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Tobias Fissler (University of Bern) Testing the maximal rank June 9, 2017 3 / 45



The statistical problem
Delbean and Schachermayer (1994) found out that under the
no-arbitrage assumption price processes are semimartingales.

We work in the continuous Itô semimartingale framework.
The process of interest X is a d-dimensional Itô semimartingale of the
form

Xt = X0 +

ż t

0
bs ds +

ż t

0
σs dWs, t P [0,T]

where
§ b is a d-dimensional drift process,
§ σ is a Rdˆq-valued volatility process,
§ W is a q-dimensional Brownian motion.

High frequency observations: Not the whole path t ÞÑ Xt(ω) is
available, but only equidistant discrete time observations

X0,X∆n ,X2∆n , . . . ,X[T/∆n]∆n

with ∆n Ñ 0.
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The statistical problem (2)
Interesting question: minimal dimension of W

§ Modelling and simulation purposes.
§ Economic interpretation: Assume X comprises the stocks of an index

(e.g. the DAX, so d = 30). Is the market complete or not? How many
components do we need to explain the volatility of X?

This amounts to ask for the maximal rank of the diffusion process
ct = σtσ˚

t in [0,T). We set

rt = rank(ct), RT = sup
s P[0,T)

rs.

The pathwise ‘testing hypothesis’ will be for r P t0, . . . , du

Ωr
T = tω P Ω : RT(ω) = ru.

If σt is continuous, the random-set tt P [0,T) | rt(ω) = RT(ω)u has
positive Lebesgue measure.
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The statistical problem (3)

Jacod and Podolskij (2013) presented a test for the afore-mentioned
problem that is based on a random perturbation of the original data.

We do the same in a more general setting: We assume that we
cannot observe X directly, but only a noisy version

Yt = Xt + εt.

Sources of the noise ε:
(a) Rounding errors (prices are given in cents) that amount to

microstructure noise.
(b) Measurement inaccuracies that lead to additive white noise.

We confine ourselves to the latter case.
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Situation without noise:
The random perturbation approach
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The random perturbation approach – deterministic setting
Let A,B P Rdˆd, rank(A) = r, rank(B) = d and λ ą 0. By
multilinearity we have:

det(A + λB) =
d

ÿ

j=0

λd´jγj(A,B) = λd´rγr(A,B) + O(λd´r+1),

γj(A,B) =
ÿ

GPMj
A,B

det(G),

Mj
A,B = tG P Rdˆd | Gi = Ai or Gi = Bi,

A and G share j joint columnsu.

Provided that γr(A,B) ‰ 0 this yields

det(A + 2λB)
det(A + λB) =

(2λ)d´rγr(A,B) + O(λd´r+1)

λd´rγr(A,B) + O(λd´r+1)
Ñ 2d´r, as λ Ó 0.
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The random perturbation approach – stochastic setting
For the increment

∆n
i X = Xi∆n ´ X(i´1)∆n

we need to establish a stochastic analogon of a Taylor expansion up
to order 3 such that we can write

∆n
i X = αn

i + βn
i + γn

i ,

with αn
i = OP(∆

1/2
n ), βn

i = OP(∆n), γn
i = OP(∆

3/2
n ).

Reason: The main test statistic is degenerate on tRT ă du.

We impose the additional regularity condition (H) that

Xt = X0 +

ż t

0
bs ds +

ż t

0
σs dWs,

σt = σ0 +

ż t

0
as ds +

ż t

0
vs dWs,

and that b and v are also continuous Itô semimartingales.
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The random perturbation approach – stochastic setting (2)
We use matrix notation and obtain that under (H)

∆
´1/2
n

(
∆n

i+1X, ¨ ¨ ¨ ,∆n
i+dX

)
= An

i +∆
1/2
n Bn

i +∆nCn
i ,

where An
i =

(
An

i,1, ¨ ¨ ¨ ,An
i,d

)
, Bn

i =
(

Bn
i,1, ¨ ¨ ¨ ,Bn

i,d

)
and

Cn
i =

(
Cn

i,1, ¨ ¨ ¨ ,Cn
i,d

)
.

The expansion has the form

An
i,j = σi∆n∆

´1/2
n ∆n

i+jW „ MN(0, ci∆n),

Bn
i,j = bi∆n +∆´1

n vi∆n

ż (i+j)∆n

(i+j´1)∆n
(Ws ´ Wi∆n)dWs,

Cn
i,j = rest.

We obtain that An
i,j,Bn

i,j,Cn
i,j are OP(1).
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The random perturbation approach – stochastic setting (3)

In order to identify the correct limit we use squared determinants as
test functions. If r = rank(ci∆n), we have the approximation

det2
(

An
i +∆

1/2
n Bn

i +∆nCn
i

)
« ∆d´r

n γr (An
i ,Bn

i )
2 .

As mentioned above, we must assure that γr (An
i ,Bn

i ) ‰ 0. To do so,
Jacod and Podolskij (2013) introduced a random perturbation of the
original data.
Let pW be a d-dimensional Brownian motion independent of X (and all
its ingredients). Then we work with the perturbated processes

Zn,1
t = Xt +

a

∆n pWt,

Zn,2
t = Xt +

a

2∆n pWt.
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The random perturbation approach – stochastic setting (4)

Then the expansion has the form

∆
´1/2
n

(
∆n

i+1Zn,1, ¨ ¨ ¨ ,∆n
i+dZn,1) = An

i +∆
1/2
n pBn

i +∆nCn
i ,

where

pBn
i,j = bi∆n +∆´1

n vi∆n

ż (i+j)∆n

(i+j´1)∆n
(Ws ´ Wi∆n)dWs +∆

´1/2
n ∆n

i+j pW.

One can show that γr(An
i ,

pBn
i ) ‰ 0 a.s.
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The random perturbation approach – The main statistics

We define the main statistics

Sn,1
t = 2d∆n

[t/2d∆n]´1
ÿ

i=0

det2
(
∆

´1/2
n (Zn,1

(2id+1)∆n
´ Zn,1

2id∆n
), ¨ ¨ ¨ ,

∆
´1/2
n (Zn,1

(2id+d)∆n
´ Zn,1

(2id+d´1)∆n
)
)
,

Sn,2
t = 2d∆n

[t/2d∆n]´1
ÿ

i=0

det2
(
(2∆n)

´1/2(Zn,2
(2id+2)∆n

´ Zn,2
2id∆n

), ¨ ¨ ¨ ,

(2∆n)
´1/2(Zn,2

(2id+2d)∆n
´ Zn,2

(2id+d´2)∆n
)
)
.
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The random perturbation approach –
Law of Large Numbers

We obtain the following Law of Large Numbers on Ωr
T

1

∆d´r
n

Sn,1
T

P
ÝÑ S(r)T =

ż T

0
Γr(σs, vs, bs)ds ą 0,

1

(2∆n)d´r Sn,2
T

P
ÝÑ S(r)T.

Since the limits are the same we can deduce that

Sn,2
T /Sn,1

T
P

ÝÑ 2d´RT .

We can construct a consistent ‘estimator’ for the maximal rank RT

pR(n,T) = d ´
log
(

Sn,2
T /Sn,1

T

)
log 2

P
ÝÑ RT.
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The random perturbation approach –
Central Limit Theorem

For the previous results we obtain associated CLTs with the usual rate
of ∆1/2

n .

We have the following 2-dimensional stable convergence on Ωr
T

∆
´1/2
n

(
1

∆d´r
n

Sn,1
T ´ S(r)T,

1

(2∆n)d´r Sn,2
T ´ S(r)T

)
L´s
ÝÑ MN

(
0,

ż T

0
Θr(σs, vs, bs)ds

)
,

and

∆
´1/2
n

(
pR(n,T) ´ r

)
L´s
ÝÑ MN

(
0,

ż T

0
Vr(σs, vs, bs)ds

)
.
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The random perturbation approach –
Central Limit Theorem (2)

The conditional variance
şT
0 Vr(σs, vs, bs)ds can be consistently

estimated by Vn such that we obtain a feasible version of the stable
convergence:

∆
´1/2
n

(
pR(n,T) ´ RT

)
?

Vn

L´s
ÝÑ Φ „ N (0, 1).
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Accounting for the noise:
The pre-averaging approach
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Accounting for the noise: The intuition

There is empirical evidence that – especially at very high frequencies
– we cannot observe X directly, but only a noisy version

Yt = Xt + εt.

We assume a rather simple structure of the noise. We assume that ε
is additive Gaussian noise that means

(i) εt „ N (0,Σ) for all t,
(ii) εs is independent of εt for all s ‰ t,
(iii) The noise ε is independent of the semimartingale X (and all its

ingredients).

What happens if we use the same statistics in the presence of noise
meaning that we substitute X by Y?
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Accounting for the noise: The intuition (2)

To get an intuition, we assume for simplicity that we have no drift
and constant volatility meaning that Xt = σWt. Then

∆n
i X

?
∆n

„ N (0, σσ˚),
∆n

i ε?
∆n

„ N (0, 2∆´1
n Σ).

The semimartingale X inherits a scaling property by the Brownian
motion whereas the noise is i.i.d. and does not satisfy such a scaling
property.
⇝ The influence of the noise explodes!!!
If we work with the non-normalized increments ∆n

i X and ∆n
i ε, the

noise would completely dominate the statistic.
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Accounting for the noise: The pre-averaging approach

Podolskij and Vetter (2006) were the first to introduce the
pre-averaging approach. Jacod, Li, Mykland, Podolskij and Vetter
(2009) enhanced the approach.
We consider the weighted average of kn P N successive increments.

Definition 1
We call g : [0, 1] Ñ R a weight function if it is continuous, piecewise C1

with a piecewise Lipsvarepsilontz derivative g1, and satisfies

g(0) = g(1) = 0,

ż 1

0
g2(x)dx ą 0.

Example: g(x) = min(x, 1 ´ x).
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Accounting for the noise: The pre-averaging approach (2)

Definition 2
Let g be a weight function and kn be a sequence of integers such that
kn Ñ 8 and ∆nkn Ñ 0 as ∆n Ñ 0.
For any d-dimensional process V we define the pre-averaged increments

V(g)n,1
i =

kn´1
ÿ

j=1

g
( j

kn

) (
V(i+j)∆n ´ V(i+j´1)∆n

)
,

V(g)n,2
i =

kn´1
ÿ

j=1

g
( j

kn

) (
V(i+2j)∆n ´ V(i+2(j´1))∆n

)
.
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Accounting for the noise: The pre-averaging approach (3)

Example
(i) For V = W a d-dimensional Brownian motion, W(g)n,κ

i , κ = 1, 2, is a
centered Gaussian variable with covariance matrix

κ∆n

kn´1
ÿ

j=1

g2
( j

kn

)
Id = κ∆nkn

ż 1

0
g2(s)ds Id + O(∆n).

(ii) For V = ε where ε is centered additive Gaussian noise with
covariance matrix Σ, then ε(g)n,κ

i is a centered Gaussian variable
with covariance matrix

kn
ÿ

j=1

(
g
( j

kn

)
´ g
( j ´ 1

kn

))2

Σ = k´1
n

ż 1

0

(
g1(s)

)2 dsΣ+ O(k´2
n ).
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Accounting for the noise: The pre-averaging approach (4)
The pre-averaged increments have the following orders

X(g)n,κ
i = OP

(
(∆nkn)

1/2
)
,

ε(g)n,κ
i = OP

(
k´1/2

n
)
.

We are free to choose the window size kn as long as kn Ñ 8 and
∆nkn Ñ 0. So we can give the noise any order we want.
Consider the perturbated processes

Zn,1
t = Yt +

a

∆n pWt,

Zn,2
t = Yt +

a

2∆n pWt.

Then the expansion has the form

(∆nkn)
´1/2

(
Z(g)n,1

i , ¨ ¨ ¨ ,Z(g)n,1
i+(d´1)kn

)
= A(g)n

i + (∆nkn)
1/2

pB(g)n
i +∆nknC(g)n

i + (∆nkn)
ν/2E(g)n

i
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Accounting for the noise: The pre-averaging approach (5)

A(g)n
i

loomoon

OP(1)

+(∆nkn)
1/2

pB(g)n
i

loomoon

OP(1)

+∆nkn C(g)n
i

loomoon

OP(1)

+(∆nkn)
ν/2E(g)n

i .

Recall: We are free to choose the window size kn as long as kn Ñ 8

and ∆nkn Ñ 0 as ∆n Ñ 0.
⇝ For ν = 0, 1, 2 we can choose kn such that E(g)n

i is OP(1)!
⇝ The bigger ν the smaller is the influence of the noise term.
⇝ Incentive to choose kn big.

Drawback of the pre-averaging approach: Only the weighted averages
over a window of size kn enter into the main statistic.
⇝ The number of data-points decreases from [T/∆n] to [T/∆nkn].
⇝ The overall convergence rate in the CLT reduces from ∆

1/2
n to

(∆nkn)1/2!!!
Incentive to choose kn as small as possible.
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Accounting for the noise: The convergence rate

A(g)n
i

loomoon

OP(1)

+(∆nkn)
1/2

pB(g)n
i

loomoon

OP(1)

+∆nkn C(g)n
i

loomoon

OP(1)

+(∆nkn)
ν/2 E(g)n

i
loomoon

OP(1)

.

ν = 2 The noise will not appear in the limit and the proofs are
rather easy.
kn = O(∆

´3/4
n ) ⇝ convergence rate of ∆1/8

n .

ν = 1 The noise will affect the variance in the CLT. We need two
different weight functions for the two statistics Sn,1 and Sn,2.
kn = O(∆

´2/3
n ) ⇝ convergence rate of ∆1/6

n .
ν = 0 The noise enters the CLT as a BIAS. We need

BIAS-correction which is rather involved (and practically not
feasible).
kn = O(∆

´1/2
n ) ⇝ optimal convergence rate of ∆1/4

n .
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Accounting for the noise: The main statistic
We confine ourselves to the case ν = 1 and put the formal assumption.

For θ P (0,8) let kn be a sequence of integers satisfying

kn =
1

θ∆
2/3
n

(
1 + o

(
∆

1/6
n
))

= O(∆
´2/3
n ).

Let g be a weight function. Then we define the main statistics

S(g)n,1
t = 2d∆nkn

[t/2d∆nkn]´1
ÿ

i=0

det2
(
(∆nkn)

´1/2Z(g)n,1
2idkn

, ¨ ¨ ¨ ,

(∆nkn)
´1/2Z(g)n,1

(2id+(d´1))kn

)
,

S(g)n,2
t = 2d∆nkn

[t/2d∆nkn]´1
ÿ

i=0

det2
(
(2∆nkn)

´1/2Z(g)n,2
2idkn

, ¨ ¨ ¨ ,

(2∆nkn)
´1/2Z(g)n,2

(2id+2(d´1))kn

)
.
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Accounting for the noise: The Law of Large Numbers

Again, one can show that on Ωr
T

1

(∆nkn)d´r S(g)n,1
T

P
ÝÑ S(r, g)1T =

ż T

0
Γ1

r (σs, vs, bs,Σ, g)ds ą 0,

1

(2∆nkn)d´r S(g)n,2
T

P
ÝÑ S(r, g)2T =

ż T

0
Γ2

r (σs, vs, bs,Σ, g)ds ą 0.

For our method it is crucial that the limits coincide. However,
S(r, g)1T = S(r, g)2T.
Using the same weight function for the two different rates, the
equality does not hold!
Reason: The semimartingale part satisfies a scaling property whereas
the noise part does not. (For the case ν = 2 that does not matter
since the noise part disappears in the limit.)
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Accounting for the noise: The Law of Large Numbers (2)
A careful inspection of the influence of the weight function to the
limit yields the following:
The maps g ÞÑ S(r, g)1T and g ÞÑ S(r, g)2T are real-valued functionals
that factorize in a functional mapping g to R4 and a polynomial
mapping from R4 to R.

The part associated to the semimartingale depends on the functionals
ż 1

0
g2(s)ds (associated with σ),

ż 1

0
g2(s)s ds (associated with v),

ż 1

0
g(s)ds (associated with b).

The noise part depends on the functional
ż 1

0

(
g1(s)

)2 ds.
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Accounting for the noise: The Law of Large Numbers (3)
Solution: We use two different weight functions g and h such that

ż 1

0
h2(s)ds =

ż 1

0
g2(s)ds,

ż 1

0
h2(s)s ds =

ż 1

0
g2(s)s ds,

ż 1

0
h(s)ds =

ż 1

0
g(s)ds,

ż 1

0

(
h1(s)

)2 ds = 4

ż 1

0

(
g1(s)

)2 ds.

⇝ S(r, g)1T = S(r, h)2T.

Example: A pair g, h satisfying the above relations:

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5
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Accounting for the noise: The Law of Large Numbers (4)

We obtain that

S(h)n,2
T /S(g)n,1

T
P

ÝÑ 2d´RT .

We can construct a consistent ‘estimator’ for the maximal rank RT

pR(n,T, g, h) = d ´
log
(

S(h)n,2
T /S(g)n,1

T

)
log 2

P
ÝÑ RT.
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Accounting for the noise: Central Limit Theorem

We can also derive associated CLTs with the rate (∆nkn)1/2 « ∆
1/6
n .

We have the following 2-dimensional stable convergence on Ωr
T

(∆nkn)
´1/2

(
1

(∆nkn)d´r S(g)n,1
T ´ S(r, g)1T,

1

(2∆nkn)d´r S(h)n,2
T ´ S(r, h)2T

)
L´s
ÝÑ MN

(
0,

ż T

0
Θr(σs, vs, bs,Σ, g, h)ds

)
,

and

(∆nkn)
´1/2

(
pR(n,T, g, h) ´ r

)
L´s
ÝÑ MN

(
0,

ż T

0
Vr(σs, vs, bs,Σ, g, h)ds

)
.
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Accounting for the noise: Central Limit Theorem (2)

The conditional variance
şT
0 Vr(σs, vs, bs,Σ, g, h)ds can be consistently

estimated by V(n,T, g, h) such that we obtain a feasible version of
the stable convergence:

(∆nkn)´1/2
(

pR(n,T, g, h) ´ RT
)

a

V(n,T, g, h)
L´s
ÝÑ Φ „ N (0, 1).
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The testing procedure
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The testing procedure
For r P t0, . . . , du we can test the null hypothesis

H0 : Ω
r
T = tω P Ω : RT(ω) = ru

against the alternative
H1 : Ω

‰r
T = tω P Ω : RT(ω) ‰ ru.

Let α P (0, 1) and cα denote the symmetric α-quantile of N (0, 1)
defined by P(|Φ| ą cα) = α when Φ „ N (0, 1). Then we obtain an
asymptotic level α test in the sense that

PH0

(
ˇ

ˇ

ˇ

(∆nkn)´1/2
(

pR(n,T, g, h) ´ RT
)

a

V(n,T, g, h)

ˇ

ˇ

ˇ
ą cα

)
Ñ α.

It is also consistent for the alternative in the sense that

PH1

(
ˇ

ˇ

ˇ

(∆nkn)´1/2
(

pR(n,T, g, h) ´ RT
)

a

V(n,T, g, h)

ˇ

ˇ

ˇ
ą cα

)
Ñ 1.
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The testing procedure (2)
For r P t0, . . . , du we can also test the null hypothesis

pH0 : Ω
ďr
T = tω P Ω : RT(ω) ď ru

against the alternative
pH1 : Ω

ąr
T = tω P Ω : RT(ω) ą ru.

Let α P (0, 1) and pcα denote the one-sided α-quantile of N (0, 1)
defined by P(Φ ą pcα) = α when Φ „ N (0, 1). Then we obtain an
asymptotic level at most α test in the sense that

lim sup P
pH0

(
(∆nkn)´1/2

(
pR(n,T, g, h) ´ RT

)
a

V(n,T, g, h)
ą pcα

)
ď α.

It is also consistent for the alternative in the sense that

P
pH1

(
(∆nkn)´1/2

(
pR(n,T, g, h) ´ RT

)
a

V(n,T, g, h)
ą pcα

)
Ñ 1.
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Simulation study & real data example
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Simulation study
For estimating the maximal rank, one can consider truncated and
rounded versions of the estimator (consistency okay, but no CLT for
this version!).

In order to improve the finite sample performance and the asymptotic
variance, one can use an estimator with overlapping increments. An
LLN is straight forward. However, a CLT seems to be more involved.
Empirical results:

§ The empirical counterparts of our statistics seem to converge to the
correct limits.

§ The speed of convergence is rather slow – in line with the convergence
rate of ∆1/6

n .
§ Performance is better for smaller dimensions (rate is rather
[T/2dkn∆n]´1/2 than ∆

1/6
n .

§ In particular, the speed of convergence depends on the complexity of
the respective model of the semimartingale.

§ Working with overlapping increments decreases the variance while the
bias remains the same.
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Real data example

Consider 8 American banks between 2006 and 2009 (1007 trading
days).
⇝ Homogeneous market.
⇝ Period includes crisis.
Pre-cleaning to exclude jumps (details in the paper).
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Figure: Estimators pR(g, h)n
1 (black) and pRint(g, h)n

1 (blue) over a one-day time
window. (Non-overlapping increments)
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Figure: Estimators pR(g, h)n
10 (black) and pRint(g, h)n

10 (blue) over a 10-days rolling
time window. (Non-overlapping increments)
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Figure: Estimators rR(g, h)n
1 (black) and rRint(g, h)n

1 (blue) over a one-day time
window. (Overlapping increments)



Real data example – summary

Table: Sample mean and variance for the non-overlapping and overlapping
approach.

overlapping T mean variance
no 1 10.85 16.11
no 10 8.20 8.12
yes 1 8.22 2.31
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Extension

In theory, one could test the local volatility assumption: ct = h(Xt) for
f P C2(Rd):

Illustration for d = 1. One considers the semimartingale
(

Xt
ct

)
. Then,

one can ask for the maximal rank of the co-volatility of
(

Xt
ct

)
.

Usually, one cannot observe the volatility process. So one needs an
estimator of the spot volatility. Since the test-statistic consists of a
ratio of two degenerate statistics, one obtains a rate of ∆1/6

n – even in
the absence of noice!
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Thank you for your attention!
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Stable convergence

Definition 3
Let (Xn)ně1 be a sequence of random elements on (Ω,F ,P) taking values
in a Polish space. Xn converges stably to a random element X,

Xn
L´s
ÝÑ X

where X is defined on an extension (rΩ, rF , rP), if and only if

lim
nÑ8

E [ϕ(Xn)Z ] = rE [ϕ(X)Z ]

for any bounded and continuous function ϕ and any bounded and
F-measurable random variable Z.
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Stable convergence II
Proposition 4
The following properties are equivalent:
(i) Xn

L´s
ÝÑ X;

(ii) (Xn,Z) d
ÝÑ (X,Z) for any F-measurable random variable Z;

(iii) (Xn,Z) L´s
ÝÑ (X,Z) for any F-measurable random variable Z.

Proposition 5

Xn
P

ÝÑ X ùñ Xn
L´s
ÝÑ X ùñ Xn

d
ÝÑ X.

Proposition 6
(i) If Xn

L´s
ÝÑ X and Vn

P
ÝÑ V, then (Xn,Vn)

L´s
ÝÑ (X,V).

(ii) If Xn
L´s
ÝÑ X „ MN(0,V 2) where V is F-measurable and

Vn
P

ÝÑ V ą 0, then Xn
Vn

L´s
ÝÑ N(0, 1).
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