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Intractable likelihoods

Likelihoods often difficult to evaluate or specify in
‘modern’ (?) applications

Typical obstacles:

– large dense covariance matrices

– high-dimensional integrals

– normalization constants

– nuisance components

– . . .

For example, models with unobservables

L(θ; y) =
∫

f (y|u; θ)f (u; θ)du

Hard when the integral is high-dimensional like in
spatial-temporal statistics
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What are composite likelihoods?

Suppose intractable likelihood but low-dimensional
distributions readily computed

Solution: combine low-dimensional terms to construct
a pseudolikelihood

General setup:
– collection of marginal or conditional events
{A1, . . . , AK }

– associated component likelihoods
Lk(θ; y) ∝ f (y ∈ Ak; θ)

A composite likelihood is the weighted product

CL(θ; y) =
K∏

k=1

Lk(θ; y)wk

for some weights wk > 0
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Major credit. . .

Bruce G Lindsay (1988). Composite likelihood
methods. Contemporary Mathematics
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Marginal or conditional?

Marginal:

– independence likelihood CL(θ) =
∏

i f (yi ; θ)

– pairwise likelihood CL(θ) =
∏

i
∏

j f (yi , yj; θ)

– tripletwise CL(θ) =
∏

i
∏

j
∏

k f (yi , yj, yk; θ)

– blockwise . . .

Conditional:

– Besag pseudolikelihood
CL(θ) =

∏
i f (yi |neighbours of yi ; θ)

– full conditionals CL(θ) =
∏

i f (yi |y(i); θ)

– pairwise conditional CL(θ) =
∏

i
∏

j f (yi |yj; θ)
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Integrals...

Spatial generalized linear model:

E(Yi |ui) = g(x>
i β+ ui)

where ui realization of a Gaussian random field

Likelihood function:

L(θ; y) =
∫
Rn

f (u1, . . . , un; θ)
n∏

i=1

f (yi |ui ; θ)dui

where f (u1, . . . , un; θ) is density of multivariate normal
with dense covariance matrix

Pairwise likelihood:

PL(θ; y) =
∏

i

∏
j

{∫
R2

f (ui , uj; θ)f (yi |ui ; θ)f (yj |uj; θ)duiduj

}wij
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Names...

Many names for just the same thing:

– composite likelihood

– pseudolikelihood

– quasi-likelihood

– limited information method

– approximate likelihood

– split-data likelihood

– . . .

Comments:

– pseudo- and approximate likelihood too unspecific

– quasi-likelihood could be confused with the
popular method for generalized linear models
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Terminology

Log composite likelihood

cl(θ) = log CL(θ)

Composite score

ucl(θ) = ∂cl(θ)/∂θ

Maximum composite likelihood estimator

ucl(θ̂cl) = 0

Variability matrix

k(θ) = Var{ucl(θ; Y )}

Sensitivity matrix (Fisher information)

i(θ) = E{−∂ucl(θ; Y )/∂θ}

Godambe information (sandwich information)

g(θ) = i(θ)k(θ)−1i(θ)
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Why it works?

Two arguments

First argument: The composite score function

ucl(θ) =
∑

k

wk
∂

∂θ
log Lk(θ; y)

is a linear combination of ‘valid’ likelihood score
functions

Unbiased under usually regularity conditions on each
likelihood component

Asymptotic theory derived from standard estimating
equations theory
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Why it works? (cont’d)

Second argument: θ̂CL converges to the minimizer of
the composite Kullback-Leibler divergence

CKL(θ) =
∑

k

wkEh

[
log
{

h(y ∈ Ak)

f (y ∈ Ak; θ)

}]
where h(·) is ‘density’ of the ‘true’ model

For example, the maximum pairwise likelihood
estimator converges to the minimizer of

CKL(θ) =
∑
(i,j)

w(i,j)

∫
log
{

h(yi , yj)

f (yi , yj; θ)

}
h(yi , yj)dyidyj

Measure the distance from the true model only with
bivariate aspects of the data

Apply directly the theory of misspecified likelihoods
(White, 1982) with KL divergence replaced by CKL
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Limit distribution

Y is an m-dimensional vector

Sample y1, . . . , yn from f (y; θ)

Asymptotic consistency and normality for n →∞ and
m fixed √

n(θ̂cl − θ) ∼ N {0, g(θ)−1}

Sandwich-type asymptotic variance

g(θ)−1 = i(θ)−1k(θ)i(θ)−1

In the full likelihood case, we have i(θ) = k(θ)

More difficult if n fixed and m →∞, need assumptions
on replication

For example, time series and spatial models require
certain mixing properties
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Significance functions

Composite likelihood versions of Wald and score
statistics easily constructed

we(θ) = (θ̂cl − θ)
>g(θ)(θ̂cl − θ)

d→ χ2
p (dim(θ) = p)

wu(θ) = uc(θ)
>g(θ)−1uc(θ)

d→ χ2
p

Composite likelihood ratio statistic with non-standard
limit

w(θ) = 2{cl(θ̂cl) − cl(θ)} d→
p∑

i=1

λiZ2
i

with λi eigenvalues of i(θ)g(θ)−1 and Zi
iid
∼ N(0, 1)

Various proposals to ‘calibrate’ w(θ): Satterthwaite
approx, rescaling, Saddlepoint (Pace et al., 2011)
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Bayesian composite likelihoods

Composite posterior

πc(θ|y) =
CL(θ; y)π(θ)∫
CL(θ; y)π(θ)dθ

Overly precise inferences using directly the composite
likelihood (Pauli et al., 2011; Ribatet et al., 2012)

The curvature of CL needs to be adjusted... just the
same problem of the composite likelihood ratio
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Model selection

Model selection with the composite likelihood
information criterion (Varin and Vidoni, 2005)

CLIC = −2cl(θ̂cl) + 2 trace{i(θ)−1g(θ)}

Penalty trace{i(θ)−1g(θ)} accounts for the ‘effective
number of parameters’

Reduce to AIC when i(θ) = g(θ)

But reliable estimation of the model penalty often hard

Gong and Song (2011) derive BIC for composite
likelihoods
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Where are composite likelihood used?

Lots of application areas already, still growing rapidly

Popular application areas include

– genetics

– geostatistics

– correlated random effects (longitudinal data, time
series, spatial models, network data)

– spatial extremes

– financial econometrics

Some references (already a bit outdated) in Varin, Reid
and Firth (2011)
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Efficiency?

Usually high efficiency when n →∞ and fixed m
(longitudinal and clustered data)

Performance when m →∞ and n fixed (single long
time series, spatial data) depends on the dependence
structure

Some form of pseudo-replication is needed for
acceptable efficiency when m →∞ and n fixed

Usually more efficient for discrete/categorical than
continuous data

Carefull selection of likelihood components may
improve efficiency
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Symmetric normal
Cox and Reid (2004)

Efficiency of maximum pairwise likelihood for model

Yi
iid
∼ Nm(0, R) Var(Yir) = 1 Cor(Yir , Yis) = ρ

(n independent vectors of size m)

731Miscellanea

The associated score function is

U
2
(r; Y (1), . . . , Y (n) )=

nq(q−1)r
2(1−r2 )

−
1+r2+2(q−1)r
2(1−r2 )2


W
+
(q−1)(1−r)2
2(1−r2 )2


B
q

and the asymptotic variance of rA is

avar (rA )=
2

nq(q−1)
(1−r)2c(q, r)
(1+r2 )2

,

where

c(q, r)= (1−r)2 (3r2+1)+qr(−3r3+8r2−3r+2)+q2r2 (1−r)2.

This may be compared to the variance of the maximum likelihood estimator using the full model,

avar (r@ )=
2

nq(q−1)
{1+ (q−1)r}2 (1−r)2

1+ (q−1)r2
.

This ratio is 1 for q=2, as expected, and is also 1 if r=0 or 1, for any value of q. Figure 1 illustrates
the loss of information with increasing q.

Fig. 1. Ratio of asymptotic variance of r@ to rA , as a function of r,
for fixed q. At q=2 the ratio is identically 1. The lines shown are

for q=3, 5, 8, 10 (descending).

2. E : L q

In § 1 we consider fixed q as n increases. We now look at the problem where a small number n
of individually large sequences is available, i.e. we let q increase for fixed n. This includes the
possibility of observing a single replicate of a process in which substantial and possibly complicated
internal dependencies are present. The case that n and q increase simultaneously, for example in a
fixed ratio, may also be of interest.
While the estimating equation U

n
(hA ; Y )=0 is unbiased, this no longer implies satisfactory

properties of the resulting estimator.
Consider first the estimating equation U1 (h

A ; Y )=0, still assuming for simplicity that h is a scalar.
We expand formally around h to obtain, to the first order,

q−1∑ U
1s
(h)+q−1 (hA−h) ∑ U∞

1s
(h)=0.

Efficiency for fixed m = 3, 5, 8, 10
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Truncated symmetric normal
Cox and Reid (2004)

Vectors of binary correlated variables generated
truncating the symmetric normal model of the
previous slide

Efficiency of maximum pairwise likelihood for m = 10:

ρ .02 .05 .12 .20 .40 .50
ARE .998 .995 .992 .968 .953 .968
ρ .60 .70 .80 .90 .95 .98

ARE .953 .903 .900 .874 .869 .850

Composite Likelihood Estimation ,



Symmetric normal: large m fixed n
Cox and Reid (2004)

Symmetric normal

Var(ρ̂pair) =
2

n m(m − 1)
(1 − ρ2)

(1 + ρ2)2
c(m2, ρ4)

O(n−1) O(1)

n →∞ m →∞
Truncated symmetric normal

Var(ρ̂pair) =
1
n

4π2

m2
(1 − ρ2)

(m − 1)2
c(m4)

O(n−1) O(1)

n →∞ m →∞
not consistent if m →∞, n fixed!
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Autoregressive model with additive noise
Varin and Vidoni (2009)

Autoregressive model with additive noise

Yt = β+ Xt + Vt , Vt
iid
∼ N(0,σ2)

Xt = γXt−1 + Wt , Wt
iid
∼ N(0, τ2), |γ| < 1

Pairwise likelihood of order d:

PL(d)(θ; y) =
n∏

r=d+1

d∏
s=1

f (yr , yr−s; θ)

In the special case of no observation noise (σ2 = 0),
PL(1) fully efficient. But PL(d) is increasingly
inefficient as d increases.

What happens when there is observation noise?
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Relative efficiency based on 1,000 simulated series of
length 500 with β = 0.1,σ = 1.0,γ = 0.95, τ = 0.55

Composite Likelihood Estimation ,



Open areas

Composite likelihood general framework for scalable
likelihood-type inference in complex models?

Perhaps, but there are several open questions to
address first:

– choice of likelihood components

– choice of weights

– robustness

– reliable estimation of the variability matrix k(θ)

– software implementation
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Thanks for listening!
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