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Introduction

I Major topic in financial econometrics over the last decade:

How can we optimally use financial high-frequency data to
construct efficient volatility estimators for aggregated periods
(intraday, day, week, ...)?

I Typical starting point:

pti = p∗ti + εi, εi ∼ (0, σ2
ε ), i = 1, . . . , n,

p∗t = p∗0 +

∫ t

0
σ∗2(s)dBs , t ∈ [0, T ],

where pt denotes the (observed) log price, Bt is a standard
Brownian motion Bt, and εi is microstructure ”noise”.

I Object of interest:
∫ T

0 σ∗2(s)ds, corresponding to the variance
of a T -period return.
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I If pt are discretely observed with pi/n, i = 0, . . . , n, a natural

estimator for
∫ T

0 σ2(s)ds is given by the realized variance,

RVn =

n∑
i=1

(pi/n − p(i−1)/n)2,

which is consistent and efficient with

n
1/2

(
RVn−

∫ 1

0
σ∗2(s) ds

)
L−→ N

(
0, 2

∫ 1

0
σ∗4(s) ds

)
.

I Suggestion: Sampling on highest possible frequency!
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Real Intraday Price Path
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I Problem: HF prices are subject to noise, i.e., we only observe

pi = p∗i + εi, i = 1, . . . , n,

where εi is associated with market microstructure ”noise”
(MMN).

⇒ If we let n→∞, RV becomes biased and inconsistent.

⇒ If MMN is i.i.d., (log) returns (pi − pi−1) are negatively
autocorrelated.
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1-sec and 2-sec autocorrelations over 10min
windows
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⇒ MMN cannot be i.i.d.!
⇒ Noise properties change locally!
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I Huge literature on efficiently estimating σ2
ε∗

I kernel estimators (Barndorff-Nielsen et al, 2008), pre-averaging
(Jacod et al, 2009), MLE (Ait-Sahalia et al 2005), multi-scale
estimators (Zhang 2006), spectral estimators (Reiss, 2011), ...

But:

I Assumptions on noise statistically motivated!

I Missing link to microstructure theory and trading behavior
I Exceptions: Diebold/Strasser (2013), Chaker (2013),

Li/Xie/Zeng (2016)

I All approaches rely on the classical RW+Noise decomposition

pi = p∗i + εi, i = 1, . . . , n.
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A Model With Information/Trading Feedback

I Idea: Model with mis-pricing component:

pi = pi−1 − α(pi−1 − p∗i−1) + εi

I Changes in observed prices are caused by two sources:
I Market microstructure noise
I Mis-pricing component due to deviations between observed

prices and efficient prices (”error correction”)

I Reasoning:
I ”Non-informational” shocks cause ”mis-pricing”
I Prices are permanently in dis-equilibrium

I Speed by which observed prices react to inherent mis-pricing
governed by α ⇒ Measuring ”market efficiency”
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I Model captures two fundamental market regimes:
I Mis-pricing removed by ”contrarian behavior”
⇒ negative autocorrelations in observed returns

I Mis-pricing enforced by ”momentum behavior”
⇒ positive autocorrelations in observed returns

I State of market driven by relationship between
I speed of price reversion α,
I noise-to-signal ratio.

Why important?

I Model opens up channels for market microstructure
foundations of HF-based volatility estimation.

I HF-based assessment of market efficiency.

I Statistical implications!



Introduction 10

Outline

1. Introduction

2. A Model with Information Feedback

3. Two Market Regimes

4. Estimation

5. Empirical Evidence

6. Model Generalization

7. Conclusions



2. A Model with Information Feedback 11

2. A Model with Information Feedback
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Setup

I Model in discrete time, i.e., i ∈ {0, 1, 2, . . . , n} with n = T/∆.

I Observed log prices pi are assumed to be driven by

pi+1 = pi − α (pi − p∗i )︸ ︷︷ ︸
:=µi

+εi+1, 0 < α < 2, εi+1
iid∼ N(0, σ2

ε ),

p∗i+1 = p∗i + ε∗i+1, ε∗i+1
iid∼ N(0, σ2

ε∗), E[εi+1ε
∗
i+1] = 0.

I µi := pi − p∗i mis-pricing component.

I α: speed of price reversion
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Simulations of pi and p∗i for different α
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Alternative Representation

I Model can be written as

pi = p∗i + µi,

p∗i = p∗i−1 + ε∗i , ε∗i
i.i.d.∼ N(0, σ2

ε∗),

µi = (1− α)µi−1 + εµi ,

where εµi := εi − ε∗i
iid∼ WN(0, σ2

µ) with σ2
µ := σ2

ε∗ + σ2
ε .

I µi follows mean zero AR(1) process with

V[µi] =
σ2
µ

α(2− α)
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I The error covariance matrix Σ is given by

Σ : =

[
E[(εµi )2] E[εµi ε

∗
i ]

E[εµi ε
∗
i ] E[(ε∗i )

2]

]
=

[
E[µ2

i ] E[µiε
∗
i ]

E[µiε
∗
i ] E[(ε∗i )

2]

]
=

[
σ2
ε + σ2

ε∗ −σ2
ε∗

−σ2
ε∗ σ2

ε∗

]
with E[ε∗i ε

µ
i−h] = 0 ∀ h.

I Observed returns ri = pi − pi−1 are then given by

ri = −αµi−1 + εi, εi
iid∼ N(0, σ2

ε ),

with

E[εiµi+h] = (1− α)hσ2
ε ∀h ≥ 0

E[εiµi−h] = 0 ∀h > 0

E[εiε
µ
i ] = σ2

ε

E[εiε
µ
i−h] = 0 ∀h 6= 0
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Illustration of V[µi]/σ2
µ depending on α for

α ∈ (0, 2).
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Special Case α = 1 (Perfect ”Efficiency”)

I For α = 1 we obtain

pi+1 = p∗i + εi+1 = p∗i+1 + εµi+1,

where εµi := εi − ε∗i = pi − p∗i = µi is iid with

V[εµi ] = σ2
µ = σ2

ε + σ2
ε∗

E[ε∗i ε
µ
i ] = E[(p∗i − p∗i−1)εµi ] = −σ2

ε∗

⇒ RW plus endogenous iid noise!

⇒ E[ri, ri−1] = −σ2
ε

⇒ Endogeneity structurally built into the model!
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3. Two Market Regimes
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Return Variances

I The return variance is given by

V[ri] = σ2
ε + α2V[µi] =

1

2− α
(2σ2

ε + ασ2
ε∗) .

implying V[ri] ≥ σ2
ε .

I We define the noise-to-signal ratio λ as

λ = σ2
ε/σ

2
ε∗ .

I Then, the unconditional return variance is given by

V[ri] = σ2
ε∗

2λ + α

2− α
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I It follows that

V[ri] ≤ V[r∗i ] if λ ≤ 1− α,
V[ri] > V[r∗i ] otherwise.

⇒ If proportion of ”informational variance” (λ) is high, and pi
sluggishly follows p∗i , changes in efficient price are passed over
to the observed price in mitigated way.
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Regimes in Return Autocovariances

I Lemma. Assume σ2
ε > 0, 0 < α < 2, and h ≥ 1. Then,

Cov[ri, ri−h] = ψ(h− 1) σ2
ε∗

(1− α− λ)

2− α
,

with ψ(h− 1) = α (1− α)h−1, and ψ(0) = 1, if α = 1.

I Corollary. Assume σ2
ε > 0, 0 < α < 2, and h ≥ 1.

(i) If 0 < α < 1, then
sgn{Cov[ri, ri−h]} = sgn{(1− α)− λ}.

(ii) If α = 1, then Cov[ri, ri−1] = −σ2
ε < 0, and

Cov[ri, ri−h] = 0, for h > 1.
(iii) If 1 < α < 2, then sgn{Cov[ri, ri−h]} = sgn{(−1)h}.
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I Cov[ri, ri−h] = 0 holds as long as

λ = 1− α

Implications:

I If α = 1 and there is noise (λ > 0) returns cannot be
uncorrelated!

I As long there is noise (λ > 0), price updating must be
sluggish (α < 1) to ensure Cov[ri, ri−h] = 0!
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Implications for the Realized Variance

I Consider log prices, p0, p∆, . . . , pi∆ , . . . , pT at equidistant
points i = 1, . . . , T/∆− 1, T/∆, with grid size ∆ and
n = T/∆ and ri∆ = pi∆ − p(i−1)∆.

I The realized return variance measure at time T is given as

RV ∆
T =

T/∆∑
i=1

r 2
i∆.
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Theorem. For 0 < α < 1, the expected time-T realized variance
sampled at calendar time grid size ∆ equals,

〈p〉∆T = T · σ2
ε∗ + T · σ2

ε∗ · φ(∆)
λ− (1− α)

(2− α)
,

with φ(∆) =
2

α∆

(
1− (1− α)∆

)
.

The mapping ∆ 7→ φ(∆), from R+ into
(
0,− 2

α ln(1− α)
)

is
strictly decreasing with

(i) lim∆→0 φ(∆) = − 2
α ln(1− α),

(ii) lim∆→∞ φ(∆) = 0.
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Volatility Signature Plots

(i) if λ > (1− α), then T · σ2
ε∗ < 〈p〉∆T ,

(ii) if λ < (1− α), then T · σ2
ε∗ > 〈p〉∆T .

0 2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

∆

R
V

T∆

α
0.7 0.75 0.8 0.85 0.9 0.95 1

λ = 1/10



4. Estimation 26

4. Estimation
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State-Space Representation

I Denote Xi as a state vector at i with Xi := (µi µi−1 εi).
I Then, ri can be written as

ri = FXi,

Xi = GXi−1 + wi

with F = (0 − α 1) and

G =

(1− α) 0 0
1 0 0
0 0 0

 , wi =

εµi0
εi

 , Σw =

σ2
ε + σ2

ε∗ 0 σ2
ε

0 0 0
σ2
ε 0 σ2

ε

 .

I Parameters can be estimated by maximum likelihood using
the Kalman filter.
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Alternative: Moment Estimation

I We can employ the unconditional moment restrictions

φ1(ri;α;σ2
ε , σ

2
ε∗) = σ2

ε∗n− σ2
µnφ(∆)

1− α− λ
(2− α)(λ+ 1)

−
n∑
i=1

r2
i

φ2(ri;α;σ2
ε , σ

2
ε∗) = r2

i −
1

2− α
(2σ2

ε + ασ2
ε∗),

φ2,h(ri;α;σ2
ε , σ

2
ε∗) = riri−h − ψ(h− 1)σ2

ε∗
1− α− λ

2− α
,

with ψ(h) = α(1− α)h ≥ 0 and h = 1, 2, . . . .
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I A GMM estimator can be formulated as

θ̂(W) = arg min
θ

[
1

n

n∑
i=1

m̃(ri; θ)

]′
Wn

[
1

n

n∑
i=1

m̃(ri; θ)

]
,

where θ = (α, σ2
ε , σ

2
ε∗)′, while

m̃(ri; θ) = (φ1(ri; θ), φ2(ri; θ), φ2,1(ri; θ), φ2,2(ri; θ), . . . )
represents a set of model implied moment conditions, and Wn

is a conforming positive definite weighting matrix.
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5. Empirical Evidence
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Data

I Data sampled from LOBSTER
(https://lobsterdata.com/)

I Mid-quote returns from NASDAQ 100 constituents, first 40
trading days of 2014
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Significant first-order return autocorrelations
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Prop. of sign. ACFs (10% level), T ∈ {5, 10, 30}min
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Proportion of stocks with significant
window-to-window ACF, T ∈ {5, 10, 30}min
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Distribution of Parameter Estimates
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Summary Statistics of Estimates
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Volatility Signature Plots
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TS Plots of Estimates of Yahoo and Microsoft
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Intraday Seasonalities
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Temporal Aggregation

I Let pi, sampled at step size ∆ ≥ 1, with observations for
i = 0,∆, 2 ·∆, . . . T −∆, governed by

pi+∆ = pi − α∆(pi − p∗i ) + εi+∆,∆, p∗i+∆ = p∗i + ε̂∗i+∆,∆

where εi+∆,∆
iid∼ N (0, σ2

ε,∆) and ε̂∗i+∆,∆
iid∼ N (0, σ2

ε∗,∆) for all
i ∈ {k ·∆, k = 0, 1, 2, 3, . . .}.

I Then, for ∆ ≥ 1 and 0 < α < 1, we have,

α∆ = 1− (1− α)∆, σ2
ε,∆ = gεσ

2
ε + gε∗σ

2
ε∗ , σ2

ε∗,∆ = ∆ · σ2
ε∗ ,

with gε and gε∗ denoting two functions depending on α and
∆.
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I α∆ is strictly increasing in ∆, with lim∆→∞ α∆ = 1

I For the noise-to-signal ratio λ∆ for models estimated at lower
frequencies we have

λ∆ =
σ2
ε,∆

σ2
ε∗,∆

=
1

∆

(
gελ+ gε∗

)
with lim∆→∞ λ∆ = 1.
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Temporal Aggregation
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6. Model Generalization



6. Model Generalization 44

I Assume the model

pi+1 = pi − α(pi − p∗i ) + εi+1, εi+1
iid∼ N(0, σ2

ε ),

p∗i+1 = p∗i + ε∗i+1, ε∗i+1
iid∼ N(0, σ2

ε∗),

with E[εi+1ε
∗
i+1] = γ 6= 0.

I For γ = ασ2
ε∗ : Model by Amihud & Mendelson (1987):

pi = pi−1 − α(pi−1 − p∗i ) + ε̃i,

with ε̃i := εi − αε∗i and E[ε̃iε
∗
i ] = 0.

I For γ = σ2
ε∗ : RW-plus-iid-noise model

pi = p∗i + εi with E[εiε
∗
i ] = 0.

I For γ = 0, we obtain the original model.
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Estimates for 2 days for AAPL
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LR Tests for H0 : γ = ασ2
ε∗ (left ) and H0 : γ = 0 (right)

Top: T = 10min, ∆ = 2secs; Bottom: T = 10min, ∆ = 5 secs
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Conclusions

I Evidence for a model with information feedback

I Show mostly sluggish price updating due to mis-pricing

I Extent of market efficiency varies over time ⇒ Identification of
local states of ”contrarian trading” and ”momentum trading”

I Strong intraday and cross-sectional variation

Implications

I Channels for bridging the gap between high-frequency
statistics and market microstructure theory

I New implications for volatility estimation

I Can be extended in various directions
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