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Backward Stochastic Differential Equations

What is a BSDE?

SDEs - the differential dynamics approach to BSDEs

Stochastic (ordinary, forward) differential equations (driven by a
Brownian motion W ):

dXt = b(t,Xt)dt + σ(t,Xt)dWt , X0 = x0

or

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , 0 ≤ t ≤ T .

MANY applications (disturbed ODEs, fundamental for finance
in cont. time,...)

b, σ progressively measurable,...

x0 = X0 is deterministic

Xt is Ft-measurable
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Backward Stochastic Differential Equations

What is a BSDE?

SDEs - the differential dynamics approach to BSDEs

Consider the same situation backward in time:

Xt = ξ+

∫ T

t
b(s,Xs)ds+

∫ T

t
σ(s,Xs)dWs , XT = ξ, 0 ≤ t ≤ T .

XT = ξ ∈ L2(FT )

Is X0 deterministic?

Is Xt Ft-measurable?

In general: NO! Everything is FT -measurable. Problem is not
well-posed.
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Backward Stochastic Differential Equations

What is a BSDE?

SDEs - the differential dynamics approach to BSDEs

When is it possible to find an adapted backward solution that has
the dynamics of this SDE? How to find a setting such that the
problem is well-posed?

Xt = ξ +

∫ T

t
b(s,Xs)ds +

∫ T

t
σ(s,Xs)dWs , 0 ≤ t ≤ T .
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the dynamics of this SDE? How to find a setting such that the
problem is well-posed?

Xt = ξ +

∫ T

t
b(s,Xs ,Zs)ds−

∫ T

t
ZsdWs , 0 ≤ t ≤ T .

Stochastic term has to be controlled by a process that
’subtracts the right amount of randomness’ of ξ. No arbitrary
σ!

Z is part of the solution.
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Backward Stochastic Differential Equations

What is a BSDE?

SDEs - the differential dynamics approach to BSDEs

Rename b =: f , X =: Y to write

Xt = ξ +

∫ T

t
b(s,Xs ,Zs)ds−

∫ T

t
ZsdWs , 0 ≤ t ≤ T

as

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs

or, in differential notation,

dYt = −f (Yt ,Zt)dt + ZtdWt

This is called a (standard) BSDE (backward stochastic differential
equation) with generator f and terminal condition ξ.
A solution to a BSDE is a pair of processes (Y ,Z ) such that the
equation is satisfied.
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Pricing of contingent claims

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
8 / 31



Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Pricing of contingent claims

Let S be a risky asset with evolution dynamics

dSt = µtStdt + σtStdWt

A trader may invest in S or borrow/lend money (without risk) at
an interest rate rt .

πt is the amount of money invested in S at time t

Yt is the wealth of the trader

the money lend/borrowed is Y − π

dYt =
πt
St

dSt + rt(Yt − πt)dt = (πt(µt − rt) + rtYt)dt + πtσtdWt
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Pricing of contingent claims

dYt = (πt(µt − rt) + rtYt)dt + πtσtdWt

Suppose we have at time T a payoff ξ ∈ L2 (European call
option)

What is the minimal amount Y0 such that at time T we can
cover ξ by a strategy π such that YT = ξ?

Put differently, we look for a solution (Y , π) that solves

Yt = ξ −
∫ T

t
(πs(µs − rs) + rsYs) ds −

∫ T

t
πsσsdWs

If λ exists, such that µ− r = σλ, we get

Yt = ξ −
∫ T

t
(Zsλs + rsYs) ds −

∫ T

t
ZsdWs ,

which is a BSDE.
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Pricing of contingent claims

The above problem has an explicit solution:

EQ
[
e−

∫ T
t rsdsξ

∣∣∣Ft

]
,

where Q is the risk-neutral measure.

But: If the rates for borrowing and lending are different, the wealth
process satisfies

Yt = ξ−
∫ T

t

(
πsµs + r l s(Ys − πs)+ − rbs(Ys − πs)−

)
ds−

∫ T

t
σsπsdWs .

corresponding BSDE:

Yt =ξ −
∫ T

t

(
Zs
µs
σs

+
r ls
σs

(σsYs − Zs)+ − rbs
σs

(σsYs − Zs)−
)
ds

−
∫ T

t
ZsdWs

No more explicit solutions in the above manner.
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Pricing of contingent claims

Similar approaches for:

Hedging with constraints (Strategy between given bounds
[−m,M]) leads to

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs + AT − At

for an adapted, nondecreasing process A.

Same equation is used to hedge American options: Yt ≥ ζt ,
YT = ζT .
’Reflected’ BSDEs, RBSDEs.

Solution: (Y ,Z ,A)
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Representation of risk measures

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
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Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
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Numerics
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Representation of risk measures

Risk measures ↔ nonlinear F-expectations

A nonlinear expectation is an operator E : L2 → R such that

X ′ ≥ X ⇒ E(X ′) ≥ E(X ), equality only if X ′ = X .

E(c) = c for constants

for each X , t there is ηXt such that for all A ∈ Ft :
E(X1IA) = E(ηXt 1IA). In this case: ηXt =: Et(X ).

Theorem:
If

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs ,

(and f is uniformly Lipschitz in (y , z)) then E f defined by
E ft (ξ) = Yt constitutes a nonlinear expectation f -expectation.
In the case f = 0 we get back the ordinary conditional expectation
Et(X ) = E[X |Ft ] (This will serve as an easy example later).
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E(X1IA) = E(ηXt 1IA). In this case: ηXt =: Et(X ).

Theorem:
If

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs ,

(and f is uniformly Lipschitz in (y , z)) then E f defined by
E ft (ξ) = Yt constitutes a nonlinear expectation f -expectation.
In the case f = 0 we get back the ordinary conditional expectation
Et(X ) = E[X |Ft ] (This will serve as an easy example later).
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Representation of risk measures

Converse theorem (partly):

If E is a nonlinear expectation such that

E(X + X ′) ≤ E(X ) + E fµ(X ′),

with fµ(y , z) = µ|z |, and if

Et(X + X ′) = Et(X ) + X ′ for X ′ ∈ L2(Ft),

then there exists a generator f , not depending on y such that
E = E f .
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Feynman-Kac representation of PDEs

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Feynman-Kac representation of PDEs

There is a connection between semilinear parabolic equations and
BSDEs:

Let X be the forward solution to

dXt = b(t,Xt)dt + σ(t,Xt)dWt , X0 = x .

Moreover, let L be the operator Lφ = ∂tφ+ b∂xφ+ σ2

2 ∂
2
xxφ.

Assume, there is a (nice) solution v to the PDE

0 = Lφ+ f (·, ·, φ, σ∂xφ), φ(T , x) = G (x).

Then, the couple Y := v(·,X ),Z := ∂xv(·,X ) solves the backward
equation

Yt = G (XT ) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs .

’forward-backward SDE’ (decoupled)
Proof: Itô formula.
If the BSDE has at most one solution, then solving the BSDE and
the PDE are equivalent.
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Proof: Itô formula.
If the BSDE has at most one solution, then solving the BSDE and
the PDE are equivalent.

14 / 31



Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Feynman-Kac representation of PDEs

There is a connection between semilinear parabolic equations and
BSDEs:
Let X be the forward solution to

dXt = b(t,Xt)dt + σ(t,Xt)dWt , X0 = x .

Moreover, let L be the operator Lφ = ∂tφ+ b∂xφ+ σ2

2 ∂
2
xxφ.

Assume, there is a (nice) solution v to the PDE

0 = Lφ+ f (·, ·, φ, σ∂xφ), φ(T , x) = G (x).

Then, the couple Y := v(·,X ),Z := ∂xv(·,X ) solves the backward
equation

Yt = G (XT ) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs .

’forward-backward SDE’ (decoupled)
Proof: Itô formula.
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Feynman-Kac representation of PDEs

Example:

L = ∂t + σ2

2 ∂xx + µ∂x

Lu(t, x) +−|u(t, x) + σ∂xu(t, x)| = 0

u(T , x) = sin(x)

translates into

dXt = µdt + σdWt ,X0 = 1

dYt = |Yt + Zt |+ ZtdWt

YT = sin(XT )

15 / 31



Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Feynman-Kac representation of PDEs

The Feynman-Kac approach allows:

Solving the BSDE gives rise (in general) to a viscosity
solution.

Numerical schemes for BSDEs as an alternative to solve PDEs
by MC methods (especially in higher dimensions).

Similar approaches exist for SPDEs. They lead to DSBSDEs
(doubly stochastic backward SDEs).
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

BSDEs emerged in the 1970s (Bismut) from this field.

Goal: Maximize an expected gain of the form

J(ν) = E
[
g(X ν

T ) +

∫ T

0
ft(X

ν
t , ν(t))dWt

]
,

with respect to ν. Here, X ν is the solution of

dX ν
t = bt(Xt , νt)dt + σt(Xt , νt)dWt
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

J(ν) = E
[
g(X ν

T ) +

∫ T

0
ft(X

ν
t , ν(t))dWt

]

Sufficient/necessary conditions for optimality given by BSDEs:

Let us define the Hamiltonian

Ht(x , u, p, q) = bt(x , u)p + σt(x , u)q + ft(x , u).

Find argmaxu(Ht(x , u, p, q)) = ν̂t(x , p, q).

Solve an associated BSDE

Pt = ∂xg(X ν̂
t ) +

∫ T

t
∂xĤt(X

ν̂
s ,Ps ,Qs)ds −

∫ T

t
QsdWs .

get optimal control ν̂ by argmaxu(Ht(Xt , u,Ps ,Qs))
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

Utility maximization:
Given:

Stock: St = S0 +
∫ t

0 µrdr +
∫ t

0 σrdWr

Wealth up to now: X π
t = x +

∫ t
0 πsdSs , x > 0.

Utility function: U : R→ R.

Liability: F ∈ L2

Maximize the expected utility

supE
[
U

(
x +

∫ T

0
πsdSs − F

)]
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

Utility functions for example:

logarithmic: U(x) = log(x)

power: U(x) = xp

p , p ∈ ]0, 1[.

exponential: U(x) = − exp(−γx), γ > 0.

Analytical approach:

Hamilton-Jacobi-Bellman: Restricted to Markov setting

Convex duality: mostly non constructive

BSDE approach:

some numerics available (Lipschitz, quadratic generators)
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Backward Stochastic Differential Equations

Applications - Why do we need BSDEs?

Stochastic control / Utility maximization

There are...

...many more applications (principal-agent problem,...)

’Meta-theorem’: Any problem in mathematical finance can be
reduced (in some sense) to a (certain type of) BSDE.
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Backward Stochastic Differential Equations

Mathematical treatment

An easy example

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

Mathematical treatment

An easy example

Suppose that ξ = Eξ +
∫ T

0 ZsdWs (predictable representation
property.)

Then, with Yt = Eξ +
∫ t

0 ZsdWs , we have

Yt = ξ −
∫ T

t
ZsdWs ,

which is a BSDE with f = 0.

Note also that Yt = E [ξ|Ft ] .
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Backward Stochastic Differential Equations

Mathematical treatment

Iterating schemes

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

Mathematical treatment

Iterating schemes

Theoretical (typical) method to prove existence and uniqueness
(usually Lipschitz generators):

Start with (Y 0,Z 0) = (0, 0)

Get Y n+1 by

Y n+1
t = ξ +

∫ T

t
f (s,Y n

s ,Z
n
s )ds −

∫ T

t
Zn+1
s dWs

equivalent to

Y n+1
t = E

[
ξ +

∫ T

t
f (s,Y n

s ,Z
n
s )ds

∣∣∣∣Ft

]
,

Zn+1 by Martingale representation of ξ +
∫ T

0 f (s,Y n
s ,Z

n
s )ds.

Show convergence of (Y n,Zn)n≥0 by Banach’s fixed-point
theorem
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Backward Stochastic Differential Equations

Mathematical treatment

Numerics

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

Mathematical treatment

Numerics

To obtain a numerical scheme for

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs ,

we rewrite the equation for one step in a time-net:

Yti−1 = Yti +

∫ ti

ti−1

f (s,Ys ,Zs)ds −
∫ ti

ti−1

ZsdWs ,

Then, discretize the equation:

Ŷti−1 = Ŷti + (∆ti )f (ti , Ŷti , Ẑti )− (∆Wti )Ẑti−1, ŶT = ξ,

and find Ŷti−1 by taking the conditional expectation

Ŷti−1 = E
[
Ŷti + (∆ti )f (ti , Ŷti , Ẑti )

∣∣∣Fti−1

]
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Backward Stochastic Differential Equations

Mathematical treatment

Numerics

How to find the Z process:

Multiply

Ŷti−1 = Ŷti + (∆ti )f (ti , Ŷti , Ẑti )− (∆Wti )Ẑti−1, ŶT = ξ,

by ∆Wti to get

(∆Wti )Ŷti−1 = (∆Wti )Ŷti +(∆Wti )(∆ti )f (ti , Ŷti , Ẑti )−(∆Wti )
2Ẑti−1.

Taking the conditional expectation brings us to

Zti−1 = E
[
(∆Wti )Ŷti + (∆Wti )(∆ti )f (ti , Ŷti , Ẑti )

∣∣∣Fti−1

] 1

∆ti
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by ∆Wti to get

(∆Wti )Ŷti−1 = (∆Wti )Ŷti +(∆Wti )(∆ti )f (ti , Ŷti , Ẑti )−(∆Wti )
2Ẑti−1.

Taking the conditional expectation brings us to

Zti−1 = E
[
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Backward Stochastic Differential Equations

Mathematical treatment

Numerics

The schemes have order 1√
N
,N = maxi ∆ti

Theoretical rate of convergence since calculations of
conditional expectations are involved!

Other type of numerical schemes: Involve Picard iterations of
the equations and chaos decompositions of random variables.

Applicable codes/schemes do exist!
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Backward Stochastic Differential Equations

My field within BSDE theory

1 What is a BSDE?
SDEs - the differential dynamics approach to BSDEs

2 Applications - Why do we need BSDEs?
Pricing of contingent claims
Representation of risk measures
Feynman-Kac representation of PDEs
Stochastic control / Utility maximization

3 Mathematical treatment
An easy example
Iterating schemes
Numerics

4 My field within BSDE theory
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Backward Stochastic Differential Equations

My field within BSDE theory

Basically I follow three main topics (with Ch. Geiss, University of
Jyväskylä):

BSDEs with jumps (or Lévy driven BSDEs, BSDEJ, BSDEL):

Yt =ξ +

∫ T

t
f (s,Ys ,Zs ,Us)ds

−
∫ T

t
ZsdWs−

∫
]t,T ]×R0

Us(x)Ñ(ds, dx)

e.g. if Brownian motion in models is replaced by a Lévy
process.
Shock phenomena, PDEs (Brown) become PDIEs (Lévy),...

Existence and uniqueness for non-Lipschitz generators
(one-sided Lipschitz, locally Lipschitz, quadratic growth and
beyond)
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Backward Stochastic Differential Equations

My field within BSDE theory

Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV ξ = ’stochastic derivative with
respect to Brownian motion’. Denoted as Dsξ, 0 ≤ s ≤ T .
Example:

DsW
2
t = 2Wt · 1I[0,t](s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity DtYt = Zt allows explicit access to the Z -process
(trading strategy,...).

Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)

28 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV ξ = ’stochastic derivative with
respect to Brownian motion’. Denoted as Dsξ, 0 ≤ s ≤ T .

Example:
DsW

2
t = 2Wt · 1I[0,t](s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity DtYt = Zt allows explicit access to the Z -process
(trading strategy,...).

Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)

28 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV ξ = ’stochastic derivative with
respect to Brownian motion’. Denoted as Dsξ, 0 ≤ s ≤ T .
Example:

DsW
2
t = 2Wt · 1I[0,t](s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity DtYt = Zt allows explicit access to the Z -process
(trading strategy,...).

Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)

28 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV ξ = ’stochastic derivative with
respect to Brownian motion’. Denoted as Dsξ, 0 ≤ s ≤ T .
Example:

DsW
2
t = 2Wt · 1I[0,t](s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity DtYt = Zt allows explicit access to the Z -process
(trading strategy,...).

Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)

28 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV ξ = ’stochastic derivative with
respect to Brownian motion’. Denoted as Dsξ, 0 ≤ s ≤ T .
Example:

DsW
2
t = 2Wt · 1I[0,t](s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity DtYt = Zt allows explicit access to the Z -process
(trading strategy,...).

Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)

28 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

References:

Overview:
Bruno Bouchard: Lecture Notes on BSDEs, Existence and
Main Results, Lecture given at the London School of
Economics.
N. El Karoui, S. Peng, M. Quenez: Backward Stochastic
Differential Equations in Finance, Math. Finance, 7 (1), 1997.
El Karoui, Hamadène, Matoussi: Backward Stochastic
Differential Equations and Applications, Lectures CIMPA
school, 2007.

Nonlinear expectations:
S. Peng: Backward Stochastic differential equations, nonlinear
expectation and their applications, Proceedings of the
International congress of Mathematicians, 1, 2011.

29 / 31



Backward Stochastic Differential Equations

My field within BSDE theory

Stoch. control:
S. Peng: A general maximum principle for optimal control
problems, Siam J. of Control and Optimization, 28 (4), 1990.
S. Peng: Backward stochastic differential equations and
applications to optimal control, Appl. Math. Optim., 1993

Connection to PDEs:
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