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1. Extreme events

Major natural catastrophes in 2016:

Earthquakes (Italy, Indonesia, Japan, New Zealand, Taiwan)
Floods (Germany, Louisiana)
Wildfires (California, Tennessee)
Storms and hurricanes (Jonas, Matthew)
Famines, etc.

They had disastrous human, economic, and financial consequences.
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The 2011 Richelieu River flood

It lasted two months
(mid-April to mid-June).

Thousands of citizens were
evacuated.

Damages were estimated at
$100 million USD.

c©Bernard Brault - The Canadian Press
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The Richelieu River Watershed

The Richelieu is the only outlet
of the watershed.
Lake Champlain acts as a
natural buffer against a flood
surge in the river.
More than 90% of the water
passing through the Richelieu
comes from Lake Champlain.
The river discharges are
strongly correlated with the
lake levels (Riboust & Brissette,
2015).
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Animation

No reliable return period for the 2011 flood has been provided sofar.
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Extremes need EVT

Standard statistical techniques work well for large data sets and
focus on common features.

In contrast, natural disasters are usually due to observations that are
atypical and rare.

To guard against future extreme events, risk measures are typically
computed at a high level (high quantiles, long return periods).

Careful extrapolation beyond observed data can be accomplished
using extreme-value theory (EVT) methods.
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Standard EVT techniques

The block maxima method proceeds as follows:

The data are grouped into n consecutive blocks of equal size m.

The maximum in each group is computed, yielding n block maxima

M1, . . . ,Mn

which are regarded as independent and identically distributed.

Using the Fisher–Tippett Theorem, the extreme–value distribution

H(x ;µ, σ, ξ) =
{
exp
[
−
{
1 + ξ (x−µ)

σ

}−1/ξ] if ξ 6= 0,
exp
{
− exp

(
− x−µ

σ

)}
if ξ = 0,

where 1 + ξ(x − µ)/σ > 0, is fitted to M1, . . . ,Mn.
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Graph of the EVT density
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The lake level annual maxima series
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The lake level annual maxima series
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Fitted GEV with the annual maxima before 2011

The parameter estimates with 95% credibility intervals are

µ̂ = 30.2 ∈ (30.1, 30.3), σ̂ = 0.39 ∈ (0.34, 0.44), ξ̂ = −0.44 ∈ (−0.56,−0.32).
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Red flags

The shape parameter estimate ξ̂ is negative. This means that the
distribution of the annual maximum lake level is bounded above.

According to the fitted model,

Pr (M > 31.2) = 0

However, the lake level reached in the 2011 flood was 31.45m.

ML estimation is irregular when ξ < −.5 (Smith 1985). This is a
possibility here, given that ξ̂ = −0.44 ∈ (−0.56,−0.32).
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Black Swan!

The shape parameter estimate ξ̂ is negative. This means that the
distribution of the annual maximum lake level is bounded above.

According to the fitted model,

Pr (M > 31.2) = 0

However, the lake level reached in the 2011 flood was 31.45m.

ML estimation is irregular when ξ < −.5 (Smith 1985). This is a
possibility here, given that ξ̂ = −0.44 ∈ (−0.56,−0.32).
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Variables that affect the lake level

The spring freshet is the result of the snowmelt and the occurrence
of precipitation during this period.

Riboust & Brissette (2015) showed that the key factor for explaining
the flood severity is the amount of spring precipitation.

Precipitation at Burlington, VT, can be used as a proxy for
precipitation levels in the watershed.

The snowpack on the watershed and the temperature do not have a
significant impact on the maximal water level.
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Precipitation data

Consider the spring daily precipitation series recorded at Burlington,
VT, from 1883 to 2010.

We consider spring precipitation, April 1 to June 30, i.e., the critical
period of snowmelt when large precipitation can trigger a flood.

The spring precipitation maxima series can be assumed stationary
according to the Mann–Kendall stationarity test.
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Standard EVT techniques (cont’d)

The peaks-over-threshold method (POT) proceeds as follows:
1) Choose a high threshold u.

2) Consider excesses of the observations Z1, . . . ,Zn above u, viz.

Wj = Zj − u for Zj > u

which are regarded as independent and identically distributed.

3) Using the Pickands–Balkema–de Haan Theorem, the generalized
Pareto distribution

G(w ;β, ξ) =
{
1− (1 + ξw/β)−1/ξ if ξ 6= 0,
1− exp(−w/β) if ξ = 0,

where 1 + ξw/β > 0, is fitted to W1, . . . ,Wm.
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Illustration of the POT method
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POT method applied to the Burlington data

The threshold was set at the 95th percentile of positive precipitation
amounts, i.e., u = 21.6mm.
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Declustering the series

The series of exceedances for the Burlington precipitation data
exhibits autocorrelation.

This autocorrelation is typically removed using the runs method.

Any two consecutive threshold exceedances separated by r or more
non-exceedances are considered to belong to different clusters.

The POT method is then applied to cluster maxima.
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Results of the POT analysis

The runs method with lag r = 1 was used.

Using a Bayesian analysis, the parameter estimates along with the 95%
credibility intervals were

β̂ = 8.5394 ∈ (7.0168, 10.2379), ξ̂ = 0.0655 ∈ (−0.0454, 0.2045).

The return period for the extreme rainfall of 69.6mm that occurred on 26
April, 2011, is estimated to be T = 66 years.

The model seems to fit well (see next slide), yet no flood was ever
observed that matches the 2011 flood in magnitude.
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Results of the POT analysis
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What happened in the spring of 2011?
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(the threshold was fixed at the 95th percentile of positive precipitation)
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What happened in the spring of 2011?

03/2011 04/2011 05/2011 06/2011 07/2011
0

20

40

60

P
re

c
ip

it
a
ti
o
n
 (

m
m

)

03/2011 04/2011 05/2011 06/2011 07/2011
29

30

31

32

L
a
k
e
 l
e
v
e
l 
(m

)

The lake reached its historical level after a 4-day streak of precipitation
(103mm of rain fell during these 4 days)
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The need for more sophisticated methodology

Events like the 2011 flood are largely due to heavy rainfalls
occurring in clusters over several days.

To estimate the return period of the 2011 flood, the entire clusters
of extreme precipitation should be taken into account.

The conditional exceedance model of Heffernan and Tawn (2004)
could be used to this end, but it leads to underestimation in the
present context.

Instead, we propose a new modeling strategy inspired by the M3
Dirichlet model proposed by Süveges and Davison (2012).
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What is an M3 process?

Assume independent shock sequences of i.i.d. unit Fréchet variables

(Z1,i ), (Z2,i ), (Z3,i ), . . .

Take a filter matrix with elements a`k ≥ 0, ` ∈ N, k ∈ Z, such that
∞∑
`=1

∞∑
k=−∞

a`k = 1.

The M3 process (Maxima of Moving Maxima) is then given by

Yi = max
k∈Z

(
max
`∈N

a`kZ`,i−k
)
, i ∈ Z.

We will only use finitely many sequences and a finite window, i.e.,

a`k > 0 ⇒ ` ∈ {1, . . . , L}, k ∈ {1, . . . ,K}.
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Profiles and polar coordinates

Suppose that a single extreme event occurs at time t in the `th shock
sequence. The profile (Yt+1, . . . ,Yt+K ) is then of the form

(Yt+1, . . . ,Yt+K ) = (a`1Z`,t , . . . , a`K Z`,t).

Introduce the normalized profile, viz.

(Vt+1, . . . ,Vt+K ) = 1∑K
k=1 Yt+k

(Yt+1, . . . ,Yt+K )

and observe that (Zhang & Smith, 2004), for every ` ∈ {1, . . . , L},

Pr
{

(Vt+1, . . . ,Vt+K ) = 1∑K
k=1 a`k

(a`1, . . . , a`K ) infinitely often
}

= 1.

Morale:
If the data are indeed from an M3 process and if the threshold
is suitably selected, one can hope to identify the signatures and
their respective probabilities.
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Ansatz of Süveges and Davison (2012)

1) Identify observations that exceed a given threshold u.

2) Select c index sequences P1, . . . ,Pc of equal length K around the
threshold excesses, defining the clusters of extremes.

3) Regard the vectors (Yj : j ∈ Pi ) as (noisy) profiles of an M3 process.

4) For each i ∈ {1, . . . , c}, set

Si =
∑
j∈Pi

Yj

and regard Vi = (Yj/Si : j ∈ Pi ) ∈ SK as noisy, finite-sample
counterparts of the shock type signatures.

5) Model the distribution of the Vi ’s through a finite Dirichlet mixture.
The filter matrix is then recovered from the parameter estimates.
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Comments on the Süveges–Davison approach

X The Dirichlet mixture is intended to model the different signatures.

X All profiles need to be of the same length and the selection of Pi
involves an iterative k-means clustering algorithm.

X For the Burlington precipitation data, the method did not yield
satisfactory results:

(i) it is difficult to identify physically meaningful profiles while avoiding
excessive profile length and overlaps;

(ii) forcing the profiles to be of the same length leads to clusters that
include days without rain (exact zeros);

(iii) the Dirichlet mixture does not fit well.
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Towards a new model

In the present context, only the total precipitation per cluster matters,
e.g., 103mm for the 4-day streak that triggered the 2011 flood.

Cluster identification:
X Define a cluster of high precipitation as the streak of consecutive

rainy days containing at least one exceedance above a high
threshold u.

X Each cluster is thus separated from any other by at least one day
without rain.

X Cluster lengths may vary. No cluster of high precipitation contains
days with no rain.
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Multivariate regular variation

Consider the daily precipitation amounts Y = (Yj : j ∈ C) in a cluster C.

Denote the cluster maximum and sum by

M = max(Yj : j ∈ C), S =
∑
j∈C

Yj .

Suppose that Y is multivariate regularly varying, i.e.,

Pr(‖Y‖∞ > yt,Y/‖Y‖∞ ∈ ·)
Pr(‖Y‖∞ > t)  y−ασ(·)

for some α > 0 and a probability distribution σ on the unit simplex

{x ∈ [0, 1]|C| : ‖x‖∞ = 1}.
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Consequences for model building

X Keep in mind that we only need to model the cluster sum S.

X Conditionally on M > u for some high threshold u, M and Y/M are
roughly independent. Thus also M and

P = M∑
j∈C Yj

= M
S

are approximately independent conditionally on M > u.

X Observe that S = M × (1/P).

We propose to scale up M with an independent factor 1/P ≥ 1.
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The random scale model

1) Identify clusters C1, . . . , Cc of extreme precipitation based on a
choice of threshold u. The cluster lengths are allowed to vary.

2) For each cluster (Yj , j ∈ Ci ), compute

Mi = max(Yj : j ∈ Ci )

and fit a GPD distribution to M1, . . . ,Mc by the POT approach, viz.

Pr(Mi − u ≤ w |Mi > u) ≈
{

1− (1 + ξw/β)−1/ξ+ if ξ 6= 0,
1− exp (−w/β) if ξ = 0.
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The random scale model (cont’d)

3) For each cluster, compute the proportions

Pi = Mi
Si

= maxj∈Pi Yj∑
j∈Pi

Yj

and note that 1/|Ci | ≤ Pi ≤ 1.

4) Model P1, . . . ,Pc with a 1-inflated scaled beta distribution, viz.

IB(p | ω, θ, α, β) = ω δ{1}(p) + (1− ω)B∗(θ,1) (p | α, β, θ) .

Here, B∗(θ,1)(p | α, β) denotes the density of the random variable

(1− θ)X + θ,

where X has a B(α, β) distribution.
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Extreme precipitation clusters for the Burlington data
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The clusters were defined as streaks
of rainy days separated by at least
one day with no rain and containing
at least one value above 21.6mm.

There were c = 241 clusters; 51 of
length 1 and 20 with 2+ excesses.

Displayed are the pairs

(Si cos(Θi ),Si sin(Θi )),

where Θi = arccos(Pi ).
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Extreme-value model for the cluster maxima
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Parameter estimates and
95% credibility intervals

β̂ = 8.6086 ∈ (7.1258, 10.2472),

ξ̂ = 0.0630 ∈ (−0.0464, 0.2056).

They are nearly the same as in the
traditional POT approach.
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Model for the angular component of the maximum
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Independence between the components
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There is no evidence of dependence between
the radial and angular component.
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Probability that a cluster sum exceeds 103mm
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Probability that a cluster total exceeds 103mm

This probability is estimated by simulation.

Simulate the cluster maximum exceedance with the following
predictive distribution [the prior was f (β, ξ) ∝ 1/β]:

f (m) =
∫ ∫

GP(m|β, ξ)× f (β, ξ | y) dβ dξ.

Simulate the angular component of the maximum with the following
predictive distribution:

f (p) =
∫
· · ·
∫
IB(p | ω, θ, α, β)× f (ω, θ, α, β | y) dω dθ dα dβ.

Compute the cluster sum: s = (m + u)/p.
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Probability that a cluster total exceeds 103mm

Through simulation, the probability that a cluster precipitation total
exceeds 103mm is

Pr(S > 103mm) ≈ 1
32 ≈ 3.125%.
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) As more than one cluster can
occur per spring, the return
period of a cluster exceeding
103mm is less than 32 years.
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Probability of a wetter spring than in 2011

During the spring of 2011, a total of 318mm came from clusters of high
precipitation.

The number of clusters during the spring can be generated using the
Poisson distribution as in the POT model.

The probability that high clusters of precipitation exceed an accumulation
of 318mm in a single spring is approximately 1/365, which corresponds to
a return period of 365 years.
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Conclusion

In the 2011 flood of the Richelieu River, the clusters of high precipitation
are responsible for the 67-day flood.

While clusters of high precipitation had occurred before, it was their
frequency that was problematic in 2011.

The modeling of the clusters gives realistic estimates of the return period
of the 2011 event, which is 365 years.

Considering the complete period of observation, from 1883 to 2016, the
return period of the 2011 event is then estimated at 234 years.
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