Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization

Firdevs Ulus
Bilkent University, Ankara

joint with
Birgit Rudloff

Vienna University of Economics and Business
April 7, 2017
(1) Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)
(2) Utility Indifference Pricing for Incomplete Preferences
- Properties of Buy and Sell Prices
- Computation of the Price Sets
(3) Example with Conical Market Model
- A Single Multivariate Utility Function Case
(4) Open Questions and Next Steps
(1) Motivation and Preliminaries
- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets
(3) Example with Conical Market Model
- A Single Multivariate Utility Function Case
(4) Open Questions and Next Steps

Incomplete Preferences

The classical utility theory assumes that the preferences are complete: a decision maker is not allowed to be indifferent between different outcomes.

Incomplete Preferences

The classical utility theory assumes that the preferences are complete: a decision maker is not allowed to be indifferent between different outcomes.
"It is conceivable -and may even in a way be more realistic- to allow for cases where the individual is neither able to state which of two alternatives he prefers nor that they are equally desirable."
[von Neumann, Morgenstern 1947]

Incomplete Preferences

The classical utility theory assumes that the preferences are complete: a decision maker is not allowed to be indifferent between different outcomes.
"It is conceivable -and may even in a way be more realistic- to allow for cases where the individual is neither able to state which of two alternatives he prefers nor that they are equally desirable."
[von Neumann, Morgenstern 1947]
"Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable. Like others of the axioms, it is inaccurate as a description of real life; but unlike them, we find it hard to accept even from the normative viewpoint. Does "rationality" demand that an individual make definite preference comparisons between all possible lotteries (even on a limited set of basic alternatives)?"
[Aumann 1962]

Incomplete Preferences

Incompleteness of Preferences:

- Some outcomes might be incomparable for the decision maker.
[Ok, Dubra, Maccheroni 2004]: Vector valued utility representations
- Indecisiveness on the likelihood of the states of the world.
[Bewley 1986, 2002]: Bewley's model of Knightian uncertainty .

Incomplete Preferences

Incompleteness of Preferences:

- Some outcomes might be incomparable for the decision maker.
[Ok, Dubra, Maccheroni 2004]: Vector valued utility representations
- Indecisiveness on the likelihood of the states of the world.
[Bewley 1986, 2002]: Bewley's model of Knightian uncertainty .
- [Ok, Ortoleva, Riella 2012]: Under some assumptions an incomplete preference relation accepts
- either a single-prior expected multi-utility representation
- or a multi-prior expected single-utility representation.
- [Galaabaatar, Karni 2013]: Characterization of preferences that admits a multi-prior expected multi-utility representation

Utility Representations of Incomplete Preferences

$(\Omega, \mathcal{F}, \mathbb{P})$: finite probability space, $\mathcal{M}_{1}(\Omega)$: probability measures on Ω,
$L^{0}\left(\mathcal{F}, \mathbb{R}^{d}\right): \mathcal{F}$-measurable \mathbb{R}^{d}-valued random vectors, $\mathcal{C}\left(\mathbb{R}^{d}\right)$: continuous functions on \mathbb{R}^{d}.

Definition

A preference relation \succsim on $L^{0}\left(\mathcal{F}, \mathbb{R}^{d}\right)$ is said to admit a multi-prior expected multi-utility representation if there exist \mathcal{U} with $\emptyset \neq \mathcal{U} \subseteq \mathcal{C}\left(\mathbb{R}^{d}\right)$ and \mathcal{Q} with $\emptyset \neq \mathcal{Q} \subseteq \mathcal{M}_{1}(\Omega)$ such that, for $Y, Z \in L^{0}\left(\mathcal{F}, \mathbb{R}^{d}\right)$, we have

$$
Y \succsim Z \Longleftrightarrow \forall u \in \mathcal{U}, \forall Q \in \mathcal{Q}: \quad \mathbb{E}^{Q} u(Y) \geq \mathbb{E}^{Q} u(Z)
$$

Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{-\infty\}$ is a multivariate utility function if
(i) $C_{u}:=\operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}_{+}^{d} \subseteq C_{u} \neq \mathbb{R}^{d}$; and
(ii) u is increasing with respect to the partial order $\leq C_{u}$.

Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{-\infty\}$ is a multivariate utility function if
(i) $C_{u}:=\operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}_{+}^{d} \subseteq C_{u} \neq \mathbb{R}^{d}$; and
(ii) u is increasing with respect to the partial order $\leq_{C_{u}}$.

For complete preferences represented by a single utility function:

Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{-\infty\}$ is a multivariate utility function if
(i) $C_{u}:=\operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}_{+}^{d} \subseteq C_{u} \neq \mathbb{R}^{d}$; and
(ii) u is increasing with respect to the partial order $\leq_{C_{u}}$.

For complete preferences represented by a single utility function:

- [Benedetti, Campi 2012]: Utility indifference buy and sell prices under proportional transacation costs where p_{j}^{b}, p_{j}^{s} are defined in terms of a single currency $j \in\{1, \ldots, d\}$.

Assumption

a) The preference relation admits a multi-prior expected multi-utility representation where $\mathcal{U}=\left\{u^{1}, \ldots, u^{r}\right\} ; \mathcal{Q}=\left\{Q^{1} \ldots Q^{s}\right\}$ for some $r, s \geq 1$ with $q:=r$.
b) Any $u \in \mathcal{U}$ is a multivariate utility function.

Assumption

a) The preference relation admits a multi-prior expected multi-utility representation where $\mathcal{U}=\left\{u^{1}, \ldots, u^{r}\right\} ; \mathcal{Q}=\left\{Q^{1} \ldots Q^{s}\right\}$ for some $r, s \geq 1$ with $q:=r$.
b) Any $u \in \mathcal{U}$ is a multivariate utility function.

Notation: $U(\cdot): L^{0}\left(\mathcal{F}, \mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{q}$

$$
U(\cdot):=\left(\mathbb{E}^{Q^{1}} u^{1}(\cdot), \ldots, \mathbb{E}^{Q^{s}} u^{1}(\cdot), \ldots \ldots, \mathbb{E}^{Q^{1}} u^{r}(\cdot), \ldots, \mathbb{E}^{Q^{s}} u^{r}(\cdot)\right)^{T} .
$$

Utility Maximization Problem

$$
\text { maximize } U\left(V_{T}+C_{T}\right) \text { subject to } V_{T} \in \mathcal{A}(x) \text {, }
$$

$x \in \mathbb{R}^{d}$: initial endowment; $\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x; $C_{T} \in L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: some payoff that is received at time T.

Assumption
 $\mathcal{A}(x)$ is a convex set for all $x \in \mathbb{R}^{d}$.

Utility Maximization Problem

$$
\text { maximize } U\left(V_{T}+C_{T}\right) \text { subject to } V_{T} \in \mathcal{A}(x) \text {, }
$$

$x \in \mathbb{R}^{d}$: initial endowment; $\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x; $C_{T} \in L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: some payoff that is received at time T.

Assumption

$\mathcal{A}(x)$ is a convex set for all $x \in \mathbb{R}^{d}$.

Convex Vector Optimization Problem (CVOP).

Convex Vector Optimization

$$
\begin{align*}
\operatorname{maximize} & f(x) \quad(\text { with respect to } \leq k) \tag{P}\\
\text { subject to } & g(x) \leq 0,
\end{align*}
$$

where

- $K \subseteq \mathbb{R}^{q}$ is a solid, pointed, polyhedral convex ordering cone,
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ is K-concave,
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathbb{R}_{+}^{m}-convex.

Convex Vector Optimization

$$
\begin{aligned}
\text { maximize } & f(x) \quad \text { (with respect to } \leq_{K} \text {) } \\
\text { subject to } & g(x) \leq 0 .
\end{aligned}
$$

- $\mathcal{X}:=\{x \in X: g(x) \leq 0\}$ is convex.

Convex Vector Optimization

$$
\begin{aligned}
\text { maximize } & f(x) \quad \text { (with respect to } \leq_{K} \text {) } \\
\text { subject to } & g(x) \leq 0 .
\end{aligned}
$$

- $\mathcal{X}:=\{x \in X: g(x) \leq 0\}$ is convex.
- $\mathcal{P}:=\operatorname{cl}(f(\mathcal{X})-K)$ is called the lower image of (P).

Convex Vector Optimization

$$
\begin{align*}
\operatorname{maximize} & f(x) \quad(\text { with respect to } \leq k) \tag{P}\\
\text { subject to } & g(x) \leq 0
\end{align*}
$$

- $\mathcal{X}:=\{x \in X: g(x) \leq 0\}$ is convex.
- $\mathcal{P}:=\operatorname{cl}(f(\mathcal{X})-K)$ is called the lower image of (P).
- $\bar{x} \in \mathcal{X}$ is a weak maximizer for (P) if $f(\bar{x}) \in \operatorname{bd} \mathcal{P}$.
- (P) is said to be bounded if there is $y \in \mathbb{R}^{q}$ with $\{y\}-K \supseteq \mathcal{P}$.

Convex Vector Optimization

$$
\begin{align*}
\operatorname{maximize} & f(x) \quad(\text { with respect to } \leq k) \tag{P}\\
\text { subject to } & g(x) \leq 0
\end{align*}
$$

- $\mathcal{X}:=\{x \in X: g(x) \leq 0\}$ is convex.
- $\mathcal{P}:=\operatorname{cl}(f(\mathcal{X})-K)$ is called the lower image of (P).
- $\bar{x} \in \mathcal{X}$ is a weak maximizer for (P) if $f(\bar{x}) \in \operatorname{bd} \mathcal{P}$.
- (P) is said to be bounded if there is $y \in \mathbb{R}^{q}$ with $\{y\}-K \supseteq \mathcal{P}$.

Definition ([Löhne, Rudloff, U., 2014])

Let (P) be bounded. A finite subset $\overline{\mathcal{X}}$ of \mathcal{X} is called a finite (weak) ϵ-solution to (P) if it consists of only (weak) maximizers; and

$$
\operatorname{conv} f(\overline{\mathcal{X}})-K+\epsilon\{k\} \supseteq \mathcal{P} \supseteq \operatorname{conv} f(\overline{\mathcal{X}})-K
$$

$k \in \operatorname{int} K$ is fixed.

Convex Vector Optimization

$$
\begin{array}{ll}
\text { maximize } & f(x) \quad \text { (with respect to } \leq_{K} \text {) } \tag{P}\\
\text { subject to } & g(x) \leq 0
\end{array}
$$

Convex Vector Optimization

$$
\begin{array}{ll}
\text { maximize } & f(x) \quad \text { (with respect to } \leq_{K} \text {) } \tag{P}\\
\text { subject to } & g(x) \leq 0
\end{array}
$$

$$
\max \left\{w^{T} f(x): g(x) \leq 0\right\}
$$

Proposition

Let $w \in K^{+} \backslash\{0\}$. An optimal solution \bar{x} of $(P(w))$ is a weak maximizer of (P).

Convex Vector Optimization

$$
\begin{aligned}
\text { maximize } & f(x) \quad \text { (with respect to } \leq_{K} \text {) } \\
\text { subject to } & g(x) \leq 0
\end{aligned}
$$

$$
\max \left\{w^{\top} f(x): g(x) \leq 0\right\}
$$

Proposition

Let $w \in K^{+} \backslash\{0\}$. An optimal solution \bar{x} of $(P(w))$ is a weak maximizer of (P).

Theorem

If $\mathcal{X} \subseteq \mathbb{R}^{n}$ is a non-empty closed set and (P) is a bounded problem, then for each weak maximizer \bar{x} of (P), there exists $w \in K^{+} \backslash\{0\}$ such that \bar{x} is an optimal solution to $(\mathrm{P}(w))$.
(1) Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)
(2) Utility Indifference Pricing for Incomplete Preferences
- Properties of Buy and Sell Prices
- Computation of the Price Sets
(3) Example with Conical Market Model
- A Single Multivariate Utility Function Case
(4) Open Questions and Next Steps

Utility Maximization Problem

$$
\text { maximize } U\left(V_{T}+C_{T}\right) \text { subject to } V_{T} \in \mathcal{A}(x) \text {. }
$$

(Ordering cone is $\leq_{\mathbb{R}_{+}^{q}}$.)

Utility Maximization Problem

$$
\text { maximize } U\left(V_{T}+C_{T}\right) \text { subject to } V_{T} \in \mathcal{A}(x) \text {. }
$$

(Ordering cone is $\leq_{\mathbb{R}_{+}^{q}}$.)

- The lower image:

$$
V\left(x, C_{T}\right):=\mathrm{cl} \bigcup_{V_{T} \in \mathcal{A}(x)}\left(U\left(V_{T}+C_{T}\right)-\mathbb{R}_{+}^{q}\right) .
$$

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.
How to compare sets?

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.
How to compare sets?

$$
A \preccurlyeq B: \Longleftrightarrow B \subseteq A+\mathbb{R}_{+}^{q}, \quad A \preccurlyeq B: \Longleftrightarrow A \subseteq B-\mathbb{R}_{+}^{q} .
$$

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.
How to compare sets?

$$
A \preccurlyeq B: \Longleftrightarrow B \subseteq A+\mathbb{R}_{+}^{q}, \quad A \preccurlyeq B: \Longleftrightarrow A \subseteq B-\mathbb{R}_{+}^{q} .
$$

Buying claim C_{T} at price $p^{b} \in \mathbb{R}^{d}$ is 'more preferred' than not buying it if

$$
V\left(x_{0}, 0\right) \preccurlyeq V\left(x_{0}-p^{b}, C_{T}\right) \Longleftrightarrow V\left(x_{0}, 0\right) \subseteq V\left(x_{0}-p^{b}, C_{T}\right)
$$

holds.

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.
How to compare sets?

$$
A \preccurlyeq B: \Longleftrightarrow B \subseteq A+\mathbb{R}_{+}^{q}, \quad A \preccurlyeq B: \Longleftrightarrow A \subseteq B-\mathbb{R}_{+}^{q} .
$$

Buying claim C_{T} at price $p^{b} \in \mathbb{R}^{d}$ is 'more preferred' than not buying it if

$$
V\left(x_{0}, 0\right) \preccurlyeq V\left(x_{0}-p^{b}, C_{T}\right) \Longleftrightarrow V\left(x_{0}, 0\right) \subseteq V\left(x_{0}-p^{b}, C_{T}\right)
$$

holds. Then, p^{b} is a buy price.

Buy and Sell Prices

For a buy price we need to 'compare' $V\left(x_{0}-p^{b}, C_{T}\right)$ and $V\left(x_{0}, 0\right)$.
How to compare sets?

$$
A \preccurlyeq B: \Longleftrightarrow B \subseteq A+\mathbb{R}_{+}^{q}, \quad A \preccurlyeq B: \Longleftrightarrow A \subseteq B-\mathbb{R}_{+}^{q} .
$$

Buying claim C_{T} at price $p^{b} \in \mathbb{R}^{d}$ is 'more preferred' than not buying it if

$$
V\left(x_{0}, 0\right) \preccurlyeq V\left(x_{0}-p^{b}, C_{T}\right) \Longleftrightarrow V\left(x_{0}, 0\right) \subseteq V\left(x_{0}-p^{b}, C_{T}\right)
$$

holds. Then, p^{b} is a buy price.
Similarly, if

$$
V\left(x_{0}, 0\right) \subseteq V\left(x_{0}+p^{5},-C_{T}\right)
$$

then $p^{s} \in \mathbb{R}^{d}$ is a sell price.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

$\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x;

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

$\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^{d}, \lambda \in[0,1]$.
a. $\mathcal{A}(x)$ is a convex set.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

$\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^{d}, \lambda \in[0,1]$.
a. $\mathcal{A}(x)$ is a convex set.
b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

$\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^{d}, \lambda \in[0,1]$.
a. $\mathcal{A}(x)$ is a convex set.
b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.
c. $\lambda \mathcal{A}(x)+(1-\lambda) \mathcal{A}(y) \subseteq \mathcal{A}(\lambda x+(1-\lambda) y)$.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & :=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

$\mathcal{A}(x) \subseteq L^{0}\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^{d}, \lambda \in[0,1]$.
a. $\mathcal{A}(x)$ is a convex set.
b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.
c. $\lambda \mathcal{A}(x)+(1-\lambda) \mathcal{A}(y) \subseteq \mathcal{A}(\lambda x+(1-\lambda) y)$.
d. If $V_{T} \in \mathcal{A}(x)$, then $V_{T}+r \in \mathcal{A}(x+r)$ for any $r \in \mathbb{R}^{d}$.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Proposition

$P^{b}\left(C_{T}\right)$ is a convex lower set and $P^{s}\left(C_{T}\right)$ is a convex upper set.

$$
P^{b}\left(C_{T}\right)=P^{b}\left(C_{T}\right)-\mathbb{R}_{+}^{q} \quad \text { and } \quad P^{s}\left(C_{T}\right)=P^{s}\left(C_{T}\right)+\mathbb{R}_{+}^{q}
$$

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Proposition

$P^{b}\left(C_{T}\right)$ is a convex lower set and $P^{s}\left(C_{T}\right)$ is a convex upper set.

$$
P^{b}\left(C_{T}\right)=P^{b}\left(C_{T}\right)-\mathbb{R}_{+}^{q} \quad \text { and } \quad P^{s}\left(C_{T}\right)=P^{s}\left(C_{T}\right)+\mathbb{R}_{+}^{q}
$$

Proposition

Under the Assumptions on $\mathcal{A}(\cdot)$, we have int $P^{b}\left(C_{T}\right) \cap \operatorname{int} P^{s}\left(C_{T}\right)=\emptyset$.

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Definition

The indifference price set for C_{T} is

$$
P\left(C_{T}\right):=\operatorname{cl}\left(\mathbb{R}^{d} \backslash\left(P^{b}\left(C_{T}\right) \cup P^{s}\left(C_{T}\right)\right)\right) .
$$

Buy and Sell Prices

$$
\begin{aligned}
P^{b}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} \\
P^{s}\left(C_{T}\right) & =\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
\end{aligned}
$$

Definition

The indifference price set for C_{T} is

$$
P\left(C_{T}\right):=\operatorname{cl}\left(\mathbb{R}^{d} \backslash\left(P^{b}\left(C_{T}\right) \cup P^{s}\left(C_{T}\right)\right)\right) .
$$

Recovery of the standard case:

$P\left(C_{T}\right)=\left[p^{b}, p^{s}\right]$, where the preference relation is complete and $d=1$.

Buy and Sell Prices

Proposition

$P^{b}(\cdot)$ and $P^{s}(\cdot)$ are increasing with respect to the partial order $\leq c_{u}$, in the sense of set orders \prec and \preccurlyeq, respectively.

Buy and Sell Prices

Proposition

$P^{b}(\cdot)$ and $P^{s}(\cdot)$ are increasing with respect to the partial order $\leq c_{u}$, in the sense of set orders \prec and \preccurlyeq, respectively.

$$
C_{T}^{1} \leq c_{\mathcal{U}} C_{T}^{2} \Longrightarrow P^{b}\left(C_{T}^{1}\right) \subseteq P^{b}\left(C_{T}^{2}\right) \text { and } P^{s}\left(C_{T}^{1}\right) \supseteq P^{s}\left(C_{T}^{2}\right)
$$

Buy and Sell Prices

Proposition

$P^{b}(\cdot)$ and $P^{s}(\cdot)$ are increasing with respect to the partial order $\leq c_{u}$, in the sense of set orders \prec and \preccurlyeq, respectively.

$$
C_{T}^{1} \leq c_{u} C_{T}^{2} \Longrightarrow P^{b}\left(C_{T}^{1}\right) \subseteq P^{b}\left(C_{T}^{2}\right) \text { and } P^{s}\left(C_{T}^{1}\right) \supseteq P^{s}\left(C_{T}^{2}\right)
$$

Proposition

$P^{b}(\cdot)$ is concave with respect to \preccurlyeq; and $P^{s}(\cdot)$ is convex with respect to \preccurlyeq.

Buy and Sell Prices

Proposition

$P^{b}(\cdot)$ and $P^{s}(\cdot)$ are increasing with respect to the partial order $\leq c_{u}$, in the sense of set orders \preccurlyeq and \preccurlyeq, respectively.

$$
C_{T}^{1} \leq c_{\mathcal{U}} C_{T}^{2} \Longrightarrow P^{b}\left(C_{T}^{1}\right) \subseteq P^{b}\left(C_{T}^{2}\right) \text { and } P^{s}\left(C_{T}^{1}\right) \supseteq P^{s}\left(C_{T}^{2}\right)
$$

Proposition

$P^{b}(\cdot)$ is concave with respect to \preccurlyeq; and $P^{s}(\cdot)$ is convex with respect to \preccurlyeq.

For $C_{T}^{1}, C_{T}^{2} \in L\left(\mathcal{F}_{T}, \mathbb{R}^{d}\right)$ and $\lambda \in[0,1]$ we have

$$
\begin{aligned}
\lambda P^{b}\left(C_{T}^{1}\right)+(1-\lambda) P^{b}\left(C_{T}^{2}\right) & \subseteq P^{b}\left(\lambda C_{T}^{1}+(1-\lambda) C_{T}^{2}\right) \\
P^{s}\left(\lambda C_{T}^{1}+(1-\lambda) C_{T}^{2}\right) & \supseteq \lambda P^{s}\left(C_{T}^{1}\right)+(1-\lambda) P^{s}\left(C_{T}^{2}\right) .
\end{aligned}
$$

How to Compute?

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

How to Compute?

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- Both sets are lower images!!!

How to Compute?

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- Both sets are lower images!!!
- In the case of LVOPs, there are ways to compute this set exactly.

How to Compute?

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- Both sets are lower images!!!
- In the case of LVOPs, there are ways to compute this set exactly.
- In the case of CVOPs, we can only approximate!

How to Compute?

- Using algorithms in [Löhne, Rudloff, U. 2014] we solve maximize $U\left(V_{T}\right)$ subject to $V_{T} \in \mathcal{A}\left(x_{0}\right)$.

How to Compute?

- Using algorithms in [Löhne, Rudloff, U. 2014] we solve

$$
\text { maximize } U\left(V_{T}\right) \text { subject to } V_{T} \in \mathcal{A}\left(x_{0}\right) \text {. }
$$

- We find a finite weak ϵ-solution $\mathcal{V}=\left\{V^{1}, \ldots, V^{k}\right\}$ such that

$$
\operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\} \supseteq V\left(x_{0}, 0\right)
$$

How to Compute?

- Using algorithms in [Löhne, Rudloff, U. 2014] we solve

$$
\text { maximize } U\left(V_{T}\right) \text { subject to } V_{T} \in \mathcal{A}\left(x_{0}\right) \text {. }
$$

- We find a finite weak ϵ-solution $\mathcal{V}=\left\{V^{1}, \ldots, V^{k}\right\}$ such that

$$
\operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\} \supseteq V\left(x_{0}, 0\right)
$$

- We obtain a corresponding 'weight' set $W=\left\{w^{1}, \ldots, w^{k}\right\} \subseteq \mathbb{R}_{+}^{q}$ such that

$$
v^{i}:=\sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)}\left(w^{i}\right)^{T} U\left(V_{T}\right)=\left(w^{i}\right)^{T} U\left(V^{i}\right)
$$

Outer Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} .
$$

- If the utility functions are bounded, we have

$$
\begin{aligned}
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \forall w \in \mathbb{R}_{+}^{q}:\right. \\
\left.\sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} w^{\top} U\left(V_{T}+C_{T}\right) \geq \sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} w^{\top} U\left(V_{T}\right)\right\} .
\end{aligned}
$$

Outer Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\} .
$$

- If the utility functions are bounded, we have

$$
\begin{aligned}
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \forall w \in \mathbb{R}_{+}^{q}:\right. \\
\left.\sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} w^{\top} U\left(V_{T}+C_{T}\right) \geq \sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} w^{\top} U\left(V_{T}\right)\right\} .
\end{aligned}
$$

- $W=\left\{w^{1}, \ldots, w^{k}\right\}$ is a 'representative' weight set!
- An outer approximation of $P^{b}\left(C_{T}\right)$:

$$
\begin{aligned}
& P_{\text {out }}^{b}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid \forall i \in\{1, \ldots, k\}:\right. \\
&\left.\sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)}\left(w^{i}\right)^{T} U\left(V_{T}+C_{T}\right) \geq \sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)}\left(w^{i}\right)^{T} U\left(V_{T}\right)\right\} .
\end{aligned}
$$

Outer Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \forall w \in \mathbb{R}_{+}^{q}: \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} w^{T} U\left(V_{T}+C_{T}\right) \geq \sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} w^{T} U\left(V_{T}\right)\right\}
$$

An outer approximation of $P^{b}\left(C_{T}\right)$:

$$
P_{\text {out }}^{b}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid \forall i=1, \ldots, k: \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)}\left(w^{i}\right)^{T} U\left(V_{T}+C_{T}\right) \geq v^{i}\right\}
$$

Outer Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \forall w \in \mathbb{R}_{+}^{q}: \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} w^{T} U\left(V_{T}+C_{T}\right) \geq \sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} w^{T} U\left(V_{T}\right)\right\}
$$

An outer approximation of $P^{b}\left(C_{T}\right)$:

$$
P_{\text {out }}^{b}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid \forall i=1, \ldots, k: \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)}\left(w^{i}\right)^{T} U\left(V_{T}+C_{T}\right) \geq v^{i}\right\}
$$

Lower image of:

$$
\begin{array}{lll}
\text { maximize } & p \text { with respect to } \leq_{\mathbb{R}_{+}^{d}} \\
\text { subject to } & \left(w^{i}\right)^{T} U\left(V_{T}^{i}+C_{T}\right) \geq v^{i} & \text { for } i=1, \ldots, k ; \\
& V_{T}^{i} \in \mathcal{A}\left(x_{0}-p\right) & \text { for } i=1, \ldots, k
\end{array}
$$

Outer Approximation

An outer approximation of $P^{s}\left(C_{T}\right)$:

$$
P_{\text {out }}^{s}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid \forall i=1, \ldots, k: \sup _{V_{T} \in \mathcal{A}\left(x_{0}+p\right)}\left(w^{i}\right)^{T} U\left(V_{T}-C_{T}\right) \geq v^{i}\right\}
$$

Outer Approximation

An outer approximation of $P^{s}\left(C_{T}\right)$:

$$
P_{\text {out }}^{s}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid \forall i=1, \ldots, k: \sup _{V_{T} \in \mathcal{A}\left(x_{0}+p\right)}\left(w^{i}\right)^{T} U\left(V_{T}-C_{T}\right) \geq v^{i}\right\}
$$

Upper image of:

$$
\begin{array}{lll}
\text { minimize } & p \text { with respect to } \leq_{\mathbb{R}_{+}^{d}} \\
\text { subject to } & \left(w^{i}\right)^{T} U\left(V_{T}^{i}-C_{T}\right) \geq v^{i} \text { for } i=1, \ldots, k ; \\
& V_{T}^{i} \in \mathcal{A}\left(x_{0}+p\right) & \text { for } i=1, \ldots, k .
\end{array}
$$

Inner Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

Inner Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- conv $U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\} \supseteq V\left(x_{0}, 0\right)$, where $\mathcal{V}=\left\{V^{1}, \ldots, V^{k}\right\}$.

Inner Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- conv $U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\} \supseteq V\left(x_{0}, 0\right)$, where $\mathcal{V}=\left\{V^{1}, \ldots, V^{k}\right\}$.
- An inner approximation of $P^{b}\left(C_{T}\right)$:

$$
P_{\mathrm{in}}^{b}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq \operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\}\right\}
$$

Inner Approximation

$$
P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq V\left(x_{0}, 0\right)\right\}
$$

- conv $U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\} \supseteq V\left(x_{0}, 0\right)$, where $\mathcal{V}=\left\{V^{1}, \ldots, V^{k}\right\}$.
- An inner approximation of $P^{b}\left(C_{T}\right)$:

$$
P_{\mathrm{in}}^{b}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}-p, C_{T}\right) \supseteq \operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\}\right\}
$$

Lower image of:
maximize $\quad p$ with respect to $\leq_{\mathbb{R}_{+}^{d}}$
subject to $U\left(V_{T}^{i}+C_{T}\right) \geq U\left(V^{i}\right)+\epsilon C \quad$ for $\quad i=1, \ldots, k$;

$$
V_{T}^{i} \in \mathcal{A}\left(x_{0}-p\right) \quad \text { for } i=1, \ldots, k
$$

Inner Approximation

- An inner approximation of $P^{s}\left(C_{T}\right)$:

$$
P_{\mathrm{in}}^{s}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq \operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\}\right\}
$$

Inner Approximation

- An inner approximation of $P^{s}\left(C_{T}\right)$:

$$
P_{\mathrm{in}}^{s}\left(C_{T}\right):=\left\{p \in \mathbb{R}^{d} \mid V\left(x_{0}+p,-C_{T}\right) \supseteq \operatorname{conv} U(\mathcal{V})-\mathbb{R}_{+}^{q}+\epsilon\{c\}\right\}
$$

Upper image of:
minimize $\quad p \quad$ with respect to $\leq_{\mathbb{R}_{+}^{d}}$
subject to $\quad U\left(V_{T}^{i}-C_{T}\right) \geq U\left(V^{i}\right)+\epsilon C \quad$ for $\quad i=1, \ldots, k$;

$$
V_{T}^{i} \in \mathcal{A}\left(x_{0}+p\right)
$$

for $i=1, \ldots, k$.
(1) Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets
(3) Example with Conical Market Model
- A Single Multivariate Utility Function Case

4 Open Questions and Next Steps

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;
- d assets traded over time, $t=0,1, \ldots, T$;

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;
- d assets traded over time, $t=0,1, \ldots, T$;
- $\left(K_{t}\right)_{t=0}^{T}$: polyhedral 'solvency cones' $\left(\mathbb{R}_{+}^{d} \subsetneq K_{t} \neq \mathbb{R}^{d}\right)$;

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;
- d assets traded over time, $t=0,1, \ldots, T$;
- $\left(K_{t}\right)_{t=0}^{T}$: polyhedral 'solvency cones' $\left(\mathbb{R}_{+}^{d} \subsetneq K_{t} \neq \mathbb{R}^{d}\right)$;
- $\left(V_{t}\right)_{t=0}^{T}$: self-financing portfolio process,

$$
V_{t}-V_{t-1} \in-K_{t}, \quad \mathbb{P} \text {-a.s., for all } t \in\{0,1, \ldots, T\}
$$

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;
- d assets traded over time, $t=0,1, \ldots, T$;
- $\left(K_{t}\right)_{t=0}^{T}$: polyhedral 'solvency cones' $\left(\mathbb{R}_{+}^{d} \subsetneq K_{t} \neq \mathbb{R}^{d}\right)$;
- $\left(V_{t}\right)_{t=0}^{T}$: self-financing portfolio process,

$$
V_{t}-V_{t-1} \in-K_{t}, \quad \mathbb{P} \text {-a.s., for all } t \in\{0,1, \ldots, T\} ;
$$

- x_{0} : initial endowment;

Conical Market Model

- $\left(\Omega, \mathcal{F},(\mathcal{F})_{t=0}^{T}, \mathbb{P}\right)$: a filtered finite probability space;
- d assets traded over time, $t=0,1, \ldots, T$;
- $\left(K_{t}\right)_{t=0}^{T}$: polyhedral 'solvency cones' $\left(\mathbb{R}_{+}^{d} \subsetneq K_{t} \neq \mathbb{R}^{d}\right)$;
- $\left(V_{t}\right)_{t=0}^{T}$: self-financing portfolio process,

$$
V_{t}-V_{t-1} \in-K_{t}, \quad \mathbb{P} \text {-a.s., } \quad \text { for all } t \in\{0,1, \ldots, T\} ;
$$

- x_{0} : initial endowment;
- $\mathcal{A}\left(x_{0}\right):=x_{0}-L_{n}^{0}\left(\mathcal{F}_{0}, K_{0}\right)-L_{n}^{0}\left(\mathcal{F}_{1}, K_{1}\right)-\ldots-L_{n}^{0}\left(\mathcal{F}_{T}, K_{T}\right)$.

Single Multivariate Utility - toy example

$$
d=2, T=1 ;
$$

Single Multivariate Utility - toy example

$d=2, T=1 ;$
$\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}_{T}=2^{\Omega}$ and $p_{i}=\mathbb{P}\left(\omega_{i}\right)=\frac{1}{2}$ for $i=1,2$;
The generating vectors of the solvency cones $K_{0}, K_{1}\left(\omega_{1}\right)$ and $K_{1}\left(\omega_{2}\right)$:

$$
K_{0}=\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right], \quad K_{1}\left(\omega_{1}\right)=\left[\begin{array}{cc}
2 & -1.9 \\
-1 & 1
\end{array}\right], \quad K_{1}\left(\omega_{2}\right)=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2.1
\end{array}\right] ;
$$

Single Multivariate Utility - toy example

$$
d=2, T=1 ;
$$

$$
\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}_{T}=2^{\Omega} \text { and } p_{i}=\mathbb{P}\left(\omega_{i}\right)=\frac{1}{2} \text { for } i=1,2 ;
$$

The generating vectors of the solvency cones $K_{0}, K_{1}\left(\omega_{1}\right)$ and $K_{1}\left(\omega_{2}\right)$:

$$
K_{0}=\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right], \quad K_{1}\left(\omega_{1}\right)=\left[\begin{array}{cc}
2 & -1.9 \\
-1 & 1
\end{array}\right], \quad K_{1}\left(\omega_{2}\right)=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2.1
\end{array}\right] ;
$$

$$
x_{0}=0 \in \mathbb{R}^{2} ;
$$

Single Multivariate Utility - toy example

$d=2, T=1 ;$
$\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}_{T}=2^{\Omega}$ and $p_{i}=\mathbb{P}\left(\omega_{i}\right)=\frac{1}{2}$ for $i=1,2$;
The generating vectors of the solvency cones $K_{0}, K_{1}\left(\omega_{1}\right)$ and $K_{1}\left(\omega_{2}\right)$:

$$
K_{0}=\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right], \quad K_{1}\left(\omega_{1}\right)=\left[\begin{array}{cc}
2 & -1.9 \\
-1 & 1
\end{array}\right], \quad K_{1}\left(\omega_{2}\right)=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2.1
\end{array}\right] ;
$$

$x_{0}=0 \in \mathbb{R}^{2}$;
$C_{T}\left(\omega_{1}\right)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, C_{T}\left(\omega_{2}\right)=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T} ;$

Single Multivariate Utility - toy example

$d=2, T=1 ;$
$\Omega=\left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F}_{T}=2^{\Omega}$ and $p_{i}=\mathbb{P}\left(\omega_{i}\right)=\frac{1}{2}$ for $i=1,2$;
The generating vectors of the solvency cones $K_{0}, K_{1}\left(\omega_{1}\right)$ and $K_{1}\left(\omega_{2}\right)$:

$$
K_{0}=\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right], \quad K_{1}\left(\omega_{1}\right)=\left[\begin{array}{cc}
2 & -1.9 \\
-1 & 1
\end{array}\right], \quad K_{1}\left(\omega_{2}\right)=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2.1
\end{array}\right] ;
$$

$x_{0}=0 \in \mathbb{R}^{2}$;
$C_{T}\left(\omega_{1}\right)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, C_{T}\left(\omega_{2}\right)=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T} ;$
$u(x)=1-0.5\left(e^{-x_{1}}+e^{-x_{2}}\right), x_{i} \geq 0$.

- $v^{0}:=\sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} \mathbb{E} u\left(V_{T}\right)$
- $v^{0}:=\sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} \mathbb{E} u\left(V_{T}\right)$
- $P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} u\left(V_{T}+C_{T}\right) \geq v^{0}\right\}$.
- $P^{s}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}+p\right)} u\left(V_{T}-C_{T}\right) \geq v^{0}\right\}$.
- $v^{0}:=\sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} \mathbb{E} u\left(V_{T}\right)$
- $P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} u\left(V_{T}+C_{T}\right) \geq v^{0}\right\}$.
- $P^{s}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}+p\right)} u\left(V_{T}-C_{T}\right) \geq v^{0}\right\}$.
- $P^{b}\left(C_{T}\right)$ is the lower image of

$$
\begin{aligned}
\text { maximize } & p \quad\left(\text { with respect to } \leq_{K_{0}}\right) \\
\text { subject to } & \mathbb{E} u\left(V_{T}+C_{T}\right) \geq v^{0}, \\
& V_{T} \in \mathcal{A}\left(x_{0}-p\right) .
\end{aligned}
$$

- $v^{0}:=\sup _{V_{T} \in \mathcal{A}\left(x_{0}\right)} \mathbb{E} u\left(V_{T}\right)$
- $P^{b}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}-p\right)} u\left(V_{T}+C_{T}\right) \geq v^{0}\right\}$.
- $P^{s}\left(C_{T}\right)=\left\{p \in \mathbb{R}^{d} \mid \sup _{V_{T} \in \mathcal{A}\left(x_{0}+p\right)} u\left(V_{T}-C_{T}\right) \geq v^{0}\right\}$.
- $P^{b}\left(C_{T}\right)$ is the lower image of

$$
\begin{aligned}
\text { maximize } & p \quad\left(\text { with respect to } \leq K_{0}\right) \\
\text { subject to } & \mathbb{E} u\left(V_{T}+C_{T}\right) \geq v^{0}, \\
& V_{T} \in \mathcal{A}\left(x_{0}-p\right) .
\end{aligned}
$$

- $P^{s}\left(C_{T}\right)$ is the upper image of

$$
\begin{aligned}
\text { minimize } & p \quad\left(\text { with respect to } \leq_{K_{0}}\right) \\
\text { subject to } & \mathbb{E} u\left(V_{T}-C_{T}\right) \geq v^{0}, \\
& V_{T} \in \mathcal{A}\left(x_{0}+p\right) .
\end{aligned}
$$

Question: Which $p^{b} \in P^{b}\left(C_{T}\right)$ and $p^{s} \in P^{s}\left(C_{T}\right)$ yield the smallest gap?

Question: Which $p^{b} \in P^{b}\left(C_{T}\right)$ and $p^{s} \in P^{s}\left(C_{T}\right)$ yield the smallest gap?

$$
\begin{array}{cl}
\operatorname{minimize} & \left\|p^{b}-p^{s}\right\| \\
\text { subject to } & \mathbb{E} u\left(V_{T}^{b}-C_{T}\right) \geq v^{0}, \\
& \mathbb{E} u\left(V_{T}^{s}+C_{T}\right) \geq v^{0}, \\
& V_{T}^{b} \in \mathcal{A}\left(x_{0}-p^{b}\right), \\
& V_{T}^{s} \in \mathcal{A}\left(x_{0}+p^{s}\right) .
\end{array}
$$

(1) Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)
(2) Utility Indifference Pricing for Incomplete Preferences
- Properties of Buy and Sell Prices
- Computation of the Price Sets
(3) Example with Conical Market Model
- A Single Multivariate Utility Function Case
(4) Open Questions and Next Steps

Open Questions and Next Steps:

- Can we bound the approximation error?

Open Questions and Next Steps:

- Can we bound the approximation error?
- What if the utility functions are not bounded?

Open Questions and Next Steps:

- Can we bound the approximation error?
- What if the utility functions are not bounded?
- Some 'unbounded' problems are known to be tractable.
- Can we develop algorithms for them?

Open Questions and Next Steps:

- Can we bound the approximation error?
- What if the utility functions are not bounded?
- Some 'unbounded' problems are known to be tractable.
- Can we develop algorithms for them?

References

```
Armbruster B., Delage, E.
Decision Making Under Uncertainty when Preference Relation Information is Incomplete
Management Science, 61: 111-128, }2015
Benedetti, G., Campi, O.
Multivariate Utility Maximization with Proportional Transaction Costs and Random Endowment
SIAM Journal of Control Optimization, 50(3): 1283-13018, }2012
Bewley, T. F.
Knightian Decision Theory: Part 1
Decision in Economics and Finance, 25: 79-110, }2002
Campi, O., Owen M. P.
Multivariate Utility Maximization with Proportional Transaction Costs
Finance and Stochastics, 15(3): 461-499, }2011
Galaabaatar, T., Karni, E.
Subjective Expected Utility with Incomplete Preferences
Econometrica, 81(1): 255-284, }2013
Löhne, A., Rudloff, B. and Ulus, F.
Primal and Dual Approximation Algorithms for Convex Vector Optimization Problems
Journal of Global Optimization, }60\mathrm{ (4): 713-736, }2014
Ok, E., Dubra, J. and Maccheroni, F.
Expected Utility Theory Without the Completeness Axiom
Journal of Economic Theory, 115: 118-133, }2004
Ok, E., Ortoleva, P. and Riella, G.
Incomplete Preferences under Uncertainty: Indecisiveness in Beliefs versus Tastes
Econometrica, 80(4): 1791-1808, }2012
```


Thank you!

