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Alzheimer Dataset

▶ Data were collected on early onset Alzheimer patient
symptoms in St. James’ Hospital, Dublin.

▶ Two hundred and forty patients had six behavioural and
psychological symptoms (Hallucination, Activity, Aggression,
Agitation, Diurnal and Affective) recorded.

▶ Number of distinct groups of patients gives an idea of the
number of subclasses or syndromes.

▶ Which symptoms distinguish the groups? Can some subset
better distinguish syndromes?

▶ Previous studies: difficulty determining whether two or three
groups are more suitable to describe data.
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Back Pain Dataset

▶ A study to investigate the use of a mechanisms-based
classification of muscoloskeletal pain in clinical practice.

▶ The aim of the study was to asses the discriminative power of
the taxonomy of pain in Nociceptive, Peripheral Neuropathic
and Central Sensitization for low-back disorders.

▶ There are N = 464 patients who were assessed according to a
list of 36 binary clinical indicators (“Present”/“Absent”).

▶ Some of the indicators carry the same information about the
pain categories, thus the interest here is to select a subset of
most relevant clinical criteria, performing a partition of the
patients.

▶ Does the partition of the patients agree with the clinical
taxonomy?
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Clustering and Variable Selection

▶ The motivating examples show the need for:

▶ Clustering: Can we establish the existance of subgroups?
How can we characterize these subgroups?

▶ Variable Selection: Can we use a subset of the variables to
distinguish the subgroups?
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Model-Based Clustering/Mixture Models

▶ Denote the N ×M data matrix by X

▶ The nth observation is denoted by Xn.

▶ Model-based clustering assumes that Xn arises from a finite
mixture model

▶ Assuming G classes (components)

p(Xn|τ ,θ,G ) =
G∑

g=1

τgp(Xn|θg ).

▶ τg are mixture weights

▶ p(Xn|θg ) is the component distribution.
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Latent Class Analysis (LCA) model

▶ Latent Class Analysis (LCA) is a model for clustering
categorical data.

▶ Let Xn = (Xn1,Xn2, . . . ,XnM) where Xnm takes a value from
{1, 2, . . . ,Cm}.

▶ In LCA we assume that there is local independence between
variables, so that if we knew Xn was in class g we could write
it’s density as

p(Xn|θg ) =
M∏

m=1

Cm∏
c=1

θ
I(Xnm=c)
gmc ,

where {θgm1, . . . , θgmCm} give the probabilities of observing
the categories {1, . . . ,Cm} in variable m

▶ θg will characterize and embody the differences between
groups
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Example: Alzheimer Dataset

Result for three group model from BayesLCA package (White &
Murphy, 2014)
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LCA model (general)

▶ Model likelihood of the form,

p(Xn|θ, τ ,G ) =
G∑

g=1

τg

M∏
m=1

Cm∏
c=1

θ
I(Xnm=c)
gmc .

▶ More convenient to work with completed data

▶ Augment data with class labels Zn = (Zn1,Zn2, . . . ,ZnG )
where

Zng =

{
1 if observation n belongs to group g
0 otherwise.

▶ Then we can write down completed data likelihood for an
observation

p(Xn,Zn|θ, τ ,G ) =
G∏

g=1

{
τg

M∏
m=1

Cm∏
c=1

θ
I(Xnm=c)
gmc

}Zng

.
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LCA model (general)

▶ Estimation by EM algorithm or VB (see BayesLCA package)

▶ Note that G must be chosen in advance; possible to
discriminate the best G for the data using information criteria
(eg. BIC)

▶ Bayesian approaches: Pandolfi, Bartolucci and Friel (2014)
use reversible jump to get posterior probability for G
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Bayesian variable selection in LCA model

▶ Consider the variables that are useful for clustering in the
model

▶ Let νcl be a vector containing the indexes of the set of
variables used for clustering the data

▶ νn contain the remaining indexes

▶ This splits the observed categorical variables into those with
discriminating power, and those without.
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Bayesian variable selection in LCA model

▶ Then for the variables used in clustering

pcl(X,Z|θ,ν, τ ,G ) =
N∏

n=1

G∏
g=1

{
τg
∏

m∈νcl

Cm∏
c=1

θ
I(Xnm=c)
gmc

}Zng

▶ ... and for those not used

pn(X|ρ,ν) =
N∏

n=1

∏
m∈νn

Cm∏
c=1

ρ
I(Xnm=c)
mc ,

▶ ρmc is the probability of variable m having category c and is
the same for all items
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Bayesian variable selection in LCA model

▶ Priors are Dirichlet on the item probabilities in each class for
the discriminating variables, and also in the non-discriminating
variables

p(θgm|β) =
Γ (Cmβ)

Γ (β)Cm

Cm∏
c=1

θβ−1
gmc .

p(ρm|β) =
Γ (Cmβ)

Γ (β)Cm

Cm∏
c=1

ρβ−1
mc .

▶ Prior on class probabilities also Dirichlet

p(τ |α,G ) =
Γ (Gα)

Γ (α)G

G∏
g=1

τα−1
g
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Bayesian variable selection in LCA model

▶ We aim to explore uncertainty in the number of groups G and
the variables used for clustering

▶ Take a prior on G also. We employ the prior of Nobile and
Fearnside (2007), that was justified for this problem in a
similar context

p(G ) ∝ 1

G !

normalized over 1, . . . ,Gmax

▶ In fact the work we present here, brings that of Nobile and
Fearnside (2007) (for Gaussian mixtures) into the categorical
data domain
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Bayesian variable selection in LCA model

▶ Variables are assumed to be included a priori following a
Bernoulli with parameter π

p(ν|π) =
∏

m∈νcl

π
∏
m∈νn

(1− π).

▶ Usually there will only be enough information to set
something like π = 0.5 in a practical situation

▶ Ley and Steel (2009) investigate putting a Beta(a0, b0)
hyperprior on π; we tried this but found no notable difference
in results
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Bayesian variable selection in LCA model

If we write down the model in it’s full form, we get a joint
posterior on item probabilities over classes, class probabilities,
labels and the number of classes: the full completed likelihood is

pfull(X,Z|θ,ρ,ν, τ ,G ) = pcl(X,Z|θ,ν, τ ,G )pn(X|ρ,ν)

and posterior is

p(G ,Z,θ,ρ,ν, τ |X, α, π, β) ∝ pfull(X,Z|θ,ρ,ν, τ ,G )

× p(τ |α,G )p(ν|π)
×

∏
m∈νn

p(ρm|β)

×
G∏

g=1

∏
m∈νcl

p(θgm|β)

× p(G ).
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Marginalization approach

▶ Using normalizing constants for the Dirichlet distribution it
turns out that

p(G ,Z,ν|X, α, π, β)

∝ p(G )

∫
p(Z,θ,ρ,ν, τ |X,G , α, π, β) dθ dρ dτ .

is actually available in closed form.

▶ Instead of doing a trans-dimensional search like reversible
jump algorithm, why not search over the discrete space
defined by (G ,Z,ν)?
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Marginalization approach

Doing the algebra gives

p(G ,Z,ν|X, α, π, β)

∝ p(G )p(ν|π)Γ (Gα)

Γ (α)G

∏G
g=1 Γ (Ng + α)

Γ (N + Gα)

×
∏
m∈νn

Γ (Cmβ)

Γ (β)Cm

∏Cm
c=1 Γ (Nmc + β)

Γ (N + Cmβ)

×
G∏

g=1

∏
m∈νcl

Γ (Cmβ)

Γ (β)Cm

∏Cm
c=1 Γ (Ngmc + β)

Γ (Ng + Cmβ)

Ng is the number of observations clustered to group g , Nmc is the
number of times variable m takes category c , Ngmc is the number
of items in group g that have category c for variable m
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MCMC sampling algorithm

▶ Class memberships are sampled using a Gibbs sampling step
which exploits the full conditional distribution of the class
label for observation n, n = 1, . . . ,N

▶ A component is added or removed with probability 0.5

▶ A component k is chosen at random to “eject” a new
component from

▶ A draw u ∼ Beta(a, a) is made, and each element of the
ejecting component is assigned to new component with prob u

▶ Components are removed by putting the elements of two
randomly drawn clusters into a single cluster.
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MCMC sampling algorithm

To sample the clustering variables

▶ A variable j is chosen randomly from {1, . . . ,M}

▶ If j ∈ νn it is proposed to move it to νcl.
Alternatively, if j ∈ νcl propose to move it to νn

Acceptance prob for inclusion in νcl is min(1,R) with

R =
p(G ,Z, ν̃|X, α, π, β)
p(G ,Z,ν|X, α, π, β)

=

(
Γ (Cjβ)

Γ (β)Cj

)G−1 G∏
g=1

∏Cj

c=1 Γ(Ngjc + β)

Γ(Ng + Cmβ)

×

(∏Cj

c=1 Γ(Njc + β)

Γ(N + Cjβ)

)−1

×
(

π

1− π

)
.
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Label switching

▶ Because the LCA likelihood is invariant to relabelling of the
components, we need to deal with the label switching problem

▶ The reason is that

p(G ,Z,ν|X, α, π, β) = p(G ,Z·δ,ν|X, α, π, β)

where Z·δ denotes the indicator matrix obtained by applying
any permutation δ of 1, . . . ,G to the columns in Z

▶ Need to post-process the samples of labels to undo any label
switching that may have occurred; this has to be done to get
the posterior probability of cluster membership
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Post-hoc parameter estimation

▶ Use the conditional expection and variance formulae

E[A] = E[E[A|B]]
Var[A] = E[Var[A|B]] + Var[E[A|B]],

▶ Let N
(t)
g :=

∑N
n=1 Z

(t)
ng , S

(t)
gmc :=

∑N
n=1 Z

(t)
ng I(Xnm = c).

▶ Then we can estimate the expected values

E[θgmc |X, β] = E[E[θgmc |X,Z, β]]

≈ 1

T

T∑
t=1

E[θgmc |X,Z(t), β],

and similarly for the variance.
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Post-hoc parameter estimation

▶ This leads to nice formulae to estimate the posterior mean
and variance of the item probabilities

▶

E[θgmc |X, β] ≈
1

T

T∑
t=1

S
(t)
gmc + β

N
(t)
g + Cmβ

.

▶

Var[θgmc |X, β]

≈ 1

T

T∑
t=1

(S
(t)
gmc + β)(N

(t)
g + (Cm − 1)β − S

(t)
gmc)

(N
(t)
g + Cmβ)2(N

(t)
g + Cmβ + 1)

+
1

T

T∑
t=1

(
S
(t)
gmc + β

N
(t)
g + Cmβ

− 1

T

T∑
t=1

S
(t)
gmc + β

N
(t)
g + Cmβ

)2

,

▶ Similar formulae are available for τg .
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Alzheimer data

The sampler was then run for 100,000 iterations, and thinned by
subsampling every twentieth iterate.
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Alzheimer data

Alzheimer Data
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Alzheimer data

The posterior probability for the number of syndromes in early
onset Alzheimers where

pj = Estimated posterior probability of G classes

Setting for π p2 p3 p4 p5 p6
π = 0.5 0.6284 0.2996 0.0622 0.0096 0.0002

π∼Beta(1,1.5) 0.6600 0.2724 0.0584 0.0092 0
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Alzheimer data

Collapsed Gibbs sampler post-hoc estimates
Hallucination Activity Aggression Agitation Diurnal Affective

Group 1 0.08 (0.03) 0.54 (0.06) 0.10 (0.04) 0.14 (0.06) 0.13 (0.05) 0.59 (0.08)
Group 2 0.10 (0.04) 0.80 (0.06) 0.40 (0.08) 0.64 (0.12) 0.39 (0.07) 0.94 (0.04)

Full model Gibbs sampler estimates
Hallucination Activity Aggression Agitation Diurnal Affective

Group 1 0.08 (0.03) 0.54 (0.06) 0.11 (0.05) 0.14 (0.06) 0.14 (0.05) 0.59 (0.08)
Group 2 0.10 (0.04) 0.79 (0.07) 0.39 (0.08) 0.64 (0.12) 0.38 (0.07) 0.93 (0.07)
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Back Pain Data

Physiotherapy Data
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Back Pain Data / Clinical Taxonomy

▶ The clustering closely follows the clinical taxonomy, but where
the groups are subdivided into subtypes.

CN N PN

Group 1 3 0 1
Group 5 52 0 0
Group 7 30 3 0
Group 3 6 96 1
Group 6 0 120 1
Group 2 1 16 79
Group 4 3 0 13
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Local Independence (A Problem?)

▶ When analyzing the back pain data, we achieved very little
data reduction.

▶ In fact, only one variable was labeled as non-clustering.

▶ An explanation for this is the local independence assumption
in the model.

▶ Suppose we have two variables that are highly dependent and
both exhibit clustering.

▶ The variable selection method will include both variables in
the model, even if one variable contains no extra clustering
information.

29 / 44



Dean & Raftery’s Greedy Search

▶ Dean & Raftery (2010) proposed a greedy stepwise variable
selection algorithm for LCA.

▶ The observation vector Xn is partitioned as

Xn = (XC
n ,X

P
n ,X

O
n )

where
▶ XC

n are the current clustering variables.
▶ XP

n is proposed to be added to the clustering variables.
▶ XO

n are the other variables.
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Dean & Raftery’s Greedy Search

▶ Two competing models are compared:

z
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X
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M∗

2

▶ M1 assumes that the proposed variable has clustering
structure.

▶ M∗
2 assumes that the proposed variable has no clustering

structure.

▶ This framework reduces the independence assumption of the
previously described approach.
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Novel Extension: Relaxing Independence Further

▶ It is unrealistic to assume that XC
n and XP

n are conditionally
independent.

▶ We propose replacing M∗
2 with a different model.

z

X
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X
P

X
O

M1 z

X
C

X
P

X
O

X
R ⊆ X

C

M2

▶ M1 assumes that the proposed variable has clustering
structure.

▶ M2 assumes that the proposed variable has no clustering
structure beyond that explained by the clustering variables.
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Stepwise Search Algorithm

▶ We propose a stepwise search algorithm to find an optimal set
of variables for clustering.

▶ The algorithm involves the following steps:
▶ Add: Add a variable to the current clustering variables.
▶ Remove: Remove a variable from the current clustering

variables.
▶ Swap: Swap a proposed variable with one already in the

clustering variables.

▶ Model selection is implemented using BIC.
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Back Pain Data

▶ The proposed model was applied to the back pain data:

Variables
N. latent
classes

BIC ARI

All 5 -12582.62 0.50
All 3∗ -12763.81 0.82
35 Criteria 5 -12116.32 0.50
35 Criteria 3∗ -12305.67 0.80
11 Criteria 3 -3965.24 0.75

▶ The new model achieves much greater data reduction.
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Algorithm Run

Iter. Proposal BIC diff. Decision Proposal BIC diff. Decision
1 Remove Crit.5 -122.2 Accepted
2 Remove Crit.23 -126.3 Accepted Swap Crit.22 with Crit.5 -73.2 Rejected
3 Remove Crit.38 -109.0 Accepted Swap Crit.25 with Crit.5 -81.5 Rejected
4 Remove Crit.4 -103.5 Accepted Swap Crit.2 with Crit.38 -98.6 Rejected
5 Remove Crit.1 -78.3 Accepted Swap Crit.29 with Crit.4 -23.1 Rejected
6 Remove Crit.29 -73.2 Accepted Swap Crit.12 with Crit.1 2.7 Accepted
7 Remove Crit.1 -73.5 Accepted Swap Crit.26 with Crit.29 3.2 Accepted
8 Remove Crit.29 -66.8 Accepted Swap Crit.18 with Crit.12 -10.2 Rejected
9 Remove Crit.35 -63.0 Accepted Swap Crit.7 with Crit.29 -9.0 Rejected
10 Remove Crit.7 -59.6 Accepted Swap Crit.11 with Crit.35 -7.6 Rejected
11 Remove Crit.10 -62.9 Accepted Swap Crit.8 with Crit.7 -76.1 Rejected
12 Remove Crit.11 -50.4 Accepted Swap Crit.16 with Crit.10 6.8 Accepted
13 Remove Crit.8 -54.5 Accepted Swap Crit.10 with Crit.16 -32.0 Rejected
14 Remove Crit.3 -44.2 Accepted Swap Crit.31 with Crit.16 -9.5 Rejected
15 Remove Crit.31 -33.2 Accepted Swap Crit.18 with Crit.16 -22.7 Rejected
16 Remove Crit.22 -30.9 Accepted Swap Crit.24 with Crit.23 -1.7 Rejected
17 Remove Crit.14 -22.7 Accepted Swap Crit.32 with Crit.31 -5.0 Rejected
18 Remove Crit.32 -19.2 Accepted Swap Crit.37 with Crit.14 -8.0 Rejected
19 Remove Crit.10 -35.4 Accepted Swap Crit.9 with Crit.3 -1.3 Rejected
20 Remove Crit.24 -17.6 Accepted Swap Crit.30 with Crit.8 15.7 Accepted
21 Remove Crit.34 -15.7 Accepted Swap Crit.37 with Crit.1 -0.7 Rejected
22 Remove Crit.25 -13.7 Accepted Swap Crit.36 with Crit.1 3.3 Accepted
23 Remove Crit.18 -10.5 Accepted Swap Crit.1 with Crit.31 8.5 Accepted
24 Remove Crit.27 -13.7 Accepted Swap Crit.6 with Crit.26 6.1 Accepted
25 Remove Crit.31 -1.3 Accepted Swap Crit.20 with Crit.6 5.6 Accepted
26 Remove Crit.37 1.4 Rejected Swap Crit.6 with Crit.5 -3.1 Accepted
27 Remove Crit.5 0.4 Rejected Swap Crit.37 with Crit.20 4.0 Rejected
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Clustering / Clinical Taxonomy

▶ The clustering closely follows the clinical taxonomy.

Class 1 Class 2 Class 3

Nociceptive 210 21 4
Peripheral Neuropathic 5 88 2
Central Sensitiization 3 3 89

▶ It is not unusual for patients diagnosed as Nociceptive may
have Peripheral Neuropathic aspects to their back pain.
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Clustering Variables

▶ The selected variables exhibit strong clustering across the
three groups.
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Chosen Variables with Descriptions

The chosen variables have the following descriptions.
Crit. Description Class 1 Class 2 Class 3

2 Pain associated to trauma, pathologic process or dysfunction 0.94 0.90 0.04
5 Usually intermittent and sharp with movement/mechanical provocation 0.94 0.84 0.24
8 Pain localized to the area of injury/dysfunction 0.97 0.50 0.31
9 Pain referred in a dermatomal or cutaneous distribution 0.06 1.00 0.11

13 Disproportionate, nonmechanical, unpredictable pattern of pain 0.01 0.00 0.91
15 Pain in association with other dysesthesias 0.03 0.51 0.34
19 Night pain/disturbed sleep 0.34 0.70 0.86
26 Pain in association with high levels of functional disability 0.07 0.36 0.79
28 Clear, consistent and proportionate pattern of pain 0.97 0.94 0.07
33 Diffuse/nonanatomic areas of pain/tenderness on palpation 0.03 0.01 0.73
37 Pain/symptom provocation on palpation of relevant neural tissues 0.07 0.57 0.19
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Discarded Variables

▶ Many of the discarded variables are related with the clustering
variables.
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▶ These are not clustering variables because they don’t exhibit
clustering beyond what can be explained by the clustering
variables. 39 / 44



Summary

▶ Model-based approaches to clustering and variable selection
achieve excellent performance.

▶ The collapsed MCMC scheme explores the model space
effectively.

▶ Removing independence assumptions in the model achieves
improved variable selection.
Care needed interpreting the chosen/discarded variables.
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Simulation 1
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Simulation 1 Results
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Simulation 2
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Simulation 2 Results
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