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Optimal Control of Partially Observable PDMP

Ingredients of a PDMP

In order to define a PDMP we need the following data
I The drift Φ : Rd ×R+ → Rd is continuous and satisfies for

all y ∈ Rd and s, t > 0: Φ(y , t + s) = Φ(Φ(y , s), t).

I The jump times 0 := T0 < T1 < . . . are R+-valued random
variables such that Sn := Tn − Tn−1,n ∈ N, S0 := 0. They
are generated by an intensity λ : Rd → (0,∞).

I A transition kernel Q from Rd to Rd gives the probability
Q(B|y) that the process jumps into B given the state y .

The PDMP is then defined by

Yt := Φ(YTn , t − Tn), for Tn ≤ t < Tn+1,n ∈ N0.
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A PDMP with Partial Observation

Let (εn)n∈N be iid Rd -valued random variables. We assume that
the controller is only able to observe Xn := YTn + εn.
Define Λ(y , t) :=

∫ t
0 λ
(
Φ(y , s)

)
ds. Then

Px ,y (Sn ≤ t ,YTn ∈ C,Xn ∈ D | S0,YT0 ,X0, . . . ,Sn−1,YTn−1 ,Xn−1)

=

∫ t

0
exp

(
− Λ(YTn−1 , s)

)
λ
(
Φ(YTn−1 , s)

)
∫

C
Qε(D − y ′)Q

(
dy ′|Φ(YTn−1 , s)

)
ds



Optimal Control of Partially Observable PDMP

Policies for POPDMP
I Consider marked point process (Tn, Ŷn := YTn ,Xn).

I Relaxed controls on action space A:
R := {r : [0,∞)→ P(A) | r measurable} .

I Observable histories: H0 := Rd and for n ∈ N

Hn := Hn−1 ×R×R+ ×Rd .

Element: hn = (x0, r0, s1, x1, . . . , rn−1, sn, xn) ∈ Hn

I A discrete time history dependent relaxed control policy is
πD := (πD

0 , π
D
1 , . . . ) where πD

n : Hn → R is measurable.
I Continuous control:

πt :=
∞∑

n=0

1{Tn≤t<Tn+1}(t) · π
D
n (Hn)(t − Tn).
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I Relaxed controls on action space A:
R := {r : [0,∞)→ P(A) | r measurable} .

I Observable histories: H0 := Rd and for n ∈ N

Hn := Hn−1 ×R×R+ ×Rd .

Element: hn = (x0, r0, s1, x1, . . . , rn−1, sn, xn) ∈ Hn

I A discrete time history dependent relaxed control policy is
πD := (πD

0 , π
D
1 , . . . ) where πD

n : Hn → R is measurable.

I Continuous control:

πt :=
∞∑

n=0

1{Tn≤t<Tn+1}(t) · π
D
n (Hn)(t − Tn).



Optimal Control of Partially Observable PDMP

Policies for POPDMP
I Consider marked point process (Tn, Ŷn := YTn ,Xn).
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Optimal Control of Partially Observable PDMP

Controlled Data

We assume that the policy influences the drift, the intensity and
the transition kernel.

I Drift Φ : R×Rd ×R+ → Rd , notation Φr (y , t).
I Jump rate λA : Rd × A→ (0,∞).
I Jump kernel QA from Rd × A to Rd .
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Controlled Process

A Controlled Partially Observable Piecewise Deterministic
Markov Process with local characteristics (Φr , λA,QA,Qε)
satisfies

Pπ
D

x ,y (Sn ≤ t , Ŷn ∈ C,Xn ∈ D|S0, . . . ,Sn−1, Ŷn−1,Xn−1, π
D
n−1)

=

∫ t

0
e−Λ

πD
n−1 (Ŷn−1,s)

∫
A
λA(ΦπD

n−1(Ŷn−1, s),a
)

∫
C

Qε(D − y ′)QA(dy ′|ΦπD
n−1(Ŷn−1, s),a

)
πD

n−1(Hn−1, s)(da)ds

where Λr (y , t) :=
∫ t

0

∫
A λ

A(Φr (y , s),a)rs(da) ds. Toy Example.



Optimal Control of Partially Observable PDMP

The Optimization Problem

For a fixed policy πD we define the cost as

J(x , πD) :=

∫
IEπ

D

x ,y

[∫ ∞
0

e−βt
∫

A
c(Yt ,a) πt (da) dt

]
Q0(dy |x).

The value function is defined as

J(x) := inf
πD

J(x , πD) for all x ∈ Rd .

A policy π? is optimal if

J(x) = J(x , π?) for all x ∈ Rd .
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Optimal Control of Partially Observable PDMP

A discrete-time POMDP
We define a POMDP as follows:

I State space R+ ×R2d 3 (s, y , x).
I Action space R 3 r .
I Transition law with Γr (y , t) := βt +

∫ t
0

∫
A λ

A(Φr (y ,u),a)ru(da)du

Q̃
(
[0, t ]× C × D|y , r

)
=∫ t

0
e−Γr (y,u)

∫
A
λA(Φr (y ,u),a

)∫
C
Q(D − y ′)QA(dy ′|Φr (y ,u),a

)
ru(da)du.

I The one-stage cost

g(y , r) =

∫ ∞
0

e−Γr (y ,t)
∫

A
c(Φr (y , t),a) rt (da) dt .
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The Problem for the discrete-time POMDP

For a fixed policy πD we define the cost as

J̃(x , πD) := ĨE
πD

x

[ ∞∑
k=0

g(Ŷk , π
D
k (Hk ))

]
.

The value function is defined as

J̃(x) := inf
πD

J̃(x , πD) ∀ x ∈ Rd .

A policy π? is optimal if

J̃(x) = J̃(x , π?) ∀ x ∈ Rd .
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Equivalence of the two Problems

Theorem
Let x ∈ Rd be an initial observation and πD a policy. Then, it
holds

J(x , πD) = J̃(x , πD).



Optimal Control of Partially Observable PDMP

Assumptions

(C1) The action space A is a compact metric space.

(C2) λA : Rd × A→ (0,∞) is continuous and 0 < λ < λA < λ̄.
(C3) QA is weakly continuous, i.e. (x ,a) 7→

∫
v(z)QA(dz|x ,a) is

continuous and bounded for all v : Rd → R continuous and
bounded.

(B1) There exists E0 = {y1, . . . , yd} ⊂ Rd s.t. for all y ∈ Rd and
a ∈ A we have QA(E0|y ,a) = 1 and Q0(E0) = 1.

(B2) Qε has a bounded density fε with respect to some σ-finite
measure ν.
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The Filter
Assumption (B2) implies that the transition law has the density

q̃(s, y ′, x |y , r)

= e−Γr (y ,s)f (x − y ′)
∫

A
λA(Φr (y , s),a

)
QA(y ′|Φr (y , s),a

)
rs(da).

Define for y ′ ∈ E0 the updating operator

Ψ(ρ, r , s, x)(y ′) :=

∑
y∈E0 q̃(s, y ′, x |y , r)ρ(y)∑

ŷ∈E0
∑

y∈E0 q̃(s, ŷ , x |y , r)ρ(y)
.

and for hn = (x0, r0, s1, x1, . . . , rn−1, sn, xn), µ0(x0) := Q0(·|x0),

µn(·|hn) = µn(·|hn−1, rn−1, sn, xn) := Ψ
(
µn−1(·|hn−1), rn−1, sn, xn

)
.
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The Filter

Theorem
It holds that

P̃π
D

x

(
Ŷn ∈ C | X0,R0,S1,X1, . . . ,Rn−1,Sn,Xn

)
= µn(C|X0,R0,S1,X1, . . . ,Rn−1,Sn,Xn)



Optimal Control of Partially Observable PDMP

Filtered MDP
We define a POMDP as follows:

I State space P(E0) 3 ρ.
I Action space R 3 r .
I Transition law

Q̂(B|ρ, r) =

∫ ∫ ∑
y∈E0

1B
(
Ψ(ρ, r , s, x)

)
q̃SX (s, x |y , r)ν(dx)dsρ(y),

where q̃SX (s, x |y , r) :=
∑

y ′∈E0 q̃(s, y ′, x |y , r).
I The one-stage cost

ĝ(ρ, r) :=
∑

y∈E0

g(y , r)ρ(y).
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Filtered MDP
We define a POMDP as follows:

I State space P(E0) 3 ρ.
I Action space R 3 r .
I Transition law

Q̂(B|ρ, r) =

∫ ∫ ∑
y∈E0

1B
(
Ψ(ρ, r , s, x)

)
q̃SX (s, x |y , r)ν(dx)dsρ(y),

where q̃SX (s, x |y , r) :=
∑

y ′∈E0 q̃(s, y ′, x |y , r).

I The one-stage cost

ĝ(ρ, r) :=
∑

y∈E0

g(y , r)ρ(y).
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Filtered MDP
Policy π = (f0, f1, . . .) with fn : P(E0)→ R can be seen as a
special policy πD ∈ ΠD by setting

πD
n (hn) := fn(µn(·|hn)).

We denote the cost of policy π by

V (ρ, π) := ÎEπρ

[ ∞∑
n=0

ĝ
(
µn, fn(µn)

)]
.

The value function is defined as

V (ρ) := inf
π∈Π∞

V (ρ, π) for all ρ ∈ P(E0).
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Equivalence of the two Problems

Theorem
Let x ∈ Rd be an initial observation, π and πD given as on
previous slide. Then, it holds

V (Q0(·|x), π) = J(x , πD).
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Further Assumptions

(C4) r 7→ Φr (y , t) is continuous for all y ∈ E0, t ≥ 0.

(C5) c : Rd × A→ R+ is lower semi-continuous with respect to
the product topology.
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Regularization of the Filter

Let hσ : R→ R, σ > 0 be a regularization kernel , i.e.
(i) hσ(t) ≥ 0 for all t ∈ R,
(ii)

∫
R

hσ(t)dt = 1,

(iii) limσ↓0
∫ a
−a hσ(t)dt = 1 for all a > 0.

We use a regularized filter of the form

Ψ̂(ρ, r , s, x)(y ′) :=

∫
R

∑
y∈E0 q̃(u, y ′, x |y , r)ρ(y)hσ(s − u)du∑

ŷ∈E0

∫
R

∑
y∈E0 q̃(u, ŷ , x |y , r)ρ(y)hσ(s − u)du

.

Note that we have limσ↓0 Ψ̂ = Ψ
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Solution of the Problem

Theorem
Under all assumptions we have for the regularized version of
the problem

a) Vσ(ρ) = infr∈R

{
ĝ(ρ, r) +

∫
P(E0) Vσ(ρ′)Q̂(dρ′|ρ, r)

}
.

b) There exists an f ∗ which attains the minimum in a) and
(f ∗, f ∗, . . .) is optimal for the filtered problem. The optimal
policy for the original problem is (πD

0 , π
D
1 , . . .) with

πP
0 (x)(t) = f ?

(
Q0(·|x)

)
(t), x ∈ Rd

πP
n (hn)(t) = f ?

(
µn(·|hn)

)
(t), hn ∈ Hn.
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Application: Toy Example

(i) The state space is R, E0 := {−2,0,2}, the action space is
A := [−1; 1].

(ii) The controlled drift is given by

d
dt

Φr (y , t) =

∫
A

art (da), Φ(y ,0) = y .

(iii) We set λA ≡ 1 and β := 1.
(iv) The jump transition kernel QA and the cost function are

given in the picture on the next slide.
(vii) Signal density: fε(−1) = fε(0) = fε(1) = 1

3 .

back
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Application: Transition Kernel and Cost Function

y
0

c(y)

−2 −1.5 1.5 2

10

Q(y ; ·) = δ0(·) Q(y ; ·) = δ2(·)Q(y ; ·) = δ−2(·)
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Solution of the Problem: Optimal Policy

Theorem
In this POPDMP all assumptions which we previously made,
are satisfied and there exists an optimal policy.

In this example we have also computed the value function and
the optimal policy numerically by value iteration. For the optimal
policy we obtained

πn(hn, t) :=

{
1{t≤ 1

2}
if µ1

n ≥ µ3
n,

−1{t≤ 1
2}

if µ1
n ≤ µ3

n.
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Solution of the Problem: Value Function

Abbildung: Value function V (ρ1, ·, ρ3)
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