Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization

Firdevs Ulus Bilkent University, Ankara

> _{joint with} Birgit Rudloff

Vienna University of Economics and Business April 7, 2017

Firdevs Ulus

Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets

Example with Conical Market Model
A Single Multivariate Utility Function Case

Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets

Example with Conical Market Model
A Single Multivariate Utility Function Case

Open Questions and Next Steps

Incomplete Preferences

The classical utility theory assumes that the preferences are **complete**: *a decision maker is not allowed to be indifferent between different outcomes.*

Incomplete Preferences

The classical utility theory assumes that the preferences are **complete**: a decision maker is not allowed to be indifferent between different outcomes.

"It is conceivable -and may even in a way be more realistic- to allow for cases where the individual is neither able to state which of two alternatives he prefers nor that they are equally desirable."

[von Neumann, Morgenstern 1947]

The classical utility theory assumes that the preferences are **complete**: a decision maker is not allowed to be indifferent between different outcomes.

"It is conceivable -and may even in a way be more realistic- to allow for cases where the individual is neither able to state which of two alternatives he prefers nor that they are equally desirable." [von Neumann, Morgenstern 1947]

"Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable. Like others of the axioms, it is inaccurate as a description of real life; but unlike them, we find it hard to accept even from the normative viewpoint. Does "rationality" demand that an individual make definite preference comparisons between all possible lotteries (even on a limited set of basic alternatives)?" [Aumann 1962]

Incomplete Preferences

Incompleteness of Preferences:

- Some outcomes might be incomparable for the decision maker. [Ok, Dubra, Maccheroni 2004]: Vector valued utility representations
- Indecisiveness on the likelihood of the states of the world. [Bewley 1986, 2002]: Bewley's model of Knightian uncertainty.

Incomplete Preferences

Incompleteness of Preferences:

- Some outcomes might be incomparable for the decision maker. [Ok, Dubra, Maccheroni 2004]: Vector valued utility representations
- Indecisiveness on the likelihood of the states of the world. [Bewley 1986, 2002]: Bewley's model of Knightian uncertainty.
- [Ok, Ortoleva, Riella 2012]: Under some assumptions an incomplete preference relation accepts
 - either a *single-prior expected multi-utility representation*
 - or a multi-prior expected single-utility representation.
- [Galaabaatar, Karni 2013]: Characterization of preferences that admits a *multi-prior expected multi-utility representation*

Utility Representations of Incomplete Preferences

- $(\Omega, \mathcal{F}, \mathbb{P})$: finite probability space, $\mathcal{M}_1(\Omega)$: probability measures on Ω ,
- $L^{0}(\mathcal{F}, \mathbb{R}^{d})$: \mathcal{F} -measurable \mathbb{R}^{d} -valued random vectors, $\mathcal{C}(\mathbb{R}^{d})$: continuous functions on \mathbb{R}^{d} .

Definition

A preference relation \succeq on $L^0(\mathcal{F}, \mathbb{R}^d)$ is said to admit a multi-prior expected multi-utility representation if there exist \mathcal{U} with $\emptyset \neq \mathcal{U} \subseteq \mathcal{C}(\mathbb{R}^d)$ and \mathcal{Q} with $\emptyset \neq \mathcal{Q} \subseteq \mathcal{M}_1(\Omega)$ such that, for $Y, Z \in L^0(\mathcal{F}, \mathbb{R}^d)$, we have

$$Y \succeq Z \iff \forall u \in \mathcal{U}, \forall Q \in \mathcal{Q} : \mathbb{E}^{Q} u(Y) \ge \mathbb{E}^{Q} u(Z).$$

Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^d \to \mathbb{R} \cup \{-\infty\}$ is a multivariate utility function if

(i) $C_u := \operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}^d_+ \subseteq C_u \neq \mathbb{R}^d$; and (ii) u is increasing with respect to the partial order \leq_{C_u} .

Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^d \to \mathbb{R} \cup \{-\infty\}$ is a multivariate utility function if

(i) $C_u := \operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}^d_+ \subseteq C_u \neq \mathbb{R}^d$; and (ii) u is increasing with respect to the partial order \leq_{C_u} .

For complete preferences represented by a single utility function:

Definition ([Campi, Owen 2011])

A proper concave function $u: \mathbb{R}^d \to \mathbb{R} \cup \{-\infty\}$ is a multivariate utility function if

(i) $C_u := \operatorname{cl}(\operatorname{dom} u)$ is a convex cone such that $\mathbb{R}^d_+ \subseteq C_u \neq \mathbb{R}^d$; and (ii) u is increasing with respect to the partial order \leq_{C_u} .

For complete preferences represented by a single utility function:

 [Benedetti, Campi 2012]: Utility indifference buy and sell prices under proportional transacation costs where p^b_j, p^s_j are defined in terms of a single currency j ∈ {1,...,d}.

Assumption

- a) The preference relation admits a multi-prior expected multi-utility representation where $\mathcal{U} = \{u^1, \ldots, u^r\}$; $\mathcal{Q} = \{Q^1 \ldots Q^s\}$ for some $r, s \ge 1$ with q := rs.
- b) Any $u \in U$ is a multivariate utility function.

Assumption

- a) The preference relation admits a multi-prior expected multi-utility representation where $\mathcal{U} = \{u^1, \ldots, u^r\}$; $\mathcal{Q} = \{Q^1 \ldots Q^s\}$ for some $r, s \ge 1$ with q := rs.
- b) Any $u \in U$ is a multivariate utility function.

Notation: $U(\cdot) : L^0(\mathcal{F}, \mathbb{R}^d) \to \mathbb{R}^q$

$$U(\cdot) := (\mathbb{E}^{Q^1} u^1(\cdot), \ldots, \mathbb{E}^{Q^s} u^1(\cdot), \ldots, \mathbb{E}^{Q^1} u^r(\cdot), \ldots, \mathbb{E}^{Q^s} u^r(\cdot))^T.$$

Utility Maximization Problem

maximize $U(V_T + C_T)$ subject to $V_T \in \mathcal{A}(x)$,

 $x \in \mathbb{R}^d$: initial endowment; $\mathcal{A}(x) \subseteq \mathcal{L}^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x; $C_T \in \mathcal{L}^0(\mathcal{F}_T, \mathbb{R}^d)$: some payoff that is received at time T.

Assumption

 $\mathcal{A}(x)$ is a convex set for all $x \in \mathbb{R}^d$.

Utility Maximization Problem

maximize $U(V_T + C_T)$ subject to $V_T \in \mathcal{A}(x)$,

 $x \in \mathbb{R}^d$: initial endowment; $\mathcal{A}(x) \subseteq \mathcal{L}^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x; $C_T \in \mathcal{L}^0(\mathcal{F}_T, \mathbb{R}^d)$: some payoff that is received at time T.

Assumption

 $\mathcal{A}(x)$ is a convex set for all $x \in \mathbb{R}^d$.

Convex Vector Optimization Problem (CVOP).

$$\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0, \end{array}$$

where

- $K \subseteq \mathbb{R}^q$ is a solid, pointed, polyhedral convex ordering cone,
- $f: \mathbb{R}^n \to \mathbb{R}^q$ is K-concave,
- $g: \mathbb{R}^n \to \mathbb{R}^m$ is \mathbb{R}^m_+ -convex.

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

• $\mathcal{X} := \{x \in X : g(x) \le 0\}$ is convex.

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

X := {*x* ∈ *X* : *g*(*x*) ≤ 0} is convex.
P := cl(*f*(*X*) − *K*) is called the **lower image** of (P).

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

•
$$\mathcal{X} := \{x \in X : g(x) \le 0\}$$
 is convex.

- $\mathcal{P} := \operatorname{cl}(f(\mathcal{X}) K)$ is called the **lower image** of (P).
- $\bar{x} \in \mathcal{X}$ is a weak maximizer for (P) if $f(\bar{x}) \in \operatorname{bd} \mathcal{P}$.
- (P) is said to be **bounded** if there is $y \in \mathbb{R}^q$ with $\{y\} K \supseteq \mathcal{P}$.

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

•
$$\mathcal{X} := \{x \in X : g(x) \le 0\}$$
 is convex.

- $\mathcal{P} := \operatorname{cl}(f(\mathcal{X}) K)$ is called the **lower image** of (P).
- $\bar{x} \in \mathcal{X}$ is a weak maximizer for (P) if $f(\bar{x}) \in \operatorname{bd} \mathcal{P}$.
- (P) is said to be **bounded** if there is $y \in \mathbb{R}^q$ with $\{y\} K \supseteq \mathcal{P}$.

Definition ([Löhne, Rudloff, U., 2014])

Let (P) be bounded. A finite subset $\overline{\mathcal{X}}$ of \mathcal{X} is called a **finite (weak)** ϵ -solution to (P) if it consists of only (weak) maximizers; and

$$\operatorname{conv} f(\bar{\mathcal{X}}) - K + \epsilon\{k\} \supseteq \mathcal{P} \supseteq \operatorname{conv} f(\bar{\mathcal{X}}) - K.$$

 $k \in int K$ is fixed.

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

$$\max \{ w^T f(x) : g(x) \le 0 \}.$$
 (P(w))

Proposition

Let $w \in K^+ \setminus \{0\}$. An optimal solution \bar{x} of (P(w)) is a weak maximizer of (P).

 $\begin{array}{ll} \text{maximize} & f(x) \quad (\text{with respect to } \leq_{\mathcal{K}}) & (\mathsf{P}) \\ \text{subject to} & g(x) \leq 0. \end{array}$

$$\max \{ w^T f(x) : g(x) \le 0 \}.$$
 (P(w))

Proposition

Let $w \in K^+ \setminus \{0\}$. An optimal solution \bar{x} of (P(w)) is a weak maximizer of (P).

Theorem

If $\mathcal{X} \subseteq \mathbb{R}^n$ is a non-empty closed set and (P) is a **bounded** problem, then for each weak maximizer \bar{x} of (P), there exists $w \in K^+ \setminus \{0\}$ such that \bar{x} is an optimal solution to (P(w)).

Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets

Example with Conical Market Model
A Single Multivariate Utility Function Case

Open Questions and Next Steps

Utility Maximization Problem

maximize $U(V_T + C_T)$ subject to $V_T \in \mathcal{A}(x)$.

 $(\mathsf{Ordering \ cone \ is} \leq_{\mathbb{R}^q_+}.)$

Utility Maximization Problem

maximize $U(V_T + C_T)$ subject to $V_T \in \mathcal{A}(x)$.

 $(\text{Ordering cone is } \leq_{\mathbb{R}^q_{\perp}}.)$

• The lower image:

$$V(x, C_T) := \operatorname{cl} \bigcup_{V_T \in \mathcal{A}(x)} \left(U(V_T + C_T) - \mathbb{R}^q_+ \right).$$

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$.

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$.

How to compare sets?

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$.

How to compare sets?

$$A \preccurlyeq B : \iff B \subseteq A + \mathbb{R}^q_+, \quad A \preccurlyeq B : \iff A \subseteq B - \mathbb{R}^q_+.$$

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$. How to compare sets?

 $A \preccurlyeq B : \iff B \subseteq A + \mathbb{R}^q_+, \quad A \preccurlyeq B : \iff A \subseteq B - \mathbb{R}^q_+.$

Buying claim C_T at price $p^b \in \mathbb{R}^d$ is 'more preferred' than not buying it if

$$V(x_0,0) \preccurlyeq V(x_0 - p^b, C_T) \iff V(x_0,0) \subseteq V(x_0 - p^b, C_T)$$

holds.

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$. How to compare sets?

 $A \preccurlyeq B : \iff B \subseteq A + \mathbb{R}^q_+, \quad A \preccurlyeq B : \iff A \subseteq B - \mathbb{R}^q_+.$

Buying claim C_T at price $p^b \in \mathbb{R}^d$ is 'more preferred' than not buying it if

$$V(x_0,0) \preccurlyeq V(x_0-p^b,C_T) \iff V(x_0,0) \subseteq V(x_0-p^b,C_T)$$

holds. Then, p^b is a buy price.

For a buy price we need to 'compare' $V(x_0 - p^b, C_T)$ and $V(x_0, 0)$. How to compare sets?

 $A \preccurlyeq B : \iff B \subseteq A + \mathbb{R}^q_+, \quad A \preccurlyeq B : \iff A \subseteq B - \mathbb{R}^q_+.$

Buying claim C_T at price $p^b \in \mathbb{R}^d$ is 'more preferred' than not buying it if

$$V(x_0,0) \preccurlyeq V(x_0-p^b,C_T) \iff V(x_0,0) \subseteq V(x_0-p^b,C_T)$$

holds. Then, p^b is a buy price.

Similarly, if

$$V(x_0,0)\subseteq V(x_0+p^s,-C_T).$$

then $p^s \in \mathbb{R}^d$ is a sell price.

$${\mathcal P}^b({\mathcal C}_{\mathcal T}) := \{ p \in {\mathbb R}^d | \ V(x_0 - p, {\mathcal C}_{\mathcal T}) \supseteq V(x_0, 0) \}$$

 ${\mathcal P}^s({\mathcal C}_{\mathcal T}) := \{ p \in {\mathbb R}^d | \ V(x_0 + p, -{\mathcal C}_{\mathcal T}) \supseteq V(x_0, 0) \}$

$$P^{b}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

 $P^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$

 $\mathcal{A}(x) \subseteq L^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x;

$$P^{b}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

 $P^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$

 $\mathcal{A}(x) \subseteq L^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$.

a. $\mathcal{A}(x)$ is a convex set.
$$P^{b}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

 $P^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$

 $\mathcal{A}(x) \subseteq L^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$.

a. $\mathcal{A}(x)$ is a convex set.

b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.

$$P^{b}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

 $P^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$

 $\mathcal{A}(x) \subseteq L^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$.

- a. $\mathcal{A}(x)$ is a convex set.
- b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.
- c. $\lambda \mathcal{A}(x) + (1 \lambda)\mathcal{A}(y) \subseteq \mathcal{A}(\lambda x + (1 \lambda)y).$

$$P^{b}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

 $P^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$

 $\mathcal{A}(x) \subseteq L^0(\mathcal{F}_T, \mathbb{R}^d)$: wealth that can be generated from x;

Assumption

Let $x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$.

- a. $\mathcal{A}(x)$ is a convex set.
- b. If $x \leq y$, then $\mathcal{A}(x) \subseteq \mathcal{A}(y)$.

c.
$$\lambda \mathcal{A}(x) + (1 - \lambda)\mathcal{A}(y) \subseteq \mathcal{A}(\lambda x + (1 - \lambda)y).$$

d. If $V_T \in \mathcal{A}(x)$, then $V_T + r \in \mathcal{A}(x + r)$ for any $r \in \mathbb{R}^d$.

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{s}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$$

Proposition

 $P^{b}(C_{T})$ is a convex lower set and $P^{s}(C_{T})$ is a convex upper set.

 $P^b(C_T) = P^b(C_T) - \mathbb{R}^q_+$ and $P^s(C_T) = P^s(C_T) + \mathbb{R}^q_+$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{s}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$$

Proposition

 $P^{b}(C_{T})$ is a convex lower set and $P^{s}(C_{T})$ is a convex upper set.

 $P^{b}(C_{T}) = P^{b}(C_{T}) - \mathbb{R}^{q}_{+}$ and $P^{s}(C_{T}) = P^{s}(C_{T}) + \mathbb{R}^{q}_{+}$

Proposition

Under the Assumptions on $\mathcal{A}(\cdot)$, we have $\operatorname{int} P^b(C_T) \cap \operatorname{int} P^s(C_T) = \emptyset$.

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{s}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{s}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$$

Definition

The indifference price set for C_T is

 $P(C_T) := \operatorname{cl} \left(\mathbb{R}^d \setminus \left(P^b(C_T) \cup P^s(C_T) \right) \right).$

Firdevs Ulus

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{s}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq V(x_{0}, 0) \}$$

Definition

The indifference price set for C_T is

 $P(C_T) := \operatorname{cl} \left(\mathbb{R}^d \setminus \left(P^b(C_T) \cup P^s(C_T) \right) \right).$

Recovery of the standard case:

 $P(C_T) = [p^b, p^s]$, where the preference relation is complete and d = 1.

Proposition

 $P^b(\cdot)$ and $P^s(\cdot)$ are increasing with respect to the partial order \leq_{C_u} , in the sense of set orders \preccurlyeq and \preccurlyeq , respectively.

Proposition

 $P^b(\cdot)$ and $P^s(\cdot)$ are increasing with respect to the partial order \leq_{C_u} , in the sense of set orders \preccurlyeq and \preccurlyeq , respectively.

 $\mathcal{C}^1_T \leq_{\mathcal{C}_{\mathcal{U}}} \mathcal{C}^2_T \implies \mathcal{P}^b(\mathcal{C}^1_T) \subseteq \mathcal{P}^b(\mathcal{C}^2_T) \text{ and } \mathcal{P}^s(\mathcal{C}^1_T) \supseteq \mathcal{P}^s(\mathcal{C}^2_T)$

Proposition

 $P^b(\cdot)$ and $P^s(\cdot)$ are increasing with respect to the partial order \leq_{C_u} , in the sense of set orders \preccurlyeq and \preccurlyeq , respectively.

$$\mathcal{C}_T^1 \leq_{\mathcal{C}_{\mathcal{U}}} \mathcal{C}_T^2 \implies \mathcal{P}^b(\mathcal{C}_T^1) \subseteq \mathcal{P}^b(\mathcal{C}_T^2) \text{ and } \mathcal{P}^s(\mathcal{C}_T^1) \supseteq \mathcal{P}^s(\mathcal{C}_T^2)$$

Proposition

 $P^{b}(\cdot)$ is concave with respect to \preccurlyeq ; and $P^{s}(\cdot)$ is convex with respect to \preccurlyeq .

Proposition

 $P^b(\cdot)$ and $P^s(\cdot)$ are increasing with respect to the partial order \leq_{C_u} , in the sense of set orders \preccurlyeq and \preccurlyeq , respectively.

$$\mathcal{C}_T^1 \leq_{\mathcal{C}_{\mathcal{U}}} \mathcal{C}_T^2 \implies \mathcal{P}^b(\mathcal{C}_T^1) \subseteq \mathcal{P}^b(\mathcal{C}_T^2) \text{ and } \mathcal{P}^s(\mathcal{C}_T^1) \supseteq \mathcal{P}^s(\mathcal{C}_T^2)$$

Proposition

 $P^{b}(\cdot)$ is concave with respect to \preccurlyeq ; and $P^{s}(\cdot)$ is convex with respect to \preccurlyeq .

For $\mathcal{C}^1_{\mathcal{T}}, \mathcal{C}^2_{\mathcal{T}} \in \mathcal{L}(\mathcal{F}_{\mathcal{T}}, \mathbb{R}^d)$ and $\lambda \in [0,1]$ we have

$$\begin{split} \lambda P^b(C_T^1) + (1-\lambda)P^b(C_T^2) &\subseteq P^b(\lambda C_T^1 + (1-\lambda)C_T^2); \\ P^s(\lambda C_T^1 + (1-\lambda)C_T^2) &\supseteq \lambda P^s(C_T^1) + (1-\lambda)P^s(C_T^2). \end{split}$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$\mathcal{P}^{b}(\mathcal{C}_{\mathcal{T}}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, \mathcal{C}_{\mathcal{T}}) \supseteq V(x_{0}, 0) \}$$

• Both sets are lower images!!!

$$P^{\boldsymbol{b}}(C_{\mathcal{T}}) = \{ \boldsymbol{p} \in \mathbb{R}^{\boldsymbol{d}} | \ V(\boldsymbol{x}_0 - \boldsymbol{p}, C_{\mathcal{T}}) \supseteq V(\boldsymbol{x}_0, 0) \}$$

- Both sets are lower images!!!
- In the case of LVOPs, there are ways to compute this set exactly.

$$P^{\boldsymbol{b}}(C_{\mathcal{T}}) = \{ \boldsymbol{p} \in \mathbb{R}^{\boldsymbol{d}} | \ V(\boldsymbol{x}_0 - \boldsymbol{p}, C_{\mathcal{T}}) \supseteq V(\boldsymbol{x}_0, 0) \}$$

- Both sets are lower images!!!
- In the case of LVOPs, there are ways to compute this set exactly.
- In the case of CVOPs, we can only approximate!

• Using algorithms in [Löhne, Rudloff, U. 2014] we solve

maximize $U(V_T)$ subject to $V_T \in \mathcal{A}(x_0)$.

• Using algorithms in [Löhne, Rudloff, U. 2014] we solve

maximize $U(V_T)$ subject to $V_T \in \mathcal{A}(x_0)$.

• We find a finite weak $\epsilon\text{-solution}\ \mathcal{V}=\{V^1,\ldots,V^k\}$ such that

 $\operatorname{conv} U(\mathcal{V}) - \mathbb{R}^q_+ + \epsilon\{c\} \supseteq V(x_0, 0).$

• Using algorithms in [Löhne, Rudloff, U. 2014] we solve

maximize $U(V_T)$ subject to $V_T \in \mathcal{A}(x_0)$.

• We find a finite weak $\epsilon\text{-solution}\ \mathcal{V}=\{V^1,\ldots,V^k\}$ such that

$$\operatorname{conv} U(\mathcal{V}) - \mathbb{R}^q_+ + \epsilon\{c\} \supseteq V(x_0, 0).$$

 $\bullet\,$ We obtain a corresponding 'weight' set $\mathit{W}=\{\mathit{w}^1,\ldots,\mathit{w}^k\}\subseteq\mathbb{R}^q_+$ such that

$$v^{i} := \sup_{V_{T} \in \mathcal{A}(x_{0})} (w^{i})^{T} U(V_{T}) = (w^{i})^{T} U(V^{i}).$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}.$$

• If the utility functions are bounded, we have

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | \forall w \in \mathbb{R}^{q}_{+} : \sup_{V_{T} \in \mathcal{A}(x_{0}-p)} w^{T} U(V_{T}+C_{T}) \ge \sup_{V_{T} \in \mathcal{A}(x_{0})} w^{T} U(V_{T}) \}.$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}.$$

• If the utility functions are bounded, we have

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | \forall w \in \mathbb{R}^{q}_{+} : \sup_{V_{T} \in \mathcal{A}(x_{0}-p)} w^{T} U(V_{T}+C_{T}) \ge \sup_{V_{T} \in \mathcal{A}(x_{0})} w^{T} U(V_{T}) \}.$$

• $W = \{w^1, \dots, w^k\}$ is a 'representative' weight set!

• An outer approximation of $P^b(C_T)$:

$$\begin{aligned} P^b_{\mathsf{out}}(\mathcal{C}_{\mathcal{T}}) &:= \{ p \in \mathbb{R}^d | \ \forall i \in \{1, \dots, k\} : \\ \sup_{V_{\mathcal{T}} \in \mathcal{A}(x_0 - p)} (w^i)^{\mathcal{T}} U(V_{\mathcal{T}} + \mathcal{C}_{\mathcal{T}}) \geq \sup_{V_{\mathcal{T}} \in \mathcal{A}(x_0)} (w^i)^{\mathcal{T}} U(V_{\mathcal{T}}) \}. \end{aligned}$$

$$\mathcal{P}^{b}(\mathcal{C}_{\mathcal{T}}) = \{ \mathbf{p} \in \mathbb{R}^{d} \mid \forall w \in \mathbb{R}^{q}_{+} : \sup_{V_{\mathcal{T}} \in \mathcal{A}(x_{0}-p)} w^{\mathcal{T}} U(V_{\mathcal{T}} + C_{\mathcal{T}}) \geq \sup_{V_{\mathcal{T}} \in \mathcal{A}(x_{0})} w^{\mathcal{T}} U(V_{\mathcal{T}}) \}.$$

An outer approximation of $P^b(C_T)$:

$$P^b_{\text{out}}(C_T) := \{ p \in \mathbb{R}^d | \forall i = 1, \dots, k : \sup_{V_T \in \mathcal{A}(x_0 - p)} (w^i)^T U(V_T + C_T) \ge v^i \}$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | \forall w \in \mathbb{R}^{q}_{+} : \sup_{V_{T} \in \mathcal{A}(x_{0}-p)} w^{T} U(V_{T}+C_{T}) \geq \sup_{V_{T} \in \mathcal{A}(x_{0})} w^{T} U(V_{T}) \}.$$

An outer approximation of $P^b(C_T)$:

$$P^b_{\text{out}}(C_T) := \{ p \in \mathbb{R}^d | \forall i = 1, \dots, k : \sup_{V_T \in \mathcal{A}(x_0 - p)} (w^i)^T U(V_T + C_T) \ge v^i \}$$

Lower image of:

$$\begin{array}{ll} \text{maximize} & p \quad \text{with respect to} & \leq_{\mathbb{R}^d_+} \\ \text{subject to} & (w^i)^T U(V^i_T + C_T) \geq v^i \quad \text{for} \quad i = 1, \dots, k; \\ & V^i_T \in \mathcal{A}(x_0 - p) \qquad \qquad \text{for} \quad i = 1, \dots, k. \end{array}$$

An outer approximation of $P^{s}(C_{T})$:

$$P_{\text{out}}^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | \forall i = 1, \dots, k : \sup_{V_{T} \in \mathcal{A}(x_{0}+p)} (w^{i})^{T} U(V_{T} - C_{T}) \geq v^{i} \}$$

An outer approximation of $P^{s}(C_{T})$:

$$P_{\text{out}}^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | \forall i = 1, \dots, k : \sup_{V_{T} \in \mathcal{A}(x_{0}+p)} (w^{i})^{T} U(V_{T} - C_{T}) \geq v^{i} \}$$

Upper image of:

$$\begin{array}{ll} \text{minimize} & p \quad \text{with respect to} \quad \leq_{\mathbb{R}^d_+} \\ \text{subject to} & (w^i)^T U(V^i_T - C_T) \geq v^i \quad \text{for} \quad i = 1, \dots, k; \\ & V^i_T \in \mathcal{A}(x_0 + p) \quad \qquad \text{for} \quad i = 1, \dots, k. \end{array}$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

• conv $U(\mathcal{V}) - \mathbb{R}^q_+ + \epsilon\{c\} \supseteq V(x_0, 0)$, where $\mathcal{V} = \{V^1, \dots, V^k\}$.

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

• conv $U(\mathcal{V}) - \mathbb{R}^q_+ + \epsilon\{c\} \supseteq V(x_0, 0)$, where $\mathcal{V} = \{V^1, \dots, V^k\}$.

• An inner approximation of $P^b(C_T)$:

 $P^{b}_{\mathsf{in}}(C_{\mathcal{T}}) := \{ p \in \mathbb{R}^{d} | \ V(x_{0} - p, C_{\mathcal{T}}) \supseteq \ \operatorname{conv} U(\mathcal{V}) - \mathbb{R}^{q}_{+} + \epsilon\{c\} \}$

$$P^{b}(C_{T}) = \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq V(x_{0}, 0) \}$$

• conv $U(\mathcal{V}) - \mathbb{R}^q_+ + \epsilon\{c\} \supseteq V(x_0, 0)$, where $\mathcal{V} = \{V^1, \dots, V^k\}$.

• An inner approximation of $P^b(C_T)$:

$$P^{b}_{in}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} - p, C_{T}) \supseteq \text{ conv } U(\mathcal{V}) - \mathbb{R}^{q}_{+} + \epsilon\{c\} \}$$

Lower image of:

$$\begin{array}{ll} \text{maximize} & p \quad \text{with respect to} & \leq_{\mathbb{R}^d_+} \\ \text{subject to} & U(V_T^i + C_T) \geq U(V^i) + \epsilon c \quad \text{ for } i = 1, \dots, k; \\ & V_T^i \in \mathcal{A}(x_0 - p) \quad \text{ for } i = 1, \dots, k. \end{array}$$

• An inner approximation of $P^{s}(C_{T})$:

 $P_{\rm in}^{\rm s}({\mathcal C}_{{\mathcal T}}) := \{ p \in \mathbb{R}^d | \ V(x_0 + p, -{\mathcal C}_{{\mathcal T}}) \supseteq \ {\rm conv} \ U({\mathcal V}) - \mathbb{R}^q_+ + \epsilon\{c\} \}$

• An inner approximation of $P^{s}(C_{T})$:

 $P_{in}^{s}(C_{T}) := \{ p \in \mathbb{R}^{d} | V(x_{0} + p, -C_{T}) \supseteq \text{ conv } U(\mathcal{V}) - \mathbb{R}^{q}_{+} + \epsilon\{c\} \}$ Upper image of:

$$\begin{array}{ll} \text{minimize} & p \quad \text{with respect to} \quad \leq_{\mathbb{R}^d_+} \\ \text{subject to} & U(V^i_T - C_T) \geq U(V^i) + \epsilon c \quad \text{ for } i = 1, \dots, k; \\ & V^i_T \in \mathcal{A}(x_0 + p) \quad \text{ for } i = 1, \dots, k. \end{array}$$

D Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets

Example with Conical Market Model
A Single Multivariate Utility Function Case

Open Questions and Next Steps

• $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;

- $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;
- d assets traded over time, t = 0, 1, ..., T;

- $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;
- d assets traded over time, t = 0, 1, ..., T;
- $(K_t)_{t=0}^{\mathsf{T}}$: polyhedral 'solvency cones' $(\mathbb{R}^d_+ \subsetneq K_t \neq \mathbb{R}^d)$;

- $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;
- d assets traded over time, t = 0, 1, ..., T;
- $(K_t)_{t=0}^{\mathcal{T}}$: polyhedral 'solvency cones' $(\mathbb{R}^d_+ \subsetneq K_t \neq \mathbb{R}^d)$;
- $(V_t)_{t=0}^T$: self-financing portfolio process,

$$V_t - V_{t-1} \in -K_t$$
, \mathbb{P} -a.s., for all $t \in \{0, 1, \dots, T\}$;
Conical Market Model

- $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;
- d assets traded over time, t = 0, 1, ..., T;
- $(K_t)_{t=0}^{\mathcal{T}}$: polyhedral 'solvency cones' $(\mathbb{R}^d_+ \subsetneq K_t \neq \mathbb{R}^d)$;
- $(V_t)_{t=0}^T$: self-financing portfolio process,

$$V_t - V_{t-1} \in -K_t$$
, \mathbb{P} -a.s., for all $t \in \{0, 1, \dots, T\}$;

• x₀: initial endowment;

Conical Market Model

- $(\Omega, \mathcal{F}, (\mathcal{F})_{t=0}^{T}, \mathbb{P})$: a filtered finite probability space;
- d assets traded over time, t = 0, 1, ..., T;
- $(K_t)_{t=0}^{\mathcal{T}}$: polyhedral 'solvency cones' $(\mathbb{R}^d_+ \subsetneq K_t \neq \mathbb{R}^d)$;
- $(V_t)_{t=0}^T$: self-financing portfolio process,

$$V_t - V_{t-1} \in -K_t$$
, \mathbb{P} -a.s., for all $t \in \{0, 1, \dots, T\}$;

• x₀: initial endowment;

•
$$\mathcal{A}(x_0) := x_0 - L_n^0(\mathcal{F}_0, \mathcal{K}_0) - L_n^0(\mathcal{F}_1, \mathcal{K}_1) - \ldots - L_n^0(\mathcal{F}_T, \mathcal{K}_T).$$

d = 2, T = 1;

d = 2, T = 1;

 $\Omega = \{\omega_1, \omega_2\}$, $\mathcal{F}_T = 2^{\Omega}$ and $p_i = \mathbb{P}(\omega_i) = \frac{1}{2}$ for i = 1, 2;

The generating vectors of the solvency cones $K_0, K_1(\omega_1)$ and $K_1(\omega_2)$:

$$\mathcal{K}_0 = \left[egin{array}{cc} 1 & -0.9 \ -0.9 & 1 \end{array}
ight], \ \mathcal{K}_1(\omega_1) = \left[egin{array}{cc} 2 & -1.9 \ -1 & 1 \end{array}
ight], \ \mathcal{K}_1(\omega_2) = \left[egin{array}{cc} 1 & -1 \ -2 & 2.1 \end{array}
ight];$$

d = 2, T = 1;

 $\Omega = \{\omega_1, \omega_2\}$, $\mathcal{F}_T = 2^{\Omega}$ and $p_i = \mathbb{P}(\omega_i) = \frac{1}{2}$ for i = 1, 2;

The generating vectors of the solvency cones $K_0, K_1(\omega_1)$ and $K_1(\omega_2)$:

$$egin{aligned} \mathcal{K}_0 &= \left[egin{aligned} 1 & -0.9 \ -0.9 & 1 \end{array}
ight], \ \mathcal{K}_1(\omega_1) &= \left[egin{aligned} 2 & -1.9 \ -1 & 1 \end{array}
ight], \ \mathcal{K}_1(\omega_2) &= \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight]; \ \mathcal{X}_0 &= 0 \in \mathbb{R}^2; \end{aligned}$$

d = 2, T = 1;

 $\Omega = \{\omega_1, \omega_2\}$, $\mathcal{F}_T = 2^{\Omega}$ and $p_i = \mathbb{P}(\omega_i) = \frac{1}{2}$ for i = 1, 2;

The generating vectors of the solvency cones $K_0, K_1(\omega_1)$ and $K_1(\omega_2)$:

$$egin{aligned} &\mathcal{K}_0 = \left[egin{aligned} 1 & -0.9 \ -0.9 & 1 \end{array}
ight], \ &\mathcal{K}_1(\omega_1) = \left[egin{aligned} 2 & -1.9 \ -1 & 1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left[egin{aligned} 1 & -1 \ -2 & 2.1 \end{array}
ight], \ &\mathcal{K}_1(\omega_2) = \left$$

 $C_T(\omega_1) = [1 \ 0]^T$, $C_T(\omega_2) = [0 \ 1]^T$;

d = 2, T = 1;

 $\Omega = \{\omega_1, \omega_2\}$, $\mathcal{F}_T = 2^{\Omega}$ and $p_i = \mathbb{P}(\omega_i) = \frac{1}{2}$ for i = 1, 2;

The generating vectors of the solvency cones $K_0, K_1(\omega_1)$ and $K_1(\omega_2)$:

$$\begin{split} \mathcal{K}_0 &= \left[\begin{array}{cc} 1 & -0.9 \\ -0.9 & 1 \end{array} \right], \ \mathcal{K}_1(\omega_1) = \left[\begin{array}{cc} 2 & -1.9 \\ -1 & 1 \end{array} \right], \ \mathcal{K}_1(\omega_2) = \left[\begin{array}{cc} 1 & -1 \\ -2 & 2.1 \end{array} \right]; \\ \mathcal{X}_0 &= 0 \in \mathbb{R}^2; \end{split}$$

 $C_T(\omega_1) = [1 \ 0]^T$, $C_T(\omega_2) = [0 \ 1]^T$; $u(x) = 1 - 0.5(e^{-x_1} + e^{-x_2})$, $x_i \ge 0$.

•
$$v^0 := \sup_{V_T \in \mathcal{A}(x_0)} \mathbb{E}u(V_T)$$

•
$$v^0 := \sup_{V_T \in \mathcal{A}(x_0)} \mathbb{E}u(V_T)$$

•
$$P^b(C_T) = \{p \in \mathbb{R}^d | \sup_{V_T \in \mathcal{A}(x_0-p)} u(V_T + C_T) \ge v^0\}.$$

•
$$P^{s}(C_{T}) = \{p \in \mathbb{R}^{d} | \sup_{V_{T} \in \mathcal{A}(x_{0}+p)} u(V_{T} - C_{T}) \geq v^{0}\}.$$

•
$$v^0 := \sup_{V_T \in \mathcal{A}(x_0)} \mathbb{E}u(V_T)$$

•
$$P^b(C_T) = \{p \in \mathbb{R}^d | \sup_{V_T \in \mathcal{A}(x_0-p)} u(V_T + C_T) \ge v^0\}.$$

•
$$P^{s}(C_{T}) = \{p \in \mathbb{R}^{d} | \sup_{V_{T} \in \mathcal{A}(x_{0}+p)} u(V_{T}-C_{T}) \geq v^{0}\}.$$

• $P^b(C_T)$ is the lower image of

 $\begin{array}{ll} \text{maximize} & p \quad (\text{with respect to } \leq_{\mathcal{K}_0}) \\ \text{subject to} & \mathbb{E}u(\mathcal{V}_T + \mathcal{C}_T) \geq v^0, \\ & \mathcal{V}_T \in \mathcal{A}(x_0 - p). \end{array}$

•
$$v^0 := \sup_{V_T \in \mathcal{A}(x_0)} \mathbb{E}u(V_T)$$

•
$$P^b(C_T) = \{p \in \mathbb{R}^d | \sup_{V_T \in \mathcal{A}(x_0 - p)} u(V_T + C_T) \ge v^0\}.$$

•
$$P^{s}(C_{T}) = \{p \in \mathbb{R}^{d} | \sup_{V_{T} \in \mathcal{A}(x_{0}+p)} u(V_{T} - C_{T}) \geq v^{0}\}.$$

• $P^b(C_T)$ is the lower image of

 $\begin{array}{ll} \text{maximize} & p \quad (\text{with respect to } \leq_{\mathcal{K}_0}) \\ \text{subject to} & \mathbb{E}u(\mathcal{V}_T + \mathcal{C}_T) \geq v^0, \\ & \mathcal{V}_T \in \mathcal{A}(x_0 - p). \end{array}$

• $P^{s}(C_{T})$ is the upper image of

minimizep (with respect to \leq_{K_0})subject to $\mathbb{E}u(V_T - C_T) \geq v^0,$ $V_T \in \mathcal{A}(x_0 + p).$

Question: Which $p^b \in P^b(C_T)$ and $p^s \in P^s(C_T)$ yield the smallest gap?

Question: Which $p^b \in P^b(C_T)$ and $p^s \in P^s(C_T)$ yield the smallest gap?

$$\begin{array}{ll} \text{minimize} & \left\| p^b - p^s \right\| \\ \text{subject to} & \left\| \mathbb{E}u(V_T^b - C_T) \ge v^0, \\ & \left\| \mathbb{E}u(V_T^s + C_T) \ge v^0, \\ & V_T^b \in \mathcal{A}(x_0 - p^b), \\ & V_T^s \in \mathcal{A}(x_0 + p^s). \end{array} \right.$$

D Motivation and Preliminaries

- Incomplete Preferences
- Multivariate Utility
- Utility Maximization Problem
- Convex Vector Optimization Problem (CVOP)

2 Utility Indifference Pricing for Incomplete Preferences

- Properties of Buy and Sell Prices
- Computation of the Price Sets

Example with Conical Market Model
 A Single Multivariate Utility Function Case

Open Questions and Next Steps

• Can we bound the approximation error?

- Can we bound the approximation error?
- What if the utility functions are not bounded?

- Can we bound the approximation error?
- What if the utility functions are not bounded?
 - Some 'unbounded' problems are known to be tractable.
 - Can we develop algorithms for them?

- Can we bound the approximation error?
- What if the utility functions are not bounded?
 - Some 'unbounded' problems are known to be tractable.
 - Can we develop algorithms for them?

References

Armbruster B., Delage, E. Decision Making Under Uncertainty when Preference Relation Information is Incomplete Management Science, 61: 111–128, 2015.

Benedetti, G., Campi, O. Multivariate Utility Maximization with Proportional Transaction Costs and Random Endowment SIAM Journal of Control Optimization, 50(3): 1283–13018, 2012.

Bewley, T. F. Knightian Decision Theory: Part 1 Decision in Economics and Finance, 25: 79–110, 2002.

Campi, O., Owen M. P. Multivariate Utility Maximization with Proportional Transaction Costs Finance and Stochastics, 15(3): 461–499, 2011.

Galaabaatar, T., Karni, E. Subjective Expected Utility with Incomplete Preferences Econometrica, 81(1): 255–284, 2013.

Löhne, A., Rudloff, B. and Ulus, F. Primal and Dual Approximation Algorithms for Convex Vector Optimization Problems Journal of Global Optimization, 60 (4): 713–736, 2014.

Ok, E., Dubra, J. and Maccheroni, F. Expected Utility Theory Without the Completeness Axiom Journal of Economic Theory, 115: 118–133, 2004.

Ok, E., Ortoleva, P. and Riella, G. Incomplete Preferences under Uncertainty: Indecisiveness in Beliefs versus Tastes *Econometrica*, 80(4): 1791–1808, 2012.

Firdevs Ulus

Utility Indifference Pricing under Incomplete Preferences

Thank you!