theta) + Q(R,-\Theta)] = \frac{1}{2}[q(R\Theta) + q(-R\Theta)]$$

• The best possible method to reduce the variance coming from *R* is CMC

$$\mathbb{E}\left[Q(R,\Theta)|\Theta\right] = \int_0^\infty \Phi\left(t - \frac{\sqrt{d}}{\sigma}\log\left[\frac{1}{d}\sum_{i=1}^d e^{\frac{\sigma}{\sqrt{d}}r\sum_{j=2}^d A_{ij}\Theta_j}\right]\right) f_R(r) \,\mathrm{d}r$$

However, it is difficult calculate the integral for each sample of Θ .

• Instead, an IS can be used by changing the distribution of R

$$Q(R,\Theta)\frac{f(R)}{g(R)}, \qquad R \sim g(R)$$

• Instead, an IS can be used by changing the distribution of R

$$Q(R,\Theta)\frac{f(R)}{g(R)}, \qquad R \sim g(R)$$

• In progress:

Finding a good IS density for RRandom variate generation from that density

• A simple CMC method for CDF of sum of lognormals

Image: A math a math

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator

- (E) - (

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV
- In-progress: IS for radius

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV
- In-progress: IS for radius
- Possible extension: Sum of log-spherical random variables

Thank You