Evaluating CDF and PDF of the Sum of Lognormals by Monte Carlo Simulation

Kemal Dinçer Dingeç ${ }^{1}$ Wolfgang Hörmann ${ }^{2}$

${ }^{1}$ Department of Industrial Engineering, Altınbaș University, İstanbul, Turkey
${ }^{2}$ Department of Industrial Engineering, Boğaziçi University, İstanbul, Turkey
May 24, 2018
Research Seminar of Institute for Statistics and Mathematics, WU Wien

Outline

- Problem Definition: Sum of Lognormals
- Efficient Monte Carlo simulation of the cumulative distribution function (CDF) of sum of lognormals
- Simulation of probability density function (PDF)
- Sum of i.i.d. lognormals
- Conclusions and possible extensions

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed
- Examples:

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed
- Examples:
- Finance: Returns of financial assets in a portfolio

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed
- Examples:
- Finance: Returns of financial assets in a portfolio
- Stochastic Activity Networks: Arc times in a path

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed
- Examples:
- Finance: Returns of financial assets in a portfolio
- Stochastic Activity Networks: Arc times in a path
- Wireless Netwoks (many papers on sum of lognormals)

Problem Definiton

- Let's assume $X_{i} \sim N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$ with possibly non-zero correlations $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\rho_{i j}$
- Sum of normals: $\left(\sum_{i=1}^{d} X_{i}\right) \sim N\left(v_{S}, \sigma_{S}^{2}\right)$
- Lognormal random variables: $e^{X_{i}} \sim L N\left(v_{i}, \sigma_{i}^{2}\right), i=1, \ldots, d$
- Positive
- Skewed
- Examples:
- Finance: Returns of financial assets in a portfolio
- Stochastic Activity Networks: Arc times in a path
- Wireless Netwoks (many papers on sum of lognormals)
- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$ for some small $\gamma>0$.

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
- $\sum_{i=1}^{d} e^{X_{i}} \sim$?

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
- $\sum_{i=1}^{d} e^{X_{i}} \sim$?
- No closed formula for

CDF: $F(\gamma)=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$ PDF: $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
- $\sum_{i=1}^{d} e^{X_{i}} \sim$?
- No closed formula for

CDF: $F(\gamma)=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$ PDF: $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

- Numerical methods

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
- $\sum_{i=1}^{d} e^{X_{i}} \sim$?
- No closed formula for

CDF: $F(\gamma)=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$ PDF: $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

- Numerical methods
- Approximations

Problem Definiton

- $P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
- $\sum_{i=1}^{d} e^{X_{i}} \sim$?
- No closed formula for

CDF: $F(\gamma)=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)$
PDF: $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

- Numerical methods
- Approximations
- Monte Carlo simulation

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$
- The estimator: $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$
- The estimator: $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$
- To quantify the error $\bar{Y}-\theta$:

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$
- The estimator: $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$
- To quantify the error $\bar{Y}-\theta$:
- Central Limit Theorem: $\frac{\bar{Y}-\theta}{s / \sqrt{n}} \Rightarrow N(0,1)$ as $n \rightarrow \infty$.

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$
- The estimator: $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$
- To quantify the error $\bar{Y}-\theta$:
- Central Limit Theorem: $\frac{\bar{Y}-\theta}{s / \sqrt{n}} \Rightarrow N(0,1)$ as $n \rightarrow \infty$.
- Large sample $100(1-\alpha) \%$ Confidence Interval:

$$
\bar{Y} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $z_{\alpha / 2}=\Phi^{-1}(1-\alpha / 2)$ and $\Phi(\cdot)$ is the CDF of $N(0,1)$

Monte Carlo (MC) Method: General Principles

- Estimation of an unknown parameter: $\theta=\mathrm{E}[Y]$
- Generation of i.i.d. sample $Y_{1}, Y_{2}, \ldots, Y_{n}$
- The estimator: $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$
- To quantify the error $\bar{Y}-\theta$:
- Central Limit Theorem: $\frac{\bar{Y}-\theta}{s / \sqrt{n}} \Rightarrow N(0,1)$ as $n \rightarrow \infty$.
- Large sample $100(1-\alpha) \%$ Confidence Interval:

$$
\bar{Y} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $z_{\alpha / 2}=\Phi^{-1}(1-\alpha / 2)$ and $\Phi(\cdot)$ is the CDF of $N(0,1)$

- Probabilistic error bound: $z_{\alpha / 2} \frac{s}{\sqrt{n}}$

Monte Carlo (MC) Method: General Principles

- Tail probability $p=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)=\mathrm{E}\left[\mathbf{1}_{\left\{\sum_{i=1}^{d} e^{x_{i}}<\gamma\right\}}\right]$

Monte Carlo (MC) Method: General Principles

- Tail probability $p=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)=\mathrm{E}\left[\mathbf{1}_{\left\{\sum_{i=1}^{d} e^{X_{i}}<\gamma\right\}}\right]$
- The standard error $\sqrt{p(1-p) / n}$

Monte Carlo (MC) Method: General Principles

- Tail probability $p=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)=\mathrm{E}\left[\mathbf{1}_{\left\{\sum_{i=1}^{d} e^{X_{i}}<\gamma\right\}}\right]$
- The standard error $\sqrt{p(1-p) / n}$
- Relative error $\frac{\sqrt{p(1-p) / n}}{p}=O(1 / \sqrt{p n})$

Monte Carlo (MC) Method: General Principles

- Tail probability $p=P\left(\sum_{i=1}^{d} e^{X_{i}}<\gamma\right)=\mathrm{E}\left[\mathbf{1}_{\left\{\sum_{i=1}^{d} e^{X_{i}}<\gamma\right\}}\right]$
- The standard error $\sqrt{p(1-p) / n}$
- Relative error $\frac{\sqrt{p(1-p) / n}}{p}=O(1 / \sqrt{p n})$
- Rare-event setting: For small p, naive Monte Carlo becomes impractical.

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 0.23%

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 0.23%
- For $\gamma=0.1$,

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 0.23%
- For $\gamma=0.1$,
- The probability is $p=5.6 e-6$

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 0.23%
- For $\gamma=0.1$,
- The probability is $p=5.6 e-6$
- For $n=100$, the relative error of naive Mote Carlo is 4680%

Naive Monte Carlo

- A simple example:

$$
p=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)
$$

for two i.i.d standard normals $Z_{i} \sim N(0,1)$

- For $\gamma=0.5$,
- The probability is $p=0.15$
- For $n=100$, the relative error of naive Mote Carlo is 23%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 0.23%
- For $\gamma=0.1$,
- The probability is $p=5.6 e-6$
- For $n=100$, the relative error of naive Mote Carlo is 4680%
- For $n=1,000,000$, the relative error of naive Mote Carlo is 46.80%

Importance Sampling

- Variance reduction method: Importance Sampling (IS)

Importance Sampling

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$
q(Z), \quad Z \sim f
$$

Example: $q(Z)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$ and $f(\cdot)$ is bivariate standard normal density.

Importance Sampling

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$
q(Z), \quad Z \sim f
$$

Example: $q(Z)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$ and $f(\cdot)$ is bivariate standard normal density.

- IS estimator

$$
q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim g
$$

Importance Sampling

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$
q(Z), \quad Z \sim f
$$

Example: $q(Z)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$ and $f(\cdot)$ is bivariate standard normal density.

- IS estimator

$$
q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim g
$$

- A well-known IS method is Mean Shifting:

Importance Sampling

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$
q(Z), \quad Z \sim f
$$

Example: $q(Z)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$ and $f(\cdot)$ is bivariate standard normal density.

- IS estimator

$$
q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim g
$$

- A well-known IS method is Mean Shifting:
- Change the distribution of multi-normal vector $X=\left(X_{1}, \ldots, X_{d}\right)$ by adding a shift μ.

Importance Sampling

- Variance reduction method: Importance Sampling (IS)
- Naive estimator

$$
q(Z), \quad Z \sim f
$$

Example: $q(Z)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$ and $f(\cdot)$ is bivariate standard normal density.

- IS estimator

$$
q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim g
$$

- A well-known IS method is Mean Shifting:
- Change the distribution of multi-normal vector $X=\left(X_{1}, \ldots, X_{d}\right)$ by adding a shift μ.
- Multiply the output with Likelihood Ratio

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)$

IS estimator

- Let

$$
S(Z) \equiv \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} \Sigma_{j=1}^{i} L_{i j} Z_{j}}
$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0, I)$.
(L is the Cholesky factor of the correlation matrix of X)

IS estimator

- Let

$$
S(Z) \equiv \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} \sum_{j=1}^{i} L_{i j} Z_{j}}
$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0, I)$.
(L is the Cholesky factor of the correlation matrix of X)

- The simulation output is $q(z)=\mathbf{1}_{\{S(z) \leq \gamma\}}$ for some small $\gamma>0$.

IS estimator

- Let

$$
S(Z) \equiv \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} \sum_{j=1}^{i} L_{i j} Z_{j}}
$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0, I)$.
(L is the Cholesky factor of the correlation matrix of X)

- The simulation output is $q(z)=\mathbf{1}_{\{S(z) \leq \gamma\}}$ for some small $\gamma>0$.
- Naive estimator

$$
q(Z), \quad Z \sim N(0, I)
$$

IS estimator

- Let

$$
S(Z) \equiv \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} L_{j=1}^{i} L_{i j} Z_{j}}
$$

denote the lognormal sum as a function of standard normal vector $Z \sim N(0, I)$.
(L is the Cholesky factor of the correlation matrix of X)

- The simulation output is $q(z)=\mathbf{1}_{\{S(z) \leq \gamma\}}$ for some small $\gamma>0$.
- Naive estimator

$$
q(Z), \quad Z \sim N(0, I)
$$

- IS estimator

$$
q(Z) \frac{f(Z)}{g(Z)}, \quad Z \sim N(\mu, I)
$$

$f(\cdot)$ is the density of $N(0, I), g(\cdot)$ is the density of $N(\mu, I)$

Optimal mean shift

- Optimal (zero-variance) IS density is proportional to $q(z) f(z)$

Optimal mean shift

- Optimal (zero-variance) IS density is proportional to $q(z) f(z)$
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$
\max _{z}[q(z) f(z)]=\max _{z}\left[\mathbf{1}_{\{S(z) \leq \gamma\}} e^{-\sum_{i=1}^{d} z_{i}^{2}}\right]
$$

Optimal mean shift

- Optimal (zero-variance) IS density is proportional to $q(z) f(z)$
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$
\max _{z}[q(z) f(z)]=\max _{z}\left[\mathbf{1}_{\{S(z) \leq \gamma\}} e^{-\sum_{i=1}^{d} z_{i}^{2}}\right]
$$

- which is equivalent to

$$
\begin{aligned}
(\mathrm{P} 1) \quad \min & \sum_{i=1}^{d} z_{i}^{2} \\
\text { s.t. } & \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} \sum_{j=1}^{i} L_{i j} z_{j}}=\gamma
\end{aligned}
$$

Optimal mean shift

- Optimal (zero-variance) IS density is proportional to $q(z) f(z)$
- The optimal mean shift of IS is the mode of optimal (zero-variance) IS density. It is obtained by solving

$$
\max _{z}[q(z) f(z)]=\max _{z}\left[\mathbf{1}_{\{S(z) \leq \gamma\}} e^{-\sum_{i=1}^{d} z_{i}^{2}}\right]
$$

- which is equivalent to

$$
\begin{array}{rll}
\text { (P1) } \quad \min & \sum_{i=1}^{d} z_{i}^{2} \\
\text { s.t. } & \sum_{i=1}^{d} e^{v_{i}+\sigma_{i} \sum_{j=1}^{i} L_{i j} z_{j}}=\gamma
\end{array}
$$

- In this problem, the distance between the origin and the set $\{z \mid S(z)=\gamma\}$ is minimized.

Finding optimal mean shift

- Sak et al. (2010), A numerical method for the solution of (P1)

Finding optimal mean shift

- Sak et al. (2010), A numerical method for the solution of (P1)
- Cont and Tankov (2013) Finding a shift μ that guarantees asymptotic optimality (logarithmic efficiency)

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$
- Naive estimator $q\left(Z_{1}, Z_{2}\right)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$
- Naive estimator $q\left(Z_{1}, Z_{2}\right)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$
- CMC estimator:

$$
\mathrm{E}\left[q\left(Z_{1}, Z_{2}\right) \mid Z_{2}\right]=\mathrm{E}\left[\mathbf{1}_{\left\{e^{Z_{1}}+e^{\left.Z_{2}<\gamma\right\}}\right.} \mid Z_{2}\right]=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma \mid Z_{2}\right)
$$

(Z_{1} is smoothed out)

Condiitional Mote Carlo

- Our new Idea: Using mean shift of IS as a direction for Conditional Monte Carlo (CMC)
- Main idea of CMC: Using conditional expectation as an estimator
- Example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$
- Naive estimator $q\left(Z_{1}, Z_{2}\right)=\mathbf{1}_{\left\{e^{Z_{1}}+e^{Z_{2}}<\gamma\right\}}$
- CMC estimator:

$$
\mathrm{E}\left[q\left(Z_{1}, Z_{2}\right) \mid Z_{2}\right]=\mathrm{E}\left[\mathbf{1}_{\left\{e^{Z_{1}}+e^{\left.Z_{2}<\gamma\right\}}\right.} \mid Z_{2}\right]=P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma \mid Z_{2}\right)
$$

(Z_{1} is smoothed out)

$$
\begin{aligned}
\operatorname{Var}\left(q\left(Z_{1}, Z_{2}\right)\right) & =\operatorname{Var}\left(\mathrm{E}\left[q\left(Z_{1}, Z_{2}\right) \mid Z_{2}\right]\right)+\mathrm{E}\left[\operatorname{Var}\left(q\left(Z_{1}, Z_{2}\right) \mid Z_{2}\right]\right] \\
& \leq \operatorname{Var}\left(\mathrm{E}\left[q\left(Z_{1}, Z_{2}\right) \mid Z_{2}\right]\right)
\end{aligned}
$$

CMC always yields some variance reduction

NEW IDEA

- Lognormal sum

$$
S(\mathbf{Z})=\sum_{i=1}^{d} e^{v_{i}+\sigma_{i}(\mathbf{L} \mathbf{Z})_{i}}
$$

NEW IDEA

- Lognormal sum

$$
S(\mathbf{Z})=\sum_{i=1}^{d} e^{v_{i}+\sigma_{i}(\mathbf{L} \mathbf{Z})_{i}}
$$

- Normal distribution is spherical: $Z \stackrel{d}{=} A Z$ for any orthonormal rotation matrix A.

$$
S(\mathbf{Z})=\sum_{i=1}^{d} e^{v_{i}+\sigma_{i}(\mathbf{L A Z})_{i}}
$$

NEW IDEA

- Lognormal sum

$$
S(\mathbf{Z})=\sum_{i=1}^{d} e^{v_{i}+\sigma_{i}(\mathbf{L} \mathbf{Z})_{i}}
$$

- Normal distribution is spherical: $Z \stackrel{d}{=} A Z$ for any orthonormal rotation matrix A.

$$
S(\mathbf{Z})=\sum_{i=1}^{d} e^{v_{i}+\sigma_{i}(\mathbf{L A Z})_{i}}
$$

- Our proposal: The first column of A is selected as

$$
A_{1}=\mu /\|\mu\|
$$

μ is the mean shift of IS.

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right] & =\int_{-\infty}^{+\infty} \mathbf{1}_{\left\{S\left(z_{1}, Z_{2}, \ldots, Z_{d}\right)<\gamma\right\}} \phi\left(z_{1}\right) \mathrm{d} z_{1} \\
& =\Phi\left(r\left(Z_{2}, \ldots, Z_{d}\right)\right)
\end{aligned}
$$

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right] & =\int_{-\infty}^{+\infty} \mathbf{1}_{\left\{S\left(z_{1}, Z_{2}, \ldots, Z_{d}\right)<\gamma\right\}} \phi\left(z_{1}\right) \mathrm{d} z_{1} \\
& =\Phi\left(r\left(Z_{2}, \ldots, Z_{d}\right)\right)
\end{aligned}
$$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ for z_{1}.

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right] & =\int_{-\infty}^{+\infty} \mathbf{1}_{\left\{S\left(z_{1}, Z_{2}, \ldots, Z_{d}\right)<\gamma\right\}} \boldsymbol{\phi}\left(z_{1}\right) \mathrm{d} z_{1} \\
& =\Phi\left(r\left(Z_{2}, \ldots, Z_{d}\right)\right)
\end{aligned}
$$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ for z_{1}.
- If all correlations are nonnegative, $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ is monotone wrt z_{1} and so, there is a single root.

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right] & =\int_{-\infty}^{+\infty} \mathbf{1}_{\left\{S\left(z_{1}, Z_{2}, \ldots, Z_{d}\right)<\gamma\right\}} \phi\left(z_{1}\right) \mathrm{d} z_{1} \\
& =\Phi\left(r\left(Z_{2}, \ldots, Z_{d}\right)\right)
\end{aligned}
$$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ for z_{1}.
- If all correlations are nonnegative, $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ is monotone wrt z_{1} and so, there is a single root.
- Newton's method can be used for root calculation. Derivative of $S(\cdot)$ wrt z_{1} is also available in closed form

NEW IDEA

- After rotation, Z_{1} becomes the most important variable. It is smoothed out by taking the conditional expectation.
- The CMC estimator is

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right] & =\int_{-\infty}^{+\infty} \mathbf{1}_{\left\{S\left(z_{1}, Z_{2}, \ldots, Z_{d}\right)<\gamma\right\}} \boldsymbol{\phi}\left(z_{1}\right) \mathrm{d} z_{1} \\
& =\Phi\left(r\left(Z_{2}, \ldots, Z_{d}\right)\right)
\end{aligned}
$$

- $\phi(\cdot)$ is the PDF of standard normal distribution $\Phi(\cdot)$ is the CDF of standard normal distribution $r(\cdot)$ is the root of $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ for z_{1}.
- If all correlations are nonnegative, $S\left(z_{1}, z_{2}, \ldots, z_{d}\right)-\gamma=0$ is monotone wrt z_{1} and so, there is a single root.
- Newton's method can be used for root calculation. Derivative of $S(\cdot)$ wrt z_{1} is also available in closed form
- The root r can be calculated in closed form for sum of i.i.d. lognormals.

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$

- Optimal mean shift $\mu=(\log (\gamma / 2), \log (\gamma / 2))$

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$

- Optimal mean shift $\mu=(\log (\gamma / 2), \log (\gamma / 2))$
- Orthonormal matrix

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$

- Optimal mean shift $\mu=(\log (\gamma / 2), \log (\gamma / 2))$
- Orthonormal matrix

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right) \\
& \quad=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<\gamma\right) \\
& \quad=\mathrm{E}\left[P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<\gamma \mid Z_{2}\right)\right] \\
& \quad=\mathrm{E}\left[\Phi\left(\sqrt{2} \log (\gamma / 2)-\sqrt{2} \log \left[\left(e^{Z_{2} / \sqrt{2}}+e^{-Z_{2} / \sqrt{2}}\right) / 2\right]\right)\right]
\end{aligned}
$$

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right)$

- Optimal mean shift $\mu=(\log (\gamma / 2), \log (\gamma / 2))$
- Orthonormal matrix

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& P\left(e^{Z_{1}}+e^{Z_{2}}<\gamma\right) \\
& \quad=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<\gamma\right) \\
& \quad=\mathrm{E}\left[P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<\gamma \mid Z_{2}\right)\right] \\
& \quad=\mathrm{E}\left[\Phi\left(\sqrt{2} \log (\gamma / 2)-\sqrt{2} \log \left[\left(e^{Z_{2} / \sqrt{2}}+e^{-Z_{2} / \sqrt{2}}\right) / 2\right]\right)\right]
\end{aligned}
$$

- CMC estimator: $\Phi\left(\sqrt{2} \log (\gamma / 2)-\sqrt{2} \log \left[\left(e^{Z_{2} / \sqrt{2}}+e^{-Z_{2} / \sqrt{2}}\right) / 2\right]\right)$

A simple example: $P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)$

A simple example:

$P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<0.5\right)$

A simple example:

$P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<0.5\right)$

A simple example:

$P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<0.5\right)$

A simple example:

$P\left(e^{Z_{1}}+e^{Z_{2}}<0.5\right)=P\left(e^{\left(Z_{1}+Z_{2}\right) / \sqrt{2}}+e^{\left(Z_{1}-Z_{2}\right) / \sqrt{2}}<0.5\right)$

CMC or IS?

- Simple algebra shows that variance of mean shift IS is greater than (or equal to) the variance of CMC using the same mean shift as direction.
- Numerical Results for CDF: Sum of $d=10$ independent lognormals, $\sigma_{k}^{2}=k, v_{k}=k-d$ for $k=1, \ldots, d$.
Sample size: $n=10^{6}$

	IS-OPT		CMC-OPT		
γ	Estimate	RE(\%)	Estimate	RE(\%)	VRF
1	$1.25 \mathrm{E}-01$	0.23	$1.25 \mathrm{E}-01$	0.11	4.7
$1 \mathrm{E}-01$	$2.75 \mathrm{E}-03$	0.44	$2.73 \mathrm{E}-03$	0.19	5.2
$1 \mathrm{E}-02$	$7.05 \mathrm{E}-07$	1.03	$7.08 \mathrm{E}-07$	0.39	6.9
$1 \mathrm{E}-03$	$8.90 \mathrm{E}-14$	3.31	$8.72 \mathrm{E}-14$	0.88	14.0
$1 \mathrm{E}-04$	$9.50 \mathrm{E}-26$	5.35	$1.03 \mathrm{E}-25$	1.88	8.1
$1 \mathrm{E}-05$	$1.06 \mathrm{E}-43$	12.10	$1.06 \mathrm{E}-43$	3.59	11.4
$1 \mathrm{E}-06$	$5.42 \mathrm{E}-68$	25.15	$4.50 \mathrm{E}-68$	5.63	19.9

Slow-down factor ≈ 6

PDF Estimation

- PDF : $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

Smooth simulation output with respect to γ Infinitesimal Perturbation Analysis: The order of derivative and expectation can be interchanged if estimator is smooth.

PDF Estimation

- PDF : $f(\gamma)=\frac{\mathrm{d} F}{\mathrm{~d} \gamma}$

Smooth simulation output with respect to γ Infinitesimal Perturbation Analysis: The order of derivative and expectation can be interchanged if estimator is smooth.

- PDF estimator

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \gamma} \mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}}\right] & =\frac{\mathrm{d}}{\mathrm{~d} \gamma} \mathrm{E}\left[\mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right]\right] \\
& =\mathrm{E}\left[\frac{\mathrm{~d}}{\mathrm{~d} \gamma} \mathrm{E}\left[\mathbf{1}_{\{S(Z)<\gamma\}} \mid Z_{2}, \ldots, Z_{d}\right]\right]
\end{aligned}
$$

IID case

- Sum of IID lognormals: $X_{i} \sim N\left(v, \sigma^{2}\right)$, for $i=1, \ldots, d$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$

IID case

- Sum of IID lognormals: $X_{i} \sim N\left(v, \sigma^{2}\right)$, for $i=1, \ldots, d$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$
- The CMC estimator simplifies to

$$
\Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{d} \sum_{i=1}^{d} e^{\sigma \sum_{j=2}^{d} A_{i j} Z_{j}}\right)\right]
$$

IID case

- Sum of IID lognormals: $X_{i} \sim N\left(v, \sigma^{2}\right)$, for $i=1, \ldots, d$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$
- The CMC estimator simplifies to

$$
\Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{d} \sum_{i=1}^{d} e^{\sigma \sum_{j=2}^{d} A_{i j} z_{j}}\right)\right]
$$

- The first column of orthonormal matrix A is $\frac{1}{\sqrt{d}}(1, \ldots, 1)$

IID case

- If $d=2$ or a multiple of 4 , a Hadamard matrix can be used $A=\frac{1}{\sqrt{d}} H$

IID case

- If $d=2$ or a multiple of 4 , a Hadamard matrix can be used $A=\frac{1}{\sqrt{d}} H$
- For $d=2$,

$$
H=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

IID case

- If $d=2$ or a multiple of 4 , a Hadamard matrix can be used $A=\frac{1}{\sqrt{d}} H$
- For $d=2$,

$$
H=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- For $d=4$,

$$
H=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

IID case

- If $d=2$ or a multiple of 4 , a Hadamard matrix can be used $A=\frac{1}{\sqrt{d}} H$
- For $d=2$,

$$
H=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- For $d=4$,

$$
H=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

- CMC estimator for $d=2$ or a multiple of 4

$$
\hat{\ell}=\Phi\left(\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \Sigma_{j=2}^{d} H_{i j} Z_{j}}\right]\right)
$$

IID case

- If $d=2$ or a multiple of 4 , a Hadamard matrix can be used $A=\frac{1}{\sqrt{d}} H$
- For $d=2$,

$$
H=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- For $d=4$,

$$
H=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

- CMC estimator for $d=2$ or a multiple of 4

$$
\hat{\ell}=\Phi\left(\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \Sigma_{j=2}^{d} H_{i j} Z_{j}}\right]\right)
$$

- Logarithmically efficient

$$
\lim _{\gamma \rightarrow 0} \frac{\log E\left[\hat{\ell}^{2}\right]}{\log E[\hat{\ell}]}=2
$$

IID case

- The multivariate optimal IS density of $\left(Z_{2}, \ldots, Z_{d}\right)$ is

$$
g(z) \propto \Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \Sigma_{j=2}^{d} H_{i j} z_{j}}\right)\right] e^{-\frac{1}{2} \sum_{j=2}^{d} z_{j}^{2}}
$$

IID case

- The multivariate optimal IS density of $\left(Z_{2}, \ldots, Z_{d}\right)$ is

$$
g(z) \propto \Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \Sigma_{j=2}^{d} H_{i j} z_{j}}\right)\right] e^{-\frac{1}{2} \sum_{j=2}^{d} z_{j}^{2}}
$$

- The j th one-dimensional conditional density is

$$
\begin{aligned}
g_{j}(z) & \propto \Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{d}\left[e^{\frac{\sigma}{\sqrt{d}} H_{1 j} z}+\cdots+e^{\frac{\sigma}{\sqrt{d}} H_{d j} z}\right]\right)\right] \phi(z) \\
& =\Phi\left[\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left(\frac{1}{2}\left[e^{\frac{\sigma}{\sqrt{d}} z}+e^{-\frac{\sigma}{\sqrt{d}} z}\right]\right)\right] \phi(z) \\
& =\Phi\left(\frac{\log (\gamma / d)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \cosh \left[\frac{\sigma}{\sqrt{d}} z\right]\right) \phi(z)
\end{aligned}
$$

IID case

- Our idea is to use $\prod_{j=2}^{d} g\left(z_{j}\right)$ as an approximation of multivariate optimal IS density $g\left(z_{2}, \ldots, z_{d}\right)$

IID case

- Our idea is to use $\prod_{j=2}^{d} g\left(z_{j}\right)$ as an approximation of multivariate optimal IS density $g\left(z_{2}, \ldots, z_{d}\right)$
- Random variate generation from one dimensional density $g_{j}(z)$ PINV (Polynomial Inversion), TDR (Transformed density rejection)

IID case

- Our idea is to use $\prod_{j=2}^{d} g\left(z_{j}\right)$ as an approximation of multivariate optimal IS density $g\left(z_{2}, \ldots, z_{d}\right)$
- Random variate generation from one dimensional density $g_{j}(z)$ PINV (Polynomial Inversion), TDR (Transformed density rejection)
- The CMC+IS estimator is

$$
\mu^{d-1} \frac{\Phi\left(\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} H_{i j} Z_{j}}\right]\right)}{\prod_{j=2}^{d} \Phi\left(\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \cosh \left[\frac{\sigma}{\sqrt{d}} Z_{j}\right]\right)}, \quad Z_{j} \sim g, j=2, \ldots, d,
$$

where

$$
\mu \equiv \int_{-\infty}^{+\infty} \Phi\left(\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}-\frac{\sqrt{d}}{\sigma} \log \cosh \left[\frac{\sigma}{\sqrt{d}} z\right]\right) \phi(z) \mathrm{d} z
$$

IID case

- Moreover, since $\log \cosh (\cdot)$ is an even function, antithetic variates (AV) can be used easily

$$
\begin{aligned}
& \mu^{d-1} \frac{1}{\prod_{j=2}^{d} \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \cosh \left[\frac{\sigma}{\sqrt{d}} Z_{j}\right]\right)} \\
& \quad \times \frac{1}{2}\left\{\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} H_{i j} Z_{j}}\right]\right)\right. \\
& \left.\quad+\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{-\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} H_{i j} Z_{j}}\right]\right)\right\}
\end{aligned}
$$

where $Z_{j} \sim g, j=2, \ldots, d$, and

$$
t=\frac{\log \left(\frac{\gamma}{d}\right)-v}{\sigma / \sqrt{d}}
$$

IID case

- We propose to use the same estimator even for the case that d is not a multiple of 4

$$
\begin{aligned}
& \mu^{d-1} \frac{1}{\prod_{j=2}^{d} \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \cosh \left[\frac{\sigma}{\sqrt{d}} Z_{j}\right]\right)} \\
& \quad \times \frac{1}{2}\left\{\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\sigma \sum_{j=2}^{d} A_{i j} Z_{j}}\right]\right)\right. \\
& \left.\quad+\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{-\sigma \sum_{j=2}^{d} A_{i j} Z_{j}}\right]\right)\right\}
\end{aligned}
$$

Numerical results

$$
d=5, \sigma=1, v=\log (1 / d), n=10^{5}
$$

	CMC+IS			CMC+IS+AV				
d	γ	Estimate	RE (\%)	VRF	Estimate	RE (\%)	VRF	VRF-Total
5	0.5	$1.61 \mathrm{E}-02$	0.13	17.6	$1.61 \mathrm{E}-02$	0.04	11.0	194
	0.4	$4.50 \mathrm{E}-03$	0.13	21.3	$4.50 \mathrm{E}-03$	0.04	11.0	236
	0.3	$6.36 \mathrm{E}-04$	0.14	25.9	$6.35 \mathrm{E}-04$	0.05	6.7	172
	0.2	$2.16 \mathrm{E}-05$	0.15	31.6	$2.16 \mathrm{E}-05$	0.05	10.7	339
	0.1	$1.17 \mathrm{E}-08$	0.15	51.0	$1.17 \mathrm{E}-08$	0.05	7.5	382
10	0.7	$1.52 \mathrm{E}-02$	0.21	11.1	$1.53 \mathrm{E}-02$	0.11	3.9	43
	0.6	$4.52 \mathrm{E}-03$	0.21	14.0	$4.52 \mathrm{E}-03$	0.10	4.9	68
	0.5	$8.34 \mathrm{E}-04$	0.22	17.9	$8.34 \mathrm{E}-04$	0.09	6.4	115
	0.4	$7.20 \mathrm{E}-05$	0.24	21.9	$7.19 \mathrm{E}-05$	0.08	8.6	189
	0.3	$1.60 \mathrm{E}-06$	0.25	31.3	$1.60 \mathrm{E}-06$	0.09	7.7	242

Implementation using PINV is about 30 times slower than pure CMC. Speed-up is possible if TDR is used

Why is AV useful?

- Let's consider the simulation output of CMC estimator as function of $Z=\left(Z_{2}, \ldots, Z_{d}\right) \sim N\left(0, I_{d-1}\right)$

$$
q(Z) \equiv \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} A_{i j} Z_{j}}\right]\right)
$$

Why is AV useful?

- Let's consider the simulation output of CMC estimator as function of $Z=\left(Z_{2}, \ldots, Z_{d}\right) \sim N\left(0, I_{d-1}\right)$

$$
q(Z) \equiv \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \Sigma_{j=2}^{d} A_{i j} Z_{j}}\right]\right)
$$

- AV estimator

$$
q_{\mathrm{AV}}(Z)=\frac{1}{2}[q(Z)+q(-Z)]
$$

Why is AV useful?

- Let's consider the simulation output of CMC estimator as function of $Z=\left(Z_{2}, \ldots, Z_{d}\right) \sim N\left(0, I_{d-1}\right)$

$$
q(Z) \equiv \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} \sum_{j=2}^{d} A_{i j} Z_{j}}\right]\right)
$$

- AV estimator

$$
q_{\mathrm{AV}}(Z)=\frac{1}{2}[q(Z)+q(-Z)]
$$

- The contour plots of $q(Z)$ and $q_{\mathrm{AV}}(Z)$ for $d=3, \sigma=1, v=\log (1 / 3)$, and $\gamma=0.4$

The contour plot of $q\left(Z_{2}, Z_{3}\right)$

The contour plot of $q_{\mathrm{AV}}\left(Z_{2}, Z_{3}\right)$

In progress: Reducing variance coming from the Radius

- Let's write the simulation output as a function of the radius R and the direction $\Theta=\left(\Theta_{2}, \ldots, \Theta_{d}\right) \in \mathbb{S}^{d-2}$

$$
Q(R, \Theta) \equiv q(R \Theta)=\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} R \sum_{j=2}^{d} A_{i j} \Theta_{j}}\right]\right)
$$

and

$$
Q_{\mathrm{AV}}(R, \Theta)=\frac{1}{2}[Q(R, \Theta)+Q(R,-\Theta)]=\frac{1}{2}[q(R \Theta)+q(-R \Theta)]
$$

In progress: Reducing variance coming from the Radius

- Let's write the simulation output as a function of the radius R and the direction $\Theta=\left(\Theta_{2}, \ldots, \Theta_{d}\right) \in \mathbb{S}^{d-2}$

$$
Q(R, \Theta) \equiv q(R \Theta)=\Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} R \sum_{j=2}^{d} A_{i j} \Theta_{j}}\right]\right)
$$

and

$$
Q_{\mathrm{AV}}(R, \Theta)=\frac{1}{2}[Q(R, \Theta)+Q(R,-\Theta)]=\frac{1}{2}[q(R \Theta)+q(-R \Theta)]
$$

- The best possible method to reduce the variance coming from R is CMC

$$
\mathrm{E}[Q(R, \Theta) \mid \Theta]=\int_{0}^{\infty} \Phi\left(t-\frac{\sqrt{d}}{\sigma} \log \left[\frac{1}{d} \sum_{i=1}^{d} e^{\frac{\sigma}{\sqrt{d}} r \sum_{j=2}^{d} A_{i j} \Theta_{j}}\right]\right) f_{R}(r) \mathrm{d} r
$$

However, it is difficult calculate the integral for each sample of Θ.

In progress: Reducing variance coming from the Radius

- Instead, an IS can be used by changing the distribution of R

$$
Q(R, \Theta) \frac{f(R)}{g(R)}, \quad R \sim g(R)
$$

In progress: Reducing variance coming from the Radius

- Instead, an IS can be used by changing the distribution of R

$$
Q(R, \Theta) \frac{f(R)}{g(R)}, \quad R \sim g(R)
$$

- In progress:

Finding a good IS density for R
Random variate generation from that density

Conclusions

- A simple CMC method for CDF of sum of lognormals

Conclusions

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator

Conclusions

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV

Conclusions

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV
- In-progress: IS for radius

Conclusions

- A simple CMC method for CDF of sum of lognormals
- PDF estimator: The derivative of CDF estimator
- IID case: Additional improvement by using IS and AV
- In-progress: IS for radius
- Possible extension: Sum of log-spherical random variables

Thank You

