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Ingredients of a PDMP

In order to define a PDMP we need the following data

» The drift® : RY x R, — RY is continuous and satisfies for
ally e R9and s,t > 0: d(y, t + 8) = d(d(y, 8), 1).

» The jumptimes 0:= Ty < Ty < ... are R -valued random
variables suchthat S, .= T, — T,_1,n € N, Sy := 0. They
are generated by an intensity X : R — (0, c0).

» A transition kernel Q from R to R gives the probability
Q(Bly) that the process jumps into B given the state y.

The PDMP is then defined by

Yf = ¢(YTn7t— Tn)7 fOI’ Tn S t < Tn+1,n S ]NO
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A PDMP with Partial Observation

Let (en)nen be iid R9-valued random variables. We assume that
the controller is onIy able to observe X, := Y7, + €n.

Define A(y, t) := J§ A(®(y, s))ds. Then

Pxy(Sn<t, Y7, € C,Xn € D[ So, Y1y, Xo, - - -, Sp—1, Y7, Xn—1)
t
- /0 exp (= A(YT,_,, ) A(@(Vr,_,.$))

/CQE(D —yhQ(dy'|®(Yr,_,.s))ds
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Policies for POPDMP

» Consider marked point process (Tp, Y, := Y7, X).
Relaxed controls on action space A:

R :={r:[0,00) — P(A) | r measurable}.
Observable histories: H := R and for n ¢ IN

v

v

Hpn:=Hp1 xR xRyt x RY.

Element: h, = (X0, fo, S1, X1, - - fn—1, Sn, Xn) € Hn

A discrete time history dependent relaxed control policy is
70 = (7B, 7P, ...) where 7L : #, — R is measurable.
Continuous control:

v

v

Tt = Z 1{T,,§t<T,7+1}(t) : 7Tr[;)(Hn)(t — Th).

n=0
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Controlled Data

We assume that the policy influences the drift, the intensity and
the transition kernel.

» Drift & : R x RY x Ry — RY, notation &(y, t).
» Jump rate M : RY x A — (0, 00).
» Jump kernel @ from RY x Ato RY.
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Controlled Process

A Controlled Partially Observable Piecewise Deterministic
Markov Process with local characteristics (¢", \*, Q, Q.)
satisfies

P;S/(Sn < t7 S\/n € Cy Xn € D’807 vy Sn—17 Vn—17Xn—177Tr£1)_1)
t <D . "

_/ e N "‘(Yn175)/)\A(q>7rnD1(Yn_173)7a)
0 A

/CQE(D )My |71 (Vs 5), 8)72 4 (Hns, 5)(da)ds

where A'(y, t) := [3 [, XA(®"(y, 5), a)rs(da) ds.
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The Optimization Problem
For a fixed policy 72 we define the cost as
J(x, 7P) = / Ep, [ /0 et /A o(Yy, a) m(da) dt| Qu(dy|x).

The value function is defined as

J(x) = inf J(x, 7P)  forall x e RY.

A policy 7* is optimal if

J(x) =J(x,7*) forall x e RC.



Optimal Control of Partially Observable PDMP

A discrete-time POMDP

We define a POMDP as follows:



Optimal Control of Partially Observable PDMP

A discrete-time POMDP

We define a POMDP as follows:
» State space Ry x R?? 5 (s,y, x)



Optimal Control of Partially Observable PDMP

A discrete-time POMDP

We define a POMDP as follows:

» State space Ry x R?? 5 (s,y, x)
» Action space R > r.



Optimal Control of Partially Observable PDMP

A discrete-time POMDP
We define a POMDP as follows:
» State space Ry x R?? 3 (s, y, x).
» Action space R > r.
» Transition law with I'"(y, t) := gt + fot 2 M (@ (v, u), a)ry(da)du

Q([0,f] x C x Dly,r) =

/ e 00 [ Aoy, 0).2) / Q(D — y')@(dy'|®' (v, u), a)r,(da)du.
0 A ¢
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A discrete-time POMDP

We define a POMDP as follows:
State space R, x R%? 3 (s, y, x).
Action space R > r.

v

v

» Transition law with I (y, t) := 8t + [, [, (9" (y, u), a)ru(da)du
Q([0,f] x C x Dly,r) =
t
/e*r (y>u) /\A ' (y,u /O (D -y )Q*dy'|" (v, u), &) ru(da)du.
0
» The one-stage cost

g(y.r) = /0 T e T /A (&7 (y, 1), a) ri(da) d.
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The Problem for the discrete-time POMDP

For a fixed policy 72 we define the cost as

J(x, 7P

ZQ(YkﬂTK Hk))]

The value function is defined as
J(x) = infJ(x,7°) V¥ xeR
A policy 7* is optimal if

J(x) =Jd(x,m) VxeRC.
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Equivalence of the two Problems

Theorem

Let x € RY be an initial observation and =P a policy. Then, it
holds

J(x,7P) = J(x, =P).
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Assumptions

(C1) The action space A is a compact metric space.
(C2) M :RY x A— (0,00) is continuous and 0 < A < M < A,

(C3) Q% is weakly continuous, i.e. (x,a) — [ v(z)Q*(dz|x, a) is
continuous and bounded for all v : R — R continuous and
bounded.

(B1) There exists E® = {y',... y9} c R s.t. for all y € RY and
ac Awe have Q*(E®y,a) = 1 and Qy(Eo) = 1.

(B2) Q. has a bounded density f. with respect to some o-finite
measure v.
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The Filter

Assumption (B2) implies that the transition law has the density
a(s.y', xly.r)

_ e—rr(}’»s)f(x — y') /A )\A(q)r(y, S), a) QA (y’\d)r(}’» S)a a) rs(da)'
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The Filter

Assumption (B2) implies that the transition law has the density
a(s.y', xly,r)
e "I f(x — y) / NA(0(y,5),a) QN (Y| (. 5), a) rs(da).
A
Define for y’ € EO the updating operator

. ZyeEO a(svy,vxlya r)p(.y)
Z}A/GEO ZyeEO E,(Sv j\/a X|y7 r)p(y)

V(p,r,s,x)(y) :

and for h, = (X0, o, S1, X1, - - - s 'n—1, Sn, Xn)s to(Xo0) := Qo(|Xo0),

pn(-1hn) = pn(-|Pn=1, -1, Sn, Xn) = W(Mnf1('|hnf1)7rnf1>5naxn)-
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The Filter

Theorem

It holds that

P;FD(s\/ne C| X07R07S17X17 '7Hn—178n7Xn>
- MH(C|X0a R07 S17X17

°9 Rn—1 9 Sn, Xn)
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Filtered MDP
We define a POMDP as follows:
» State space P(E?) > p.
» Action space R > r.
» Transition law

&(Blp, ) / /215 (0. 1,5, %)) 85 (s, xly, r)r(dx)dsp(y).

yeEo

where §5%(s, x|y, r) == X icpo G(S, ¥/, X|y. ).



Optimal Control of Partially Observable PDMP

Filtered MDP

We define a POMDP as follows:
State space P(E?) > p.
Action space R > r.

v

v

Transition law

Q(Blo.r) / / S 15(W(p, .5, X))8X(s, x|y, r)v(dx)dsp(y),

y€eE®

v

where EISX(Sa X’ya r) = Zy’eEo 57(3, y,’ X|y7 r)'
The one-stage cost

v

=Y 9. Ney)

y€eED
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Filtered MDP

Policy m = (fy, fy,...) with f, : P(E®) — R can be seen as a
special policy 72 € NP by setting

() = fo(n(-[ An))-

We denote the cost of policy © by

Zg Mn; fn( Mn))] .

n=0

V(p, )
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Filtered MDP

Policy 7 = (fy, fy, . ..) with f, : P(E®) — R can be seen as a
special policy 72 € NP by setting

7rr?(hn) := fa(en(-[Pn)).-

We denote the cost of policy = by

Z @(Mm fn(ﬂn))] .
n=0

V(p,7) =,

The value function is defined as

V(p) == inf V(p,m) foral p € P(EY).
mell>
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Equivalence of the two Problems

Theorem

Let x € RY be an initial observation, = and P given as on
previous slide. Then, it holds

V(Qo(-|x), ) = J(x,7P).
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Further Assumptions

C4) r+— ®'(y, t)is continuous forall y € E°, t > 0.
( y y

(C5) ¢: RY x A — R, is lower semi-continuous with respect to
the product topology.
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Regularization of the Filter

Let h, : R — R, o > 0 be a regularization kernel , i.e.
(i) hy(t)>0forallt e R,
(i) Jg ho(t)dt =1,

(iii) limgyo [ 2, he(t)dt = 1 for all a > 0.
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Regularization of the Filter

Let h, : R — R, > 0 be a regularization kernel , i.e
(i) ho( )>0fora||teIR,
(i) Jg ho(t)dt =1,

(iii) Iumgwf h,(t)dt =1 for all a > 0.

We use a regularlzed filter of the form

fIR ZyeEO a(u, y/7 X‘ya r)p( )ha(s - U)dU
> peeo Ju 2oyero AU, ¥, X1y, r)p(y)ho(s — u)du’

ﬁ/(p, r,s, X)(y/) =

Note that we have lim, o ¥ = ¥
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Solution of the Problem

Theorem
Under all assumptions we have for the regularized version of
the problem
a) V7(p) =infrer {Q(p, 1)+ Jpeo) V(0 QAP |, f)}-
b) There exists an f* which attains the minimum in a) and
(f*, f*,...) is optimal for the filtered problem. The optimal

policy for the original problem is (=, =P, ...) with
(1) = F(Q(X)(1), xeR?
wh(ha)(t) = £ (un(-1hn))(t), hn € Hp.
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Application: Toy Example

(i) The state space is R, E° := {—2, 0,2}, the action space is
A=[-1:1].
(i) The controlled drift is given by

;’;q;f(y, t):/Aar,(da), ®(y,0)=y.

(i) Weset M =1and g :=1.
(iv) The jump transition kernel Q# and the cost function are
given in the picture on the next slide.

(vii) Signal density: f.(—1) = £,(0) = £.(1) = J.
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Application: Transition Kernel and Cost Function

c(y)
i 10 ,,,,,,,,,,,,,,,,,,

Qy;) =0-2() Q(y;-) = do(") Qy;-) = d2(")
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Solution of the Problem: Optimal Policy

Theorem

In this POPDMP all assumptions which we previously made,
are satisfied and there exists an optimal policy.

In this example we have also computed the value function and
the optimal policy numerically by value iteration. For the optimal
policy we obtained

1,1 if ph >
: {t<3} n=rnm
wn(hp, t) = 2 .
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Solution of the Problem: Value Function
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