Volatility, Information Feedback and Market Microstructure Noise: A Tale of Two Regimes

Torben G. Andersen Northwestern University Gökhan Cebiroglu University of Vienna Nikolaus Hautsch University of Vienna

Introduction

► Major topic in financial econometrics over the last decade:

How can we optimally use financial high-frequency data to construct efficient volatility estimators for aggregated periods (intraday, day, week, ...)?

► Typical starting point:

$$p_{t_i} = p_{t_i}^* + \epsilon_i, \quad \epsilon_i \sim (0, \sigma_{\epsilon}^2), \quad i = 1, \dots, n,$$
$$p_t^* = p_0^* + \int_0^t \sigma^{*2}(s) dB_s, t \in [0, T],$$

where p_t denotes the (observed) log price, B_t is a standard Brownian motion B_t , and ϵ_i is microstructure "noise".

► Object of interest: ∫₀^T σ^{*2}(s)ds, corresponding to the variance of a *T*-period return.

Introduction

► If p_t are discretely observed with $p_{i/n}, i = 0, ..., n$, a natural estimator for $\int_0^T \sigma^2(s) ds$ is given by the *realized variance*,

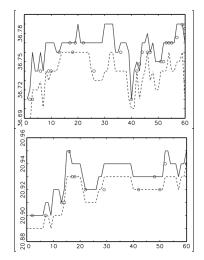
$$RV^{n} = \sum_{i=1}^{n} (p_{i/n} - p_{(i-1)/n})^{2},$$

which is consistent and efficient with

$$n^{1/2}\left(\mathrm{RV}^n - \int_0^1 \sigma^{*2}(s)\,ds\right) \stackrel{\mathcal{L}}{\longrightarrow} \mathbf{N}\Big(0, 2\int_0^1 \sigma^{*4}(s)\,ds\Big)\,.$$

Suggestion: Sampling on highest possible frequency!

Real Intraday Price Path



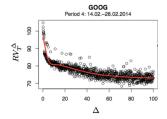
4

▶ <u>Problem</u>: HF prices are subject to noise, i.e., we only observe

$$p_i = p_i^* + \epsilon_i, \quad i = 1, \dots, n,$$

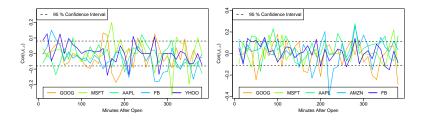
where ϵ_i is associated with market microstructure "noise" (MMN).

- \Rightarrow If we let $n \rightarrow \infty,\, {\rm RV}$ becomes biased and inconsistent.
- \Rightarrow If MMN is i.i.d., (log) returns $(p_i p_{i-1})$ are negatively autocorrelated.



Introduction

1-sec and 2-sec autocorrelations over 10min windows



6

- \Rightarrow MMN cannot be i.i.d.!
- \Rightarrow Noise properties change locally!

Introduction

- Huge literature on efficiently estimating $\sigma^2_{\varepsilon^*}$
 - kernel estimators (Barndorff-Nielsen et al, 2008), pre-averaging (Jacod et al, 2009), MLE (Ait-Sahalia et al 2005), multi-scale estimators (Zhang 2006), spectral estimators (Reiss, 2011), ...

<u>But</u>:

- Assumptions on noise statistically motivated!
- Missing link to microstructure theory and trading behavior
 - Exceptions: Diebold/Strasser (2013), Chaker (2013), Li/Xie/Zeng (2016)
- ► All approaches rely on the classical RW+Noise decomposition

$$p_i = p_i^* + \epsilon_i, \quad i = 1, \dots, n.$$

A Model With Information/Trading Feedback

▶ <u>Idea</u>: Model with mis-pricing component:

$$p_i = p_{i-1} - \alpha(p_{i-1} - p_{i-1}^*) + \epsilon_i$$

- Changes in observed prices are caused by two sources:
 - Market microstructure noise
 - Mis-pricing component due to deviations between observed prices and efficient prices ("error correction")
- Reasoning:
 - "Non-informational" shocks cause "mis-pricing"
 - Prices are permanently in dis-equilibrium
- Speed by which observed prices react to inherent mis-pricing governed by α ⇒ Measuring "market efficiency"

Introduction

- Model captures two fundamental market regimes:
 - ► Mis-pricing removed by "contrarian behavior" ⇒ negative autocorrelations in observed returns

g

- ► Mis-pricing enforced by "momentum behavior" ⇒ positive autocorrelations in observed returns
- State of market driven by relationship between
 - speed of price reversion α ,
 - noise-to-signal ratio.

Why important?

- Model opens up channels for market microstructure foundations of HF-based volatility estimation.
- HF-based assessment of market efficiency.
- Statistical implications!

Outline

- 1. Introduction
- 2. A Model with Information Feedback
- 3. Two Market Regimes
- 4. Estimation
- 5. Empirical Evidence
- 6. Model Generalization
- 7. Conclusions

2. A Model with Information Feedback

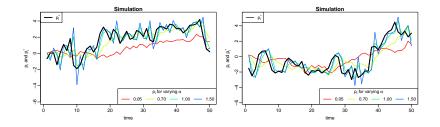
Setup

- ▶ Model in discrete time, i.e., $i \in \{0, 1, 2, ..., n\}$ with $n = T/\Delta$.
- Observed log prices p_i are assumed to be driven by

$$p_{i+1} = p_i - \alpha \underbrace{(p_i - p_i^*)}_{:=\mu_i} + \epsilon_{i+1}, \quad 0 < \alpha < 2, \quad \epsilon_{i+1} \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2),$$
$$p_{i+1}^* = p_i^* + \varepsilon_{i+1}^*, \quad \varepsilon_{i+1}^* \stackrel{iid}{\sim} N(0, \sigma_{\epsilon^*}^2), \quad \mathbb{E}[\epsilon_{i+1}\varepsilon_{i+1}^*] = 0.$$

- $\mu_i := p_i p_i^*$ mis-pricing component.
- α : speed of price reversion

Simulations of p_i and p_i^* for different α



Alternative Representation

Model can be written as

$$p_{i} = p_{i}^{*} + \mu_{i},$$

$$p_{i}^{*} = p_{i-1}^{*} + \varepsilon_{i}^{*}, \quad \varepsilon_{i}^{*} \stackrel{i.i.d.}{\sim} N(0, \sigma_{\varepsilon^{*}}^{2}),$$

$$\mu_{i} = (1 - \alpha)\mu_{i-1} + \epsilon_{i}^{\mu},$$

where $\epsilon_i^{\mu} := \epsilon_i - \varepsilon_i^* \stackrel{iid}{\sim} WN(0, \sigma_{\mu}^2)$ with $\sigma_{\mu}^2 := \sigma_{\varepsilon^*}^2 + \sigma_{\epsilon}^2$.

• μ_i follows mean zero AR(1) process with

$$\mathbb{V}[\mu_i] = \frac{\sigma_{\mu}^2}{\alpha(2-\alpha)}$$

- 2. A Model with Information Feedback
 - \blacktriangleright The error covariance matrix Σ is given by

$$\begin{split} \Sigma &:= \begin{bmatrix} \mathbb{E}[(\varepsilon_i^{\mu})^2] & \mathbb{E}[\varepsilon_i^{\mu}\varepsilon_i^*] \\ \mathbb{E}[\varepsilon_i^{\mu}\varepsilon_i^*] & \mathbb{E}[(\varepsilon_i^*)^2] \end{bmatrix} = \begin{bmatrix} \mathbb{E}[\mu_i^2] & \mathbb{E}[\mu_i\varepsilon_i^*] \\ \mathbb{E}[\mu_i\varepsilon_i^*] & \mathbb{E}[(\varepsilon_i^*)^2] \end{bmatrix} \\ &= \begin{bmatrix} \sigma_{\varepsilon}^2 + \sigma_{\varepsilon^*}^2 & -\sigma_{\varepsilon^*}^2 \\ -\sigma_{\varepsilon^*}^2 & \sigma_{\varepsilon^*}^2 \end{bmatrix} \end{split}$$

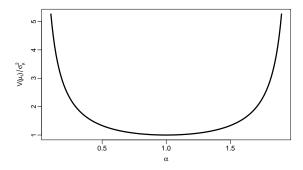
with $\mathbb{E}[\varepsilon_i^* \epsilon_{i-h}^{\mu}] = 0 \quad \forall h.$

► Observed returns $r_i = p_i - p_{i-1}$ are then given by $r_i = -\alpha \mu_{i-1} + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2),$

with

$$\begin{split} \mathbb{E}[\epsilon_i \mu_{i+h}] &= (1-\alpha)^h \sigma_{\epsilon}^2 \quad \forall h \ge 0\\ \mathbb{E}[\epsilon_i \mu_{i-h}] &= 0 \quad \forall h > 0\\ \mathbb{E}[\epsilon_i \epsilon_i^{\mu}] &= \sigma_{\epsilon}^2\\ \mathbb{E}[\epsilon_i \epsilon_{i-h}^{\mu}] &= 0 \quad \forall h \ne 0 \end{split}$$

Illustration of $\mathbb{V}[\mu_i]/\sigma^2_{\mu}$ depending on α for $\alpha \in (0,2)$.



2. A Model with Information Feedback

Special Case $\alpha = 1$ (Perfect "Efficiency")

▶ For $\alpha = 1$ we obtain

 $p_{i+1} = p_i^* + \epsilon_{i+1} = p_{i+1}^* + \epsilon_{i+1}^{\mu},$ where $\epsilon_i^{\mu} := \epsilon_i - \varepsilon_i^* = p_i - p_i^* = \mu_i$ is iid with $\mathbb{V}[\epsilon_i^{\mu}] = \sigma_{\mu}^2 = \sigma_{\epsilon}^2 + \sigma_{\varepsilon^*}^2$ $\mathbb{E}[\varepsilon_i^* \epsilon_i^{\mu}] = \mathbb{E}[(p_i^* - p_{i-1}^*)\epsilon_i^{\mu}] = -\sigma_{\varepsilon^*}^2$

- \Rightarrow RW plus endogenous iid noise!
- $\Rightarrow \mathbb{E}[r_i, r_{i-1}] = -\sigma_{\varepsilon}^2$

 \Rightarrow Endogeneity structurally built into the model!

3. Two Market Regimes

Return Variances

► The return variance is given by

$$\mathbb{V}[r_i] = \sigma_{\varepsilon}^2 + \alpha^2 \mathbb{V}[\mu_i] = \frac{1}{2 - \alpha} (2\sigma_{\varepsilon}^2 + \alpha \sigma_{\varepsilon^*}^2).$$

implying $\mathbb{V}[r_i] \geq \sigma_{\epsilon}^2$.

• We define the *noise-to-signal ratio* λ as

$$\lambda = \sigma_{\varepsilon}^2 / \sigma_{\varepsilon^*}^2 \,.$$

► Then, the unconditional return variance is given by

$$\mathbb{V}[r_i] = \sigma_{\varepsilon^*}^2 \frac{2\lambda + \alpha}{2 - \alpha}$$

It follows that

$$\begin{split} \mathbb{V}[r_i] &\leq \mathbb{V}[r_i^*] \qquad \text{if} \qquad \lambda \leq 1-\alpha, \\ \mathbb{V}[r_i] &> \mathbb{V}[r_i^*] \qquad \text{otherwise.} \end{split}$$

 $\Rightarrow \text{ If proportion of "informational variance" } (\lambda) \text{ is high, and } p_i \\ \text{sluggishly follows } p_i^* \text{, changes in efficient price are passed over} \\ \text{ to the observed price in mitigated way.}$

Regimes in Return Autocovariances

▶ Lemma. Assume $\sigma_{\varepsilon}^2 > 0$, $0 < \alpha < 2$, and $h \ge 1$. Then,

$$\mathbb{C}\mathrm{ov}[r_i, r_{i-h}] = \psi(h-1) \ \sigma_{\varepsilon^*}^2 \ \frac{(1-\alpha-\lambda)}{2-\alpha},$$

with $\psi(h-1) = \alpha (1-\alpha)^{h-1}$, and $\psi(0) = 1$, if $\alpha = 1$.

Corollary. Assume σ_ε² > 0, 0 < α < 2, and h ≥ 1.
(i) If 0 < α < 1, then sgn{Cov[r_i, r_{i-h}]} = sgn{(1 − α) − λ}.
(ii) If α = 1, then Cov[r_i, r_{i-1}] = −σ_ε² < 0, and Cov[r_i, r_{i-h}] = 0, for h > 1.
(iii) If 1 < α < 2, then sgn{Cov[r_i, r_{i-h}]} = sgn{(-1)^h}.

•
$$\mathbb{C}ov[r_i, r_{i-h}] = 0$$
 holds as long as

$$\lambda = 1 - \alpha$$

Implications:

- If α = 1 and there is noise (λ > 0) returns can<u>not</u> be uncorrelated!
- As long there is noise (λ > 0), price updating must be sluggish (α < 1) to ensure Cov[r_i, r_{i−h}] = 0!

Implications for the Realized Variance

- Consider log prices, $p_0, p_\Delta, \ldots, p_{i\Delta}, \ldots, p_T$ at equidistant points $i = 1, \ldots, T/\Delta 1, T/\Delta$, with grid size Δ and $n = T/\Delta$ and $r_{i\Delta} = p_{i\Delta} p_{(i-1)\Delta}$.
- \blacktriangleright The realized return variance measure at time T is given as

$$RV_T^{\Delta} = \sum_{i=1}^{T/\Delta} r_{i\Delta}^2.$$

3. Two Market Regimes

Theorem. For $0 < \alpha < 1$, the expected time-T realized variance sampled at calendar time grid size Δ equals,

$$\langle p \rangle_T^{\Delta} = T \cdot \sigma_{\varepsilon^*}^2 + T \cdot \sigma_{\varepsilon^*}^2 \cdot \phi(\Delta) \frac{\lambda - (1 - \alpha)}{(2 - \alpha)},$$

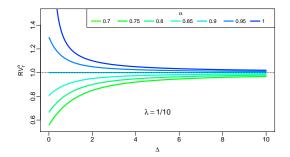
with
$$\phi(\Delta) = \frac{2}{\alpha \Delta} \left(1 - (1 - \alpha)^{\Delta} \right).$$

The mapping $\Delta \mapsto \phi(\Delta)$, from \mathbb{R}_+ into $\left(0, -\frac{2}{\alpha}\ln(1-\alpha)\right)$ is strictly decreasing with

(i)
$$\lim_{\Delta \to 0} \phi(\Delta) = -\frac{2}{\alpha} \ln(1-\alpha)$$
,
(ii) $\lim_{\Delta \to \infty} \phi(\Delta) = 0$.

Volatility Signature Plots

(i) if
$$\lambda > (1 - \alpha)$$
, then $T \cdot \sigma_{\varepsilon^*}^2 < \langle p \rangle_T^{\Delta}$,
(ii) if $\lambda < (1 - \alpha)$, then $T \cdot \sigma_{\varepsilon^*}^2 > \langle p \rangle_T^{\Delta}$.



25

4. Estimation

State-Space Representation

- Denote X_i as a state vector at i with $X_i := (\mu_i \quad \mu_{i-1} \quad \epsilon_i)$.
- Then, r_i can be written as

$$r_i = FX_i,$$

$$X_i = GX_{i-1} + w_i$$

with
$$F = (0 - \alpha - 1)$$
 and
 $G = \begin{pmatrix} (1 - \alpha) & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ w_i = \begin{pmatrix} \epsilon_i^{\mu} \\ 0 \\ \epsilon_i \end{pmatrix}, \ \Sigma_w = \begin{pmatrix} \sigma_{\epsilon}^2 + \sigma_{\epsilon^*}^2 & 0 & \sigma_{\epsilon}^2 \\ 0 & 0 & 0 \\ \sigma_{\epsilon}^2 & 0 & \sigma_{\epsilon}^2 \end{pmatrix}$

 Parameters can be estimated by maximum likelihood using the Kalman filter.

Alternative: Moment Estimation

We can employ the unconditional moment restrictions

$$\begin{split} \phi_1(r_i;\alpha;\sigma_{\varepsilon}^2,\sigma_{\varepsilon^*}^2) &= \sigma_{\varepsilon^*}^2 n - \sigma_{\mu}^2 n \phi(\Delta) \frac{1-\alpha-\lambda}{(2-\alpha)(\lambda+1)} - \sum_{i=1}^n r_i^2 \\ \phi_2(r_i;\alpha;\sigma_{\varepsilon}^2,\sigma_{\varepsilon^*}^2) &= r_i^2 - \frac{1}{2-\alpha} (2\sigma_{\varepsilon}^2 + \alpha\sigma_{\varepsilon^*}^2), \\ \phi_{2,h}(r_i;\alpha;\sigma_{\varepsilon}^2,\sigma_{\varepsilon^*}^2) &= r_i r_{i-h} - \psi(h-1)\sigma_{\varepsilon^*}^2 \frac{1-\alpha-\lambda}{2-\alpha}, \\ \text{with } \psi(h) &= \alpha(1-\alpha)^h \geq 0 \quad \text{and} \quad h = 1, 2, \dots . \end{split}$$

A GMM estimator can be formulated as

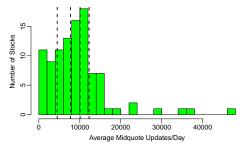
$$\hat{\theta}(\mathcal{W}) = \arg\min_{\theta} \left[\frac{1}{n} \sum_{i=1}^{n} \tilde{m}(r_i; \theta) \right]' \mathcal{W}_n \left[\frac{1}{n} \sum_{i=1}^{n} \tilde{m}(r_i; \theta) \right],$$

where $\theta = (\alpha, \sigma_{\varepsilon}^2, \sigma_{\varepsilon^*}^2)'$, while $\tilde{m}(r_i; \theta) = (\phi_1(r_i; \theta), \phi_2(r_i; \theta), \phi_{2,1}(r_i; \theta), \phi_{2,2}(r_i; \theta), \dots)$ represents a set of model implied moment conditions, and \mathcal{W}_n is a conforming positive definite weighting matrix.

5. Empirical Evidence

Data

- Data sampled from LOBSTER (https://lobsterdata.com/)
- Mid-quote returns from NASDAQ 100 constituents, first 40 trading days of 2014

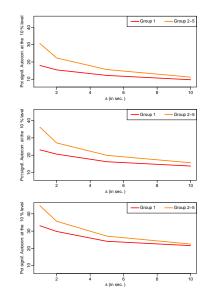


Empirical distribution of per-stock averages of daily mid-quote revisions

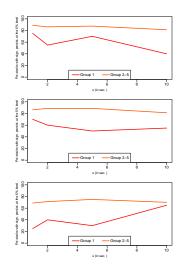
Significant first-order return autocorrelations

T = 30)min	(N =	41,600)						
Δ	1%	5%	10%	1%	5%	10%	1%	5%	10%	n
1sec	25.8	37.2	44.7	18.8	27.0	32.6	11.3	17.7	22.3	1800
2sec	15.7	27.3	35.7	9.5	17.3	22.8	10.3	18.4	23.8	900
5sec	9.4	19.7	27.1	4.5	9.8	14.4	8.4	17.3	24.4	360
10sec	6.4	15.4	22.5	2.3	6.6	10.9	6.6	15.9	23.1	180
1sec 2sec 5sec	17.9 10.3 5.0	28.7 19.9 13.0	36.2 27.1 19.9	13.0 6.6 2.7	20.8 13.2 7.6	26.2 18.5 12.3	8.9 6.8 4.8	15.4 14.0 12.2	20.3 19.8 18.6	600 300 120
2sec	10.3	19.9	27.1	6.6	13.2	18.5	6.8	14.0	19.8	300
2sec 5sec	10.3 5.0 3.0	19.9 13.0	27.1 19.9 15.6	6.6 2.7 1.5	13.2 7.6	18.5 12.3	6.8 4.8	14.0 12.2	19.8 18.6	300 120
2sec 5sec 10sec	10.3 5.0 3.0	19.9 13.0 9.3	27.1 19.9 15.6	6.6 2.7 1.5	13.2 7.6	18.5 12.3	6.8 4.8	14.0 12.2	19.8 18.6	300 120
2sec $5sec$ $10sec$ $T = 5r$	10.3 5.0 3.0 nin (19.9 13.0 9.3 N = 2	27.1 19.9 15.6 49,600	6.6 2.7 1.5	13.2 7.6 5.3	18.5 12.3 9.2	6.8 4.8 3.3	14.0 12.2 10.3	19.8 18.6 17.1	300 120 60
$2sec$ $5sec$ $10sec$ $T = 5r$ Δ	10.3 5.0 3.0 nin (1%	$ \begin{array}{r} 19.9 \\ 13.0 \\ 9.3 \\ \hline (N = 2) \\ 5\% \end{array} $	27.1 19.9 15.6 49,600 10%	6.6 2.7 1.5) 1%	13.2 7.6 5.3 5%	18.5 12.3 9.2 10%	6.8 4.8 3.3 1%	14.0 12.2 10.3 5%	19.8 18.6 17.1 10%	300 120 60 n
$2sec$ $5sec$ $10sec$ $T = 5n$ Δ $1sec$	$ \begin{array}{r} 10.3 \\ 5.0 \\ 3.0 \\ \end{array} $ <i>nin</i> (1% 14.1	$ \begin{array}{r} 19.9 \\ 13.0 \\ 9.3 \\ \hline (N = 2) \\ 5\% \\ 23.9 \\ \end{array} $	27.1 19.9 15.6 49,600 10% 30.7	6.6 2.7 1.5) 1% 10.1	13.2 7.6 5.3 5% 17.2	18.5 12.3 9.2 10% 22.2	6.8 4.8 3.3 1% 7.5	14.0 12.2 10.3 5% 13.6	19.8 18.6 17.1 10% 18.2	300 120 60 <i>n</i> 300

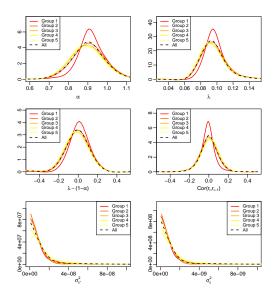
Prop. of sign. ACFs (10% level), $T \in \{5, 10, 30\}$ min



Proportion of stocks with significant window-to-window ACF, $T \in \{5, 10, 30\} \mathrm{min}$



Distribution of Parameter Estimates



Summary Statistics of Estimates

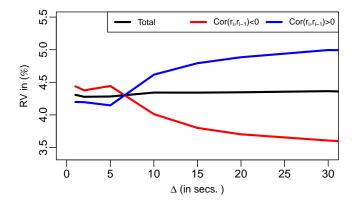
$T = 10min, \Delta = 1se$	c
---------------------------	---

1 10//////	1000						
	q5	q25	Median	Mean	q75	q95	SD
\hat{lpha}	0.778	0.864	0.909	0.909	0.963	1.052	0.105
$\hat{\lambda}$	0.077	0.088	0.096	0.102	0.106	0.129	0.073
$\hat{\lambda} - (1 - \hat{lpha})$	-0.150	-0.048	0.005	0.011	0.069	0.181	0.124
$\widehat{\mathbb{C}or}(r_i, r_{i-1})$	-0.144	-0.056	-0.000	-0.008	0.041	0.121	0.081
$\hat{\sigma}_{\varepsilon^*}^2 (\cdot 10^{-8})$ $\hat{\sigma}_{\varepsilon}^2 (\cdot 10^{-8})$	0.060	0.140	0.254	0.563	0.517	1.850	1.219
$\hat{\sigma}_{arepsilon}^2 \left(\cdot 10^{-8} \right)$	0.005	0.013	0.025	0.055	0.050	0.180	0.125

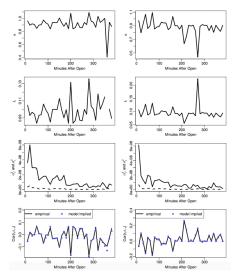
 $T = 10min, \Delta = 2sec$

	q5	q25	Median	Mean	q75	q95	SD
\hat{lpha}	0.726	0.846	0.905	0.891	0.961	1.056	0.138
$\hat{\lambda}$	0.072	0.086	0.095	0.104	0.106	0.138	0.101
$\hat{\lambda} - (1 - \hat{lpha})$	-0.210	-0.070	-0.001	-0.004	0.066	0.188	0.158
$\widehat{\mathbb{C}or}(r_i,r_{i-1})$	-0.149	-0.053	0.000	0.002	0.058	0.151	0.091
$\hat{\sigma}^2_{\varepsilon^*}(\cdot 10^{-8})$ $\hat{\sigma}^2_{\varepsilon}(\cdot 10^{-8})$	0.116	0.279	0.516	1.177	1.058	3.875	2.670
$\hat{\sigma}_{arepsilon}^2 \left(\cdot 10^{-8} ight)$	0.009	0.026	0.048	0.118	0.101	0.394	0.287

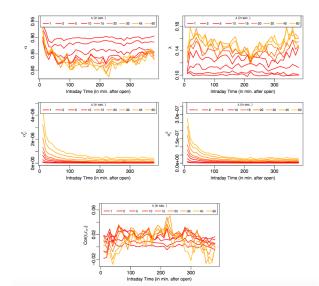
Volatility Signature Plots



TS Plots of Estimates of Yahoo and Microsoft



Intraday Seasonalities



Temporal Aggregation

► Let p_i , sampled at step size $\Delta \ge 1$, with observations for $i = 0, \Delta, 2 \cdot \Delta, \dots, T - \Delta$, governed by

$$p_{i+\Delta} = p_i - \alpha_{\Delta}(p_i - p_i^*) + \varepsilon_{i+\Delta,\Delta}, \quad p_{i+\Delta}^* = p_i^* + \hat{\varepsilon}_{i+\Delta,\Delta}^*$$

where $\varepsilon_{i+\Delta,\Delta} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon,\Delta}^2)$ and $\hat{\varepsilon}_{i+\Delta,\Delta}^* \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon^*,\Delta}^2)$ for all $i \in \{k \cdot \Delta, k = 0, 1, 2, 3, \ldots\}.$

 \blacktriangleright Then, for $\Delta \geq 1$ and $0 < \alpha < 1,$ we have,

$$\begin{split} \alpha_\Delta &= 1 - (1 - \alpha)^\Delta, \quad \sigma_{\varepsilon,\Delta}^2 = \ g_\varepsilon \sigma_\varepsilon^2 + g_{\varepsilon^*} \sigma_{\varepsilon^*}^2, \quad \sigma_{\varepsilon^*,\Delta}^2 = \ \Delta \cdot \sigma_{\varepsilon^*}^2, \\ \text{with } g_\varepsilon \text{ and } g_{\varepsilon^*} \text{ denoting two functions depending on } \alpha \text{ and } \\ \Delta. \end{split}$$

40

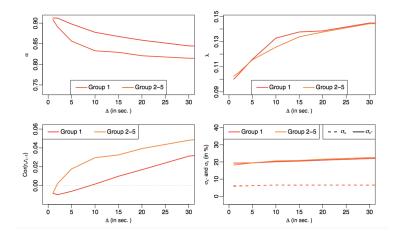
• α_{Δ} is strictly increasing in Δ , with $\lim_{\Delta \to \infty} \alpha_{\Delta} = 1$

 \blacktriangleright For the noise-to-signal ratio λ_Δ for models estimated at lower frequencies we have

$$\lambda_{\Delta} = \frac{\sigma_{\varepsilon,\Delta}^2}{\sigma_{\varepsilon^*,\Delta}^2} = \frac{1}{\Delta} \bigg(g_{\varepsilon} \lambda + g_{\varepsilon^*} \bigg)$$

with $\lim_{\Delta \to \infty} \lambda_{\Delta} = 1$.

Temporal Aggregation



42

6. Model Generalization

- 6. Model Generalization
 - Assume the model

$$p_{i+1} = p_i - \alpha(p_i - p_i^*) + \epsilon_{i+1}, \qquad \epsilon_{i+1} \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2),$$
$$p_{i+1}^* = p_i^* + \varepsilon_{i+1}^*, \quad \varepsilon_{i+1}^* \stackrel{iid}{\sim} N(0, \sigma_{\epsilon^*}^2),$$

with $\mathbb{E}[\epsilon_{i+1}\varepsilon_{i+1}^*] = \gamma \neq 0.$

• For $\gamma = \alpha \sigma_{\varepsilon^*}^2$: Model by Amihud & Mendelson (1987):

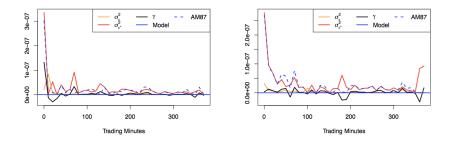
$$p_i = p_{i-1} - \alpha (p_{i-1} - p_i^*) + \tilde{\varepsilon}_i,$$

with $\tilde{\varepsilon}_i := \varepsilon_i - \alpha \varepsilon_i^*$ and $\mathbb{E}[\tilde{\varepsilon}_i \varepsilon_i^*] = 0$. • For $\gamma = \sigma_{\varepsilon^*}^2$: RW-plus-iid-noise model

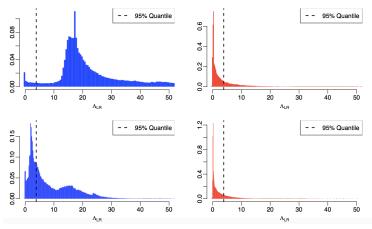
$$p_i = p_i^* + \varepsilon_i$$
 with $\mathbb{E}[\varepsilon_i \varepsilon_i^*] = 0$.

• For $\gamma = 0$, we obtain the original model.

Estimates for 2 days for AAPL



LR Tests for $H_0: \gamma = \alpha \sigma_{\varepsilon^*}^2$ (left) and $H_0: \gamma = 0$ (right)



Top: T = 10min, $\Delta = 2$ secs; Bottom: T = 10min, $\Delta = 5$ secs

46

8. Conclusions

Conclusions

- Evidence for a model with information feedback
- Show mostly sluggish price updating due to mis-pricing
- ► Extent of market efficiency varies over time ⇒ Identification of local states of "contrarian trading" and "momentum trading"
- Strong intraday and cross-sectional variation

Implications

- Channels for bridging the gap between high-frequency statistics and market microstructure theory
- New implications for volatility estimation
- Can be extended in various directions