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Intractable likelihoods

Likelihoods often difficult to evaluate or specify in
‘modern’ (?) applications

Typical obstacles:
— large dense covariance matrices

high-dimensional integrals

normalization constants

nuisance components

For example, models with unobservables

L(6;y) = Jf(ylu; 0)f(u; 0)du

Hard when the integral is high-dimensional like in
spatial-temporal statistics
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HOME WHAT IS I-LIKE? WHO IS I-LIKE? EVENTS PUBLICATIONS

Intractable Likelihood

New Challenges from Modern Applications
i-like.org.uk

A £2.4M EPSRC programme grant, i-like, aims to tackle some of the most important statistical challenges that arise across many modern day
applications. It is led by Gareth Roberts (Warwick), and involves Christophe Andrieu (Bristol), Paul Fearnhead (Lancaster), David Firth (Warwick)
and Chris Holmes (Oxford). See What is i-like? for more details.

NEWS

Workshop (22nd-24th June 2016). This year the i-like annual workshop will be held at the Lancaster University.
Details available here.
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What are composite likelihoods?

Suppose intractable likelihood but low-dimensional
distributions readily computed

Solution: combine low-dimensional terms to construct
a pseudolikelihood

General setup:
— collection of marginal or conditional events
{A1, ..., Ak}
— associated component likelihoods
Lic(8;y) o< f(y € Ax: 0)

A composite likelihood is the weighted product
K
CL(6;y) = [ [ Lic(0: y)™*
k=1

for some weights wj. > 0

Composite Likelihood Estimation



Major credit. ..

Bruce G Lindsay (1988). Composite likelihood
methods. Contemporary Mathematics

IMS Bulletin,

» HOME  : LATEST ISSUE PDF  : ARCHIVE (UNDER CONSTRUCTION) ABOUT  : ADVERTISE

14,2015 & Editor @) NoComments

Obituary: Bruce Lindsay, 1947-2015
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Marginal or conditional?

Marginal:
— independence likelihood CL(8) =[], f(uyi: ©)
~ pairwise likelihood CL(0) = [, [,/ (yi ys:
— tripletwise CL(0) = HiHj [ IS (Yis Yj» Y; ©)
— blockwise . ..

Conditional:

— Besag pseudolikelihood
CL(0) = [ [,f (yimeighbours of y;; 6)

— full conditionals CL(0) = [ ], f(yily(;: )
— pairwise conditional CL(0) = [ [, [ [;f(uily;: 6)
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Integrals...
Spatial generalized linear model:
E(Yilw) = g(x B + w)
where u; realization of a Gaussian random field

Likelihood function:

n

L@y = | Sl o) T (wdas 0)du

n "
i=1

where f(uy, ..., un;0) is density of multivariate normal
with dense covariance matrix

Pairwise likelihood:
Wy
PL(6;y) = H 1:[ URZf(ui, u;; 0)f (yilw: 0)f (yjlw;: G)duiduj}
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Names...

Many names for just the same thing:
— composite likelihood
— pseudolikelihood
— quasi-likelihood

limited information method

approximate likelihood
split-data likelihood

Comments:
— pseudo- and approximate likelihood too unspecific

— quasi-likelihood could be confused with the
popular method for generalized linear models
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Terminology
Log composite likelihood

cl(0) =log CL(0)
Composite score

uq(0) = 0ocl(0)/00

Maximum composite likelihood estimator

Ut(0) =0
Variability matrix
k(0) = Var{ug(6; Y)}
Sensitivity matrix (Fisher information)
i(6) = E{—0uq(0: Y)/06}
Godambe information (sandwich information)
g(6) = i(0)k(8)'i(6)
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Why it works?

Two arguments

First argument: The composite score function
Z wk log L. (6; y)

is a linear combination of ‘valid’ likelihood score
functions

Unbiased under usually regularity conditions on each
likelihood component

Asymptotic theory derived from standard estimating
equations theory
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Why it works? (cont’d)

Second argument: O¢y, converges to the minimizer of
the composite Kullback-Leibler divergence

_ h(y € Ax) H
= 1 - -
CHLE) = _ iy [ % {f(y € A:6)

where h(-) is ‘density’ of the ‘true’ model

For example, the maximum pairwise likelihood
estimator converges to the minimizer of

=2  Jroe {f(y(/flf)) J Rl ) dudy

Measure the d1stance from the true model only with
bivariate aspects of the data

Apply directly the theory of misspecified likelihoods
(White, 1982) with KL divergence replaced by CKL
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Limit distribution

Y is an m-dimensional vector
Sample y, ..., yy from f(y;0)

Asymptotic consistency and normality for n — co and
m fixed

V(0 —0) ~ N{0,g(0) '}

Sandwich-type asymptotic variance
g(0)~! =i(6) 'Kk(6)i(6) "
In the full likelihood case, we have i(0) = k(0)

More difficult if n fixed and m — oo, need assumptions
on replication

For example, time series and spatial models require
certain mixing properties
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Significance functions

Composite likelihood versions of Wald and score
statistics easily constructed

we(0) = (04 —0)Tg(0) (8 — 8) 3 x2  (dim(6) = p)
wu(0) = ue(0)Tg(0) Tuc(0) S x2

Composite likelihood ratio statistic with non-standard
limit

~ d p

w(8) = 2{cl(6y) — cl(0)} 5 ) NZ?
i=1

with A; eigenvalues of i(0)g(0)~! and Z i N(0,1)
Various proposals to ‘calibrate’ w(0): Satterthwaite
approx, rescaling, Saddlepoint (Pace et al., 2011)
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Bayesian composite likelihoods

Composite posterior
~ CL(6; y)r(0)
~ [ cL(e; y)n(6)de

Overly precise inferences using directly the composite
likelihood (Pauli et al., 2011; Ribatet et al., 2012)
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Figure 1: Marginal full and pairwise posterior densities for the mean u (left) and sill 7 (right), derived from
n = 50 realisations of a Gaussian process observed at K = 20 locations having an exponential covariance
function with p=0,7=1andw = 3.

The curvature of CL needs to be adjusted... just the
same problem of the composite likelihood ratio
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Model selection

Model selection with the composite likelihood
information criterion (Varin and Vidoni, 2005)

CLIC = —2cl(64) + 2 trace{i(0) 1g(0)}

Penalty trace(i(0)'g(0)} accounts for the ‘effective
number of parameters’

Reduce to AIC when i(0) = g(0)
But reliable estimation of the model penalty often hard

Gong and Song (2011) derive BIC for composite
likelihoods
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Where are composite likelihood used?

Lots of application areas already, still growing rapidly

Popular application areas include
— genetics
— geostatistics

— correlated random effects (longitudinal data, time
series, spatial models, network data)

— spatial extremes
— financial econometrics

Some references (already a bit outdated) in Varin, Reid
and Firth (2011)
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Efficiency?
Usually high efficiency when n — oo and fixed m
(longitudinal and clustered data)

Performance when m — oo and n fixed (single long
time series, spatial data) depends on the dependence
structure

Some form of pseudo-replication is needed for
acceptable efficiency when m — oo and n fixed

Usually more efficient for discrete/categorical than
continuous data

Carefull selection of likelihood components may
improve efficiency
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Symmetric normal

Cox and Reid (2004)

Efficiency of maximum pairwise likelihood for model
¥ Nm(O.R) Var(Yy) =1 Cor(Yy, Yis) =

(n independent vectors of size m)
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Efficiency for fixed m = 3,5, 8, 10
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Truncated symmetric normal
Cox and Reid (2004)

Vectors of binary correlated variables generated
truncating the symmetric normal model of the
previous slide

Efficiency of maximum pairwise likelihood for m = 10:

P .02 .05 .12 .20 .40 .50
ARE .998 .995 .992 .968 .953 .968
P 60 .70 .80 90 95 .98
ARE .953 .903 .900 .874 .869 .850
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Symmetric normal: large m fixed n
Cox and Reid (2004)

Symmetric normal

. 2 (1—p?) 2 4
Ve ) = :
ar(ppair) nmim 1) (lﬂ)z)zdm p”)
o1 o)
n— oo m — oo
Truncated symmetric normal
) 14n2 (1—p?)
Var(ppair) = Hﬁmc(mél)
onY) 01
n— oo m — oo

not consistent if m — oo, n fixed!
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Autoregressive model with additive noise
Varin and Vidoni (2009)

Autoregressive model with additive noise

Y =B+ X+ Vi Vi NO,0?)

»
Xe=vXe 1+ Wi, W~ NO,7), k<1

Pairwise likelihood of order d:

n d

PLY@:y) = [] T[S (yr yr—s:0)

r=d+1s=1

In the special case of no observation noise (02 = 0),
PL(V) fully efficient. But PL(?) is increasingly
inefficient as d increases.

What happens when there is observation noise?
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Relative efficiency based on 1,000 simulated series of
length 500 with 3 =0.1,0 = 1.0,y =0.95,7 =0.55
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Open areas

Composite likelihood general framework for scalable
likelihood-type inference in complex models?

Perhaps, but there are several open questions to
address first:

choice of likelihood components

choice of weights
robustness

reliable estimation of the variability matrix k(0)

— software implementation

Composite Likelihood Estimation



Thanks for listening!
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