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Problem

A standard risk measure is the value-at-risk. This risk measure is given
by a quantile of the profit & loss distribution.Losses and Profits

Profit & Loss Distribution (P&L)
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Density of X together with VaR at the level α = 0.05. Source: McNeil, Frey, Embrechts Quantitative
Risk Management.
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Assume that the profit of a portfolio, say X , is normally distributed with
mean µ and variance σ2. Then the value-at-risk at level α is given by

VaRα (X ) =−
(

µ + σΦ−1(α)
)
.

But in practice, µ and σ are unknown and have to be estimated. In this
regard, let us consider the simplest case: we have an i.i.d. sample
X1, . . . ,Xn =: X at hand.
Efficient estimators of µ and σ are at hand:

µ̂n = X̄ , σ̂n = σ̄ (X ) =
√

1
n−1

n
∑
i=1

(Xi − X̄ )2. (1)

Common practice is to use the plug-in estimator

VaRplugin
α :=−

(
µ̂n + σ̂nΦ−1(α)

)
.

Can this be efficient?
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Motivation from Statistics

In the normal case, for known σ , the likelihood-ratio test turns out to be
the Gauss-test, or, equivalently, the confidence-interval is a normal
distribution.
If σ is unknown, one utilizes the t-distribution to obtain an efficient test:
consider w.l.o.g. the test for µ = 0 versus µ 6= 0. The standardized test
statistic is

T (X1, . . . ,Xn) =: T (X ) =
√

n X̄
σ̄ (X )

and the test rejects the null hypothesis if

T (X ) > tn(1−α).

Shouldn’t there be a similar adjustment towards the t-distribution in the
estimator for VaR?
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Motivation from Backtesting

Let us perform a standard backtesting-procedure, i.e. we run several
simulations, estimate the value-at-risk and check if the percentage of
unsufficient capital does not exceed 5%.

Tabelle: Estimates of VaR0.05 for NASDAQ100 (first column) and for a sample from
normally distributed random variable with mean and variance fitted to the NASDAQ
data (second column), both for 4.000 data points. Exceeds reports the number of
exceptions in the sample, where the actual loss exceeded the risk estimate.

Estimator NASDAQ Simulated
exceeds percentage exceeds percentage

Plug-in ˆVaRplugin
α 241 0.061 221 0.056
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Our findings suggest that the estimator is biased. In a statistical sense !
Our goal is to analyse this problem and give a new notion of
unbiasedness in an economic sense.
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Measuring risk

We begin with well-known results on the measurement of risk, see McNeil
et al. (2005).

Let (Ω,A ) be a measurable space and (Pθ : θ ∈Θ) be a family of
probability measures.
For simplicity, we assume that the measures Pθ are equivalent, such
that their null-sets coincide.
For the estimation, we assume that we have a sample X1,X2, . . . ,Xn of
observations at hand.
A risk measure ρ is a mapping from L0 to R∪{+∞}.
The value ρ(X ) is a quantification of risk for a future position: it is the
amount of money one has to add to the position X such that the position
becomes acceptable.
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A priori, the definition of a risk measure is formulated without any relation to
the underlying probability. However, in most practical applications one
typically considers law-invariant risk-measures. Denote by D the convex
space of cumulative distribution functions of real-valued random variables.

Definition

The family of risk-measures (ρθ )θ∈Θ is called law-invariant, if there exists a
function R : D → R∪{+∞} such that for all θ ∈Θ and X ∈ L0

ρθ (X ) = R(FX (θ )), (2)

FX (θ ) = Pθ (X ≤ ·) denoting the cumulative distribution function of X under the
parameter θ .

Vienna, Mar 2017 Thorsten Schmidt – Unbiased estimation of risk measures 8 / 28



Estimation

We aim at estimating the risk of the future position when θ ∈Θ is unknown
and needs to be estimated from a data sample x1, . . . ,xn.

Definition

An estimator of a risk measure is a Borel function ρ̂n : Rn→ R∪{+∞}.

Sometimes we will call ρ̂n also risk estimator.
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The following definition introduces an economically motivated formulation of
unbiasedness.

Definition

The estimator ρ̂n is called unbiased for ρ(X ), if for all θ ∈Θ,

ρθ (X + ρ̂n) = 0. (3)

If the estimator is unbiased, adding the estimated amount of risk capital
ρ̂n to the position X makes the position X + ρ̂n acceptable under all
possible scenarios θ ∈Θ.
Requiring equality in Equation (3) ensures that the estimated capital is
not too high.
Except for the i.i.d. case, the distribution of X + ρ̂n does also depends on
the dependence structure of X ,X1, . . . ,Xn and not only on the (marginal)
laws.
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Relation to the statistical definition of unbiasedness

Our Definition differs from unbiasedness in the statistical sense!
The estimator ρ̂n is called statistically unbiased, if

Eθ [ρ̂n] = ρθ (X ), for all θ ∈Θ, (4)

One point why the statistical unbiasedness is not reasonable here is that
it does not behave well in various backtesting or stress-testing
procedures.
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Relation to probability unbiasedness

In Francioni and Herzog (2012), the authors introduced the concept of a
probability unbiased estimation: denote by FX (θ , t) = Pθ (X ≤ t), t ∈ R
umulative distribution function of X under Pθ . Then the estimator ρ̂n is
called probability unbiased, if

Eθ [FX (θ ,−ρ̂n)] = FX (θ ,−ρθ (X )), for all θ ∈Θ. (5)

This approach coincides for value-at-risk in the strongly restricted setting
of the i.i.d. Example with our definition of unbiasedness: indeed, assume
that FX (θ ) is continuous and that X1, . . . ,Xn,X are i.i.d. Then ρ̂n and X
are independent and hence

Eθ [FX (θ ,−ρ̂n)] = Pθ [X + ρ̂n < 0].

On the other hand we know that, for ρθ being value-at-risk at level α, we
obtain FX (θ ,−ρθ (X )) = α, so (5) is equivalent to

Pθ [X + ρ̂n < 0] = α. (6)

Now it follows this is equivalent to

ρθ (X + ρ̂n) = inf{x ∈ R : Pθ [X + ρ̂n + x < 0]≤ α} = 0.
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Relation to level adjustment

A further alternative is to adjust the level α, see Frank (2016) and
Francioni and Herzog (2012).
An existing estimator depending continuously on α can always be
trimmed to match exactly the unbiased estimator. However, the adjusted
α will typically depend on n and the sample !
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Unbiased estimation of value-at-risk under normality
Let X ∼N (θ1,θ2

2 ) and denote θ = (θ1,θ1) ∈Θ = R×R>0.
The value-at-risk is

ρθ (X ) = inf{x ∈ R : Pθ [X + x < 0]≤ α}, θ ∈Θ, (7)

Unbiasedness as defined in Equation (3) is equivalent to

Pθ [X + ρ̂ < 0] = α, for all θ ∈Θ. (8)

We define estimator ρ̂, as

ρ̂(x1, . . . ,xn) =−x̄− σ̄ (x)
√

n +1
n t−1n−1(α), (9)

The this estimator is unbiased: using the fact that X , X̄ and s(X ) are
independent for any θ ∈Θ , we obtain

T :=
√

n
n +1 ·

X − X̄
σ̄ (X ) = X − X̄√

n+1
n θ2

·

√√√√ n−1

∑
n
i=1( Xi−X̄

θ2
)2
∼ tn−1.

Thus, the random variable T is a pivotal quantity and

Pθ [X + ρ̂ < 0] = Pθ [T < qtn−1 (α)] = α.
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Unbiased estimation of expected shortfall under normality

We continue in the previous setting,
The expected shortfall at level α under a continuous distribution is

ρθ (X ) = Eθ [−X |X ≤ qX (θ ,α)],

where qX (θ ,α) is α-quantile of X under Pθ .
We consider estimators of the form

ρ̂(x1, . . . ,xn) =−x̄− σ̄ (x)an, (10)

for some (an)n∈N , where an ∈ R.
We can show that there exists an which makes ρ̂ unbiased. This an can
be computed numerically.
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Asymptotically unbiased estimators

Definition

A sequence of risk estimators ρ̂ = (ρ̂n)n∈N will be called unbiased at n ∈ N, if
ρ̂n is unbiased. If unbiasedness holds for all n ∈ N, we call the sequence ρ̂

unbiased. The sequence ρ̂ is called asymptotically unbiased, if

ρθ (X + ρ̂n) n→∞−−−→ 0, for all θ ∈Θ.

The proposed definition of asymptotical unbiasedness has similarities to
the notion of consistency suggested in Davis (2016). This notion of
consistency requires that averages of the calibration errors converge
suitable fast to 0 when the time period tends to infinity. Hence,
asymptotically unbiased risk estimators will be consistent when the
calibration error is measured with the risk measure itself. On the other
side, it should be noted that our main goal is to obtain the optimal risk
estimator without averaging out under- or overestimates as they have an
asymmetric effect on the portfolio performance.
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For empircal estimators we obtain asymptotic unbiasedness.
We obtain the following result. Recall that we study an i.i.d. sequence
X ,X1,X2, . . . Let α ∈ (0,1) and consider the negative of emprical α-quantile

ρ̂n(x1, . . . ,xn) =−x(bnαc+1), n ∈ N, (11)

which we call empirical estimator of value-at-risk at level α.

Proposition

Assume that X is absolutely continuous under Pθ for any θ ∈Θ. The
sequence of empirical estimators of value-at-risk given in (11) is
asymptotically unbiased.
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Empirical study

It is the aim of this section to analyse the performance of selected
estimators on various sets of real market data (Market) as well as on
simulated data (Simulated). Our focus is on the practically most relevant
risk measures, VaR and ES.
The market data we use are returns from the data library Fama and
French (2015), containing returns of 25 portfolios formed on
book-to-market and operating profitability in the period from 27.01.2005
to 01.01.2015. We obtain exactly 2500 observations for each portfolio.
The sample is split into 50 separate subsets, each consisting of 50
consecutive trading days. For i = 1,2, . . . ,49, we estimate the risk
measure using the i-th subset and test it’s adequacy on (i +1)-th subset.
The simulation study uses i.i.d. normally distributed random variables
whose mean and variance was fitted to each of the 25 portfolios. The
sample size was set to 2500 for each set of parameters. In this way we
are able to exclude difficulties due to dependencies in the data or bad
model fit.
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Backtesting VaR

We considered the unbiased estimator ˆVaRu
α , the empirical sample

quantile ˆVaRemp
α , the modified Cornish-Fisher estimator ˆVaRCF

α and the
plug-in estimator ˆVaRnorm

α and the GPD plug-in estimator1 ˆVaRGPD
α .

ˆVaRemp
α (x) :=−

(
x(bhc) + (h−bhc)(x(bh+1c)−x(bhc))

)
, (12)

ˆVaRCF
α (x) :=−

(
x̄ + σ̄ (x)Z̄α

CF (x)
)
, (13)

ˆVaRnorm
α (x) :=−

(
x̄ + σ̄ (x)Φ−1(α)

)
, (14)

ˆVaRGPD
α :=−u + β̂

ξ̂

((
αn
k

)−ξ̂

−1
)
, (15)

ˆVaRu
α (x1, . . . ,xn) :=−

(
x̄ + σ̄ (x)

√
n +1

n t−1n−1(α)
)
, (16)

where x(k) is the k-th order statistic of x = (x1, . . . ,xn), the value bzc denotes the integer part of z ∈R,
h = α(n−1) +1, Φ denotes the cumulative distribution function of the standard normal distribution
and Z̄α

CF is a standard Cornish-Fisher α-quantile estimator.

1For each portfolio, we set the threshold value u to match the 0.7-empirical quantile of the
corresponding sample.
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Tabelle: First we show the results for portfolios in the period from 27.01.2005 to 01.01.2015 from
the Fama & French dataset. Second, we show the results on simulated Gaussian data. We perform
the standard backtest, splitting into intervals of length 50 and computing average rate of exceptions.

Type of data: MARKET

Portfolio Estimator type

ˆVaRemp
α

ˆVaRnorm
α

ˆVaRCF
α

ˆVaRGPD
α

ˆVaRu
α

LoBM.LoOP 0.071 0.073 0.067 0.067 0.069
BM1.OP2 0.076 0.070 0.069 0.069 0.065
BM1.OP3 0.071 0.064 0.063 0.064 0.061
BM1.OP4 0.069 0.071 0.067 0.067 0.068
LoBM.HiOP 0.071 0.071 0.070 0.067 0.068
· · · · · · · · · · · · · · ·

mean 0.073 0.071 0.068 0.067 0.067

Type of data: SIMULATED

ˆVaRemp
α

ˆVaRnorm
α

ˆVaRCF
α

ˆVaRGPD
α

ˆVaRu
α

LoBM.LoOP 0.065 0.057 0.055 0.056 0.051
BM1.OP2 0.064 0.053 0.053 0.053 0.050
BM1.OP3 0.069 0.058 0.058 0.060 0.052
BM1.OP4 0.069 0.057 0.058 0.062 0.053
LoBM.HiOP 0.060 0.054 0.053 0.056 0.047
· · · · · · · · · · · · · · ·

mean 0.066 0.057 0.057 0.058 0.051
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A further test

To gain further insight on the performance of the Gaussian unbiased
estimator, we have replicated the results from the simulations in Table 2 for
N = 10.000 times and the first portfolio LoBM.LoOP. We consider three
statistics: the exceedance rate ERi (ρ̂), the relative deviation

RDi (ρ̂) := ERi (ρ̂)−ERi ( ˆVaRu
α )

ERi ( ˆVaRu
α )

and, the outperformance rate of the unbiased estimator in the sense that
the exceedance rate is closer to α = 0.05,

ORi (ρ̂) :=
{
1 if |ERi (ρ̂)−α|> |ERi ( ˆVaRu

α )−α|,
0 otherwise.

In Table 3 we state mean and standard deviations (sd) of these statistics.
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Tabelle: We fit a normal distribution to the first portfolio from the Fama & French
dataset, i.e. LoBM.LoOP portfolio, compare Table 2. We show average exception (ER)
rate, relative deviation (RD) and outperformance rate (OR).

Estimator ER RD OR
mean sd mean sd mean

Percentile ˆVaRemp
α (x) 0.067 0.004 29.2% 8.9% 100%

Modified C-F ˆVaRCF
α (x) 0.057 0.003 11.2% 5.0% 91.7%

Gaussian ˆVaRnorm
α (x) 0.057 0.004 9.8% 3.0% 88.2%

GPD ˆVaRGPD
α (x) 0.058 0.003 12.5% 6.4% 93.3%

Gaussian unbiased ˆVaRu
α (x) 0.052 0.003 - - -
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Backtesting Expected Shortfall
In this example we will use the same dataset, but instead of VaR at level 5%
we consider ES at level 10%. Following the notation in Equations (16)–(14)
we obtain the estimators

ÊSemp
α (x) :=−

(
∑

n
i=1 xi1{xi + ˆVaRemp

α (x)<0}
∑

n
i=11{xi + ˆVaRemp

α (x)<0}

)
, (17)

ÊSCFα (x) :=−
(

x̄ + σ̄ (x)C(Z̄α

CF (x))
)
, (18)

ÊSnormα (x) :=−
(

x̄ + σ̄ (x) φ (Φ−1(α))
1−α

)
, (19)

ÊSGPDα (x) :=
ˆVaRemp

α (x)
1− ξ̂

+ β̂ − ξ̂u
1− ξ̂

, (20)

Let the Gaussian unbiased Expected Shortfall estimator be

ÊSuα (x) :=− (x̄− σ̄ (x)an) , (21)

where an was computed numerically. Note that the non-elicitability of ES is
directly reflected in (17) and (20). The joint elicitability of ES together with
VaR is also visible: the estimator for the ES also makes use of an estimator
for VaR.
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For the backtest we follow Test 2 suggested in Acerbi and Székely (2014)
utilizing the 50 separate subsets of our data denoted by (x i

1, . . . ,x
i
50).

The test statistic for the backtest is given by

Z := 1
49

49
∑
i=1

 1
50

50
∑
j=1

x i+1
j 1

{x i+1
j + ˆVaRi

α<0}

α ÊSi
α

+1. (22)

The results of our backtest are presented in Table 4.
Note that while 0 would be optimal, negative values of the test statistic Z
correspond to underestimtion of risk of the considered estimator.

The unbiased estimator clearly outperforms the biased estimators, both on
the market data and the simulated data.
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Tabelle: The results of our backtest. Note that while 0 would be optimal, negative
values of the test statistic Z correspond to underestimtion of risk.

Type of data: MARKET

Portfolio Estimator type

ESemp
α ESnormα ESCFα ESGPDα ESuα

LoBM.LoOP -0.357 -0.393 -0.325 -0.302 -0.331
BM1.OP2 -0.428 -0.303 -0.338 -0.335 -0.235
BM1.OP3 -0.327 -0.322 -0.336 -0.295 -0.254
BM1.OP4 -0.326 -0.354 -0.348 -0.282 -0.272
LoBM.HiOP -0.424 -0.421 -0.371 -0.335 -0.331

mean -0.374 -0.363 -0.339 -0.308 -0.290

Type of data: SIMULATED

ESemp
α ESnormα ESCFα ESGPDα ESuα

LoBM.LoOP -0.177 -0.073 -0.077 -0.104 -0.005
BM1.OP2 -0.143 -0.083 -0.069 -0.074 -0.014
BM1.OP3 -0.220 -0.084 -0.100 -0.157 -0.019
BM1.OP4 -0.224 -0.086 -0.101 -0.150 -0.012
LoBM.HiOP -0.183 -0.082 -0.072 -0.098 -0.016

mean -0.174 -0.101 -0.103 -0.109 -0.030
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Conclusion

We studied the estimation of risk, with a particular view on unbiased
estimators and backtesting.
The new notion of unbiasedness introduced is motivated from economic
principles rather than from statistical reasoning, which links this concept
to a better performance in backtesting.
Some unbiased estimators, for example the unbiased estimator for
value-at-risk in the Gaussian case, can be computed in closed form
while for many other cases numerical methods are available.
A small empirical analysis underlines the outperformance of the
unbiased estimators with respect to standard backtesting measures.

The paper is available on SSRN: https://ssrn.com/abstract=2890034
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Many thanks for your attention !
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