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Problem Definiton

Let’s assume Xi ∼ N(νi,σ
2
i ), i = 1, . . . ,d with possibly non-zero

correlations Corr(Xi,Xj) = ρij

Sum of normals: (∑d
i=1 Xi)∼ N(νS,σ

2
S )

Lognormal random variables: eXi ∼ LN(νi,σ
2
i ), i = 1, . . . ,d

I Positive
I Skewed

Examples:

I Finance: Returns of financial assets in a portfolio
I Stochastic Activity Networks: Arc times in a path
I Wireless Netwoks (many papers on sum of lognormals)

P(∑d
i=1 eXi < γ) for some small γ > 0.
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Problem Definiton

P(∑d
i=1 eXi < γ)

∑
d
i=1 eXi ∼?

No closed formula for
CDF: F(γ) = P(∑d

i=1 eXi < γ)
PDF: f (γ) = dF

dγ

Numerical methods

I Approximations

I Monte Carlo simulation
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Dingeç, Hörmann Sum of Lognormals May 24, 2018 4 / 40



Problem Definiton

P(∑d
i=1 eXi < γ)

∑
d
i=1 eXi ∼?

No closed formula for
CDF: F(γ) = P(∑d

i=1 eXi < γ)
PDF: f (γ) = dF

dγ

Numerical methods
I Approximations

I Monte Carlo simulation

Dingeç, Hörmann Sum of Lognormals May 24, 2018 4 / 40



Problem Definiton

P(∑d
i=1 eXi < γ)

∑
d
i=1 eXi ∼?

No closed formula for
CDF: F(γ) = P(∑d

i=1 eXi < γ)
PDF: f (γ) = dF

dγ

Numerical methods
I Approximations

I Monte Carlo simulation
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Monte Carlo (MC) Method: General Principles

Estimation of an unknown parameter: θ = E [Y]

Generation of i.i.d. sample Y1,Y2, . . . ,Yn

The estimator: Ȳ = ∑
n
i=1 Yi
n

To quantify the error Ȳ−θ :

I Central Limit Theorem: Ȳ−θ

s/
√

n ⇒ N(0,1) as n→ ∞.

I Large sample 100(1−α)% Confidence Interval:

Ȳ± zα/2
s√
n

where zα/2 = Φ−1(1−α/2) and Φ(·) is the CDF of N(0,1)

I Probabilistic error bound: zα/2
s√
n
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Dingeç, Hörmann Sum of Lognormals May 24, 2018 5 / 40



Monte Carlo (MC) Method: General Principles

Estimation of an unknown parameter: θ = E [Y]

Generation of i.i.d. sample Y1,Y2, . . . ,Yn

The estimator: Ȳ = ∑
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I Central Limit Theorem: Ȳ−θ
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Monte Carlo (MC) Method: General Principles

Tail probability p = P
(
∑

d
i=1 eXi < γ

)
= E

[
1{∑d

i=1 eXi<γ}

]

The standard error
√

p(1−p)/n

Relative error

√
p(1−p)/n

p = O(1/
√

pn)

Rare-event setting: For small p, naive Monte Carlo becomes
impractical.

Dingeç, Hörmann Sum of Lognormals May 24, 2018 6 / 40



Monte Carlo (MC) Method: General Principles

Tail probability p = P
(
∑

d
i=1 eXi < γ

)
= E

[
1{∑d

i=1 eXi<γ}

]
The standard error

√
p(1−p)/n

Relative error

√
p(1−p)/n

p = O(1/
√

pn)

Rare-event setting: For small p, naive Monte Carlo becomes
impractical.
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Naive Monte Carlo

A simple example:

p = P(eZ1 + eZ2 < γ)

for two i.i.d standard normals Zi ∼ N(0,1)

For γ = 0.5,

I The probability is p = 0.15
I For n = 100, the relative error of naive Mote Carlo is 23%
I For n = 1,000,000, the relative error of naive Mote Carlo is 0.23%

For γ = 0.1,

I The probability is p = 5.6e−6
I For n = 100, the relative error of naive Mote Carlo is 4680%
I For n = 1,000,000, the relative error of naive Mote Carlo is 46.80%
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Importance Sampling

Variance reduction method: Importance Sampling (IS)

Naive estimator
q(Z), Z ∼ f

Example: q(Z) = 1{eZ1+eZ2<γ} and f (·) is bivariate standard normal

density.

IS estimator

q(Z)
f (Z)
g(Z)

, Z ∼ g

A well-known IS method is Mean Shifting:

I Change the distribution of multi-normal vector X = (X1, . . . ,Xd) by
adding a shift µ.

I Multiply the output with Likelihood Ratio
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I Multiply the output with Likelihood Ratio
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A simple example: P(eZ1 + eZ2 < 0.5)
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IS estimator

Let

S(Z)≡
d

∑
i=1

eνi+σi ∑
i
j=1 LijZj

denote the lognormal sum as a function of standard normal vector
Z ∼ N(0, I).
(L is the Cholesky factor of the correlation matrix of X)

The simulation output is q(z) = 1{S(z)≤γ} for some small γ > 0.

Naive estimator
q(Z), Z ∼ N(0, I)

IS estimator

q(Z)
f (Z)
g(Z)

, Z ∼ N(µ, I)

f (·) is the density of N(0, I), g(·) is the density of N(µ, I)
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Optimal mean shift

Optimal (zero-variance) IS density is proportional to q(z)f (z)

The optimal mean shift of IS is the mode of optimal (zero-variance)
IS density. It is obtained by solving

max
z

[
q(z)f (z)

]
= max

z

[
1{S(z)≤γ}e

−∑
d
i=1 z2

i

]
which is equivalent to

(P1) min
d

∑
i=1

z2
i

s.t.
d

∑
i=1

eνi+σi ∑
i
j=1 Lijzj = γ

In this problem, the distance between the origin and the set
{z|S(z) = γ} is minimized.
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Finding optimal mean shift

Sak et al. (2010), A numerical method for the solution of (P1)

Cont and Tankov (2013) Finding a shift µ that guarantees asymptotic
optimality (logarithmic efficiency)
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Condiitional Mote Carlo

Our new Idea: Using mean shift of IS as a direction for Conditional
Monte Carlo (CMC)

Main idea of CMC: Using conditional expectation as an estimator

Example: P(eZ1 + eZ2 < γ)

I Naive estimator q(Z1,Z2) = 1{eZ1+eZ2<γ}
I CMC estimator:

E [q(Z1,Z2)|Z2] = E [1{eZ1+eZ2<γ}|Z2] = P(eZ1 + eZ2 < γ |Z2)

(Z1 is smoothed out)

I

Var(q(Z1,Z2)) = Var(E [q(Z1,Z2)|Z2])+E [Var(q(Z1,Z2)|Z2]]

≤ Var(E [q(Z1,Z2)|Z2])

CMC always yields some variance reduction
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NEW IDEA

Lognormal sum

S(Z) =
d

∑
i=1

eνi+σi(LZ)i

Normal distribution is spherical: Z d
=AZ for any orthonormal rotation

matrix A.

S(Z) =
d

∑
i=1

eνi+σi(LAZ)i .

Our proposal: The first column of A is selected as

A1 = µ/||µ||

µ is the mean shift of IS.
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NEW IDEA

After rotation, Z1 becomes the most important variable. It is
smoothed out by taking the conditional expectation.

The CMC estimator is

E [1{S(Z)<γ} |Z2, . . . ,Zd] =
∫ +∞

−∞

1{S(z1,Z2,...,Zd)<γ}φ(z1)dz1

= Φ(r(Z2, . . . ,Zd))

φ(·) is the PDF of standard normal distribution
Φ(·) is the CDF of standard normal distribution
r(·) is the root of S(z1,z2, . . . ,zd)− γ = 0 for z1.

If all correlations are nonnegative, S(z1,z2, . . . ,zd)− γ = 0 is monotone
wrt z1 and so, there is a single root.

Newton’s method can be used for root calculation. Derivative of S(·)
wrt z1 is also available in closed form

The root r can be calculated in closed form for sum of i.i.d.
lognormals.
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Dingeç, Hörmann Sum of Lognormals May 24, 2018 18 / 40



NEW IDEA

After rotation, Z1 becomes the most important variable. It is
smoothed out by taking the conditional expectation.

The CMC estimator is

E [1{S(Z)<γ} |Z2, . . . ,Zd] =
∫ +∞

−∞

1{S(z1,Z2,...,Zd)<γ}φ(z1)dz1

= Φ(r(Z2, . . . ,Zd))

φ(·) is the PDF of standard normal distribution
Φ(·) is the CDF of standard normal distribution
r(·) is the root of S(z1,z2, . . . ,zd)− γ = 0 for z1.

If all correlations are nonnegative, S(z1,z2, . . . ,zd)− γ = 0 is monotone
wrt z1 and so, there is a single root.

Newton’s method can be used for root calculation. Derivative of S(·)
wrt z1 is also available in closed form

The root r can be calculated in closed form for sum of i.i.d.
lognormals.
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A simple example: P(eZ1 + eZ2 < γ)

Optimal mean shift µ = (log(γ/2), log(γ/2))

Orthonormal matrix

A =
1√
2

(
1 1
1 −1

)

P(eZ1 + eZ2 < γ)

= P
(

e(Z1+Z2)/
√

2 + e(Z1−Z2)/
√

2 < γ

)
= E

[
P
(

e(Z1+Z2)/
√

2 + e(Z1−Z2)/
√

2 < γ | Z2

)]
= E

[
Φ

(√
2log(γ/2)−

√
2log

[
(eZ2/

√
2 + e−Z2/

√
2)/2

])]
CMC estimator: Φ

(√
2log(γ/2)−

√
2log

[
(eZ2/

√
2 + e−Z2/

√
2)/2

])
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A simple example: P(eZ1 + eZ2 < 0.5)

Z1

Z2

-4 -2 0 2 4

-4
-2

0
2

4
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CMC or IS?

Simple algebra shows that variance of mean shift IS is greater than (or
equal to) the variance of CMC using the same mean shift as direction.

Numerical Results for CDF: Sum of d = 10 independent lognormals,
σ2

k = k,νk = k−d for k = 1, . . . ,d.
Sample size: n = 106

IS-OPT CMC-OPT
γ Estimate RE(%) Estimate RE(%) VRF
1 1.25E-01 0.23 1.25E-01 0.11 4.7

1E-01 2.75E-03 0.44 2.73E-03 0.19 5.2
1E-02 7.05E-07 1.03 7.08E-07 0.39 6.9
1E-03 8.90E-14 3.31 8.72E-14 0.88 14.0
1E-04 9.50E-26 5.35 1.03E-25 1.88 8.1
1E-05 1.06E-43 12.10 1.06E-43 3.59 11.4
1E-06 5.42E-68 25.15 4.50E-68 5.63 19.9

Slow-down factor ≈ 6

Dingeç, Hörmann Sum of Lognormals May 24, 2018 25 / 40



PDF Estimation

PDF : f (γ) = dF
dγ

Smooth simulation output with respect to γ

Infinitesimal Perturbation Analysis: The order of derivative and
expectation can be interchanged if estimator is smooth.

PDF estimator

d
dγ

E
[
1{S(Z)<γ}

]
=

d
dγ

E [E [1{S(Z)<γ} |Z2, . . . ,Zd]]

= E [
d
dγ

E [1{S(Z)<γ} |Z2, . . . ,Zd]]
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IID case

Sum of IID lognormals: Xi ∼ N(ν ,σ2), for i = 1, . . . ,d and
Cov(Xi,Xj) = 0 for i 6= j

The CMC estimator simplifies to

Φ

[
log(γ/d)−ν

σ/
√

d
−
√

d
σ

log

(
1
d

d

∑
i=1

eσ ∑
d
j=2 AijZj

)]

The first column of orthonormal matrix A is 1√
d
(1, . . . ,1)
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IID case
If d = 2 or a multiple of 4, a Hadamard matrix can be used A = 1√

d
H

For d = 2,

H =

(
1 1
1 −1

)
For d = 4,

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


CMC estimator for d = 2 or a multiple of 4

ˆ̀= Φ

(
log
(

γ

d

)
−ν

σ/
√

d
−
√

d
σ

log

[
1
d

d

∑
i=1

e
σ√

d ∑
d
j=2 HijZj

])
Logarithmically efficient

lim
γ→0

logE [ ˆ̀2]
logE [ ˆ̀]

= 2.
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IID case

The multivariate optimal IS density of (Z2, . . . ,Zd) is

g(z) ∝ Φ

[
log(γ/d)−ν

σ/
√

d
−
√

d
σ

log

(
1
d

d

∑
i=1

e
σ√

d ∑
d
j=2 Hijzj

)]
e−

1
2 ∑

d
j=2 z2

j

The jth one-dimensional conditional density is

gj(z) ∝ Φ

[
log(γ/d)−ν

σ/
√

d
−
√

d
σ

log
(

1
d

[
e

σ√
d

H1jz + · · ·+ e
σ√

d
Hdjz
])]

φ(z)

= Φ

[
log(γ/d)−ν

σ/
√

d
−
√

d
σ

log
(

1
2
[e

σ√
d

z
+ e−

σ√
d

z
]

)]
φ(z)

= Φ

(
log(γ/d)−ν

σ/
√

d
−
√

d
σ

logcosh
[

σ√
d

z
])

φ(z)
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IID case

Our idea is to use ∏
d
j=2 g(zj) as an approximation of multivariate

optimal IS density g(z2, . . . ,zd)

Random variate generation from one dimensional density gj(z)
PINV (Polynomial Inversion), TDR (Transformed density rejection)

The CMC+IS estimator is

µ
d−1

Φ

(
log( γ

d )−ν

σ/
√

d
−
√

d
σ

log
[

1
d ∑

d
i=1 e

σ√
d ∑

d
j=2 HijZj

])
∏

d
j=2 Φ

(
log( γ

d )−ν

σ/
√

d
−
√

d
σ

logcosh
[

σ√
d
Zj

]) , Zj ∼ g, j = 2, . . . ,d,

where

µ ≡
∫ +∞

−∞

Φ

(
log
(

γ

d

)
−ν

σ/
√

d
−
√

d
σ

logcosh
[

σ√
d

z
])

φ(z)dz
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IID case

Moreover, since logcosh(·) is an even function, antithetic variates
(AV) can be used easily

µ
d−1 1

∏
d
j=2 Φ

(
t−
√

d
σ

logcosh
[

σ√
d
Zj

])
× 1

2

{
Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e
σ√

d ∑
d
j=2 HijZj

])

+Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e−
σ√

d ∑
d
j=2 HijZj

])}

where Zj ∼ g, j = 2, . . . ,d, and

t =
log
(

γ

d

)
−ν

σ/
√

d
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IID case

We propose to use the same estimator even for the case that d is not
a multiple of 4

µ
d−1 1

∏
d
j=2 Φ

(
t−
√

d
σ

logcosh
[

σ√
d
Zj

])
× 1

2

{
Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

eσ ∑
d
j=2 AijZj

])

+Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e−σ ∑
d
j=2 AijZj

])}
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Numerical results

d = 5,σ = 1,ν = log(1/d),n = 105,

CMC+IS CMC+IS+AV
d γ Estimate RE (%) VRF Estimate RE (%) VRF VRF-Total
5 0.5 1.61E-02 0.13 17.6 1.61E-02 0.04 11.0 194

0.4 4.50E-03 0.13 21.3 4.50E-03 0.04 11.0 236
0.3 6.36E-04 0.14 25.9 6.35E-04 0.05 6.7 172
0.2 2.16E-05 0.15 31.6 2.16E-05 0.05 10.7 339
0.1 1.17E-08 0.15 51.0 1.17E-08 0.05 7.5 382

10 0.7 1.52E-02 0.21 11.1 1.53E-02 0.11 3.9 43
0.6 4.52E-03 0.21 14.0 4.52E-03 0.10 4.9 68
0.5 8.34E-04 0.22 17.9 8.34E-04 0.09 6.4 115
0.4 7.20E-05 0.24 21.9 7.19E-05 0.08 8.6 189
0.3 1.60E-06 0.25 31.3 1.60E-06 0.09 7.7 242

Implementation using PINV is about 30 times slower than pure CMC.
Speed-up is possible if TDR is used
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Why is AV useful?

Let’s consider the simulation output of CMC estimator as function of
Z = (Z2, . . . ,Zd)∼ N(0, Id−1)

q(Z)≡Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e
σ√

d ∑
d
j=2 AijZj

])

AV estimator

qAV(Z) =
1
2
[q(Z)+q(−Z)]

The contour plots of q(Z) and qAV(Z) for d = 3,σ = 1,ν = log(1/3),
and γ = 0.4
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The contour plot of q(Z2,Z3)
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The contour plot of qAV(Z2,Z3)
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In progress: Reducing variance coming from the Radius

Let’s write the simulation output as a function of the radius R and
the direction Θ = (Θ2, . . . ,Θd) ∈ Sd−2

Q(R,Θ)≡ q(RΘ) = Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e
σ√

d
R∑

d
j=2 AijΘj

])

and

QAV(R,Θ) =
1
2
[Q(R,Θ)+Q(R,−Θ)] =

1
2
[q(RΘ)+q(−RΘ)]

The best possible method to reduce the variance coming from R is
CMC

E [Q(R,Θ)|Θ] =
∫

∞

0
Φ

(
t−
√

d
σ

log

[
1
d

d

∑
i=1

e
σ√

d
r ∑

d
j=2 AijΘj

])
fR(r)dr

However, it is difficult calculate the integral for each sample of Θ.
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In progress: Reducing variance coming from the Radius

Instead, an IS can be used by changing the distribution of R

Q(R,Θ)
f (R)
g(R)

, R∼ g(R)

In progress:
Finding a good IS density for R
Random variate generation from that density

Dingeç, Hörmann Sum of Lognormals May 24, 2018 38 / 40



In progress: Reducing variance coming from the Radius

Instead, an IS can be used by changing the distribution of R

Q(R,Θ)
f (R)
g(R)

, R∼ g(R)

In progress:
Finding a good IS density for R
Random variate generation from that density
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Conclusions

A simple CMC method for CDF of sum of lognormals

PDF estimator: The derivative of CDF estimator

IID case: Additional improvement by using IS and AV

In-progress: IS for radius

Possible extension: Sum of log-spherical random variables
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Dingeç, Hörmann Sum of Lognormals May 24, 2018 39 / 40



Thank You
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