On the dual of the solvency cone

Andreas Löhne

Friedrich-Schiller-Universität Jena

Joint work with:

Birgit Rudloff (WU Wien)

Wien, April 15, 2016

Exchange between:
Currency 1: Nepalese Rupee

Currency 2: Euro
(2) $\quad \pi_{21}=\frac{1}{110}$
$\binom{$ Rupee }{ Euro } -portfolios: $\begin{gathered}\binom{130}{-1} \rightarrow\binom{0}{0} \\ \binom{-110}{1}\end{gathered} \rightarrow\binom{0}{0} . \quad K=\operatorname{cone}\left\{\binom{130}{-1},\binom{-110}{1}\right\}$
price systems:

$$
\binom{1}{130} \quad\binom{1}{110}
$$

$$
\binom{1 / 130}{1}\binom{1 / 110}{1}
$$

$$
K^{+}=\text {cone }\left\{\binom{1}{130},\binom{1}{110}\right\}
$$

Solve a problem stated in

Bouchard, B., Touzi, N. (2000): Explicit solution to the multivariate super-replication problem under transaction costs, Ann. Appl. Probab.
"provide explicitly a generating family for the polar [or dual] cone [of K_{d} for $d>2$]"

Basic facts about transportation problem

$$
A=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
-1 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1
\end{array}\right)
$$

Variables: $x=\left(\begin{array}{l}x_{14} \\ x_{24} \\ x_{25} \\ x_{34} \\ x_{35}\end{array}\right) \quad$ Neg. cost: $c=\left(\begin{array}{l}c_{14} \\ c_{24} \\ c_{25} \\ c_{34} \\ c_{35}\end{array}\right) \quad$ Supply $s=\left(\begin{array}{l}s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5}\end{array}\right)$

$$
\max c^{T} x \quad \text { s.t. } \quad A x=s, \quad x \geq 0
$$

Dual transportation problem

$$
\min s^{T} y \quad \text { s.t. } \quad A^{T} y \geq c
$$

$$
A=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
-1 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1
\end{array}\right)
$$

$$
y_{1} \geq y_{4}+c_{14}
$$

$$
y_{2} \geq y_{4}+c_{24}
$$

$$
c=0
$$

$$
y_{2} \geq y_{5}+c_{25}
$$

$$
y_{3} \geq y_{4}+c_{34}
$$

$$
\text { (primal problem }=
$$

$$
y_{3} \geq y_{5}+c_{35}
$$

feasibility problem)

$$
\begin{aligned}
& y_{1} \geq y_{4} \\
& y_{2} \geq y_{4} \\
& y_{2} \geq y_{5} \\
& y_{3} \geq y_{4} \\
& y_{3} \geq y_{5} \\
& s^{T} y=0
\end{aligned}
$$

Modified transportation problem

$$
A=\left(\begin{array}{rrrrr}
\pi_{14} & 0 & 0 & 0 & 0 \\
0 & \pi_{24} & \pi_{25} & 0 & 0 \\
0 & 0 & 0 & \pi_{34} & \pi_{35} \\
-1 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1
\end{array}\right)
$$

Variables: $x=\left(\begin{array}{l}x_{14} \\ x_{24} \\ x_{25} \\ x_{34} \\ x_{35}\end{array}\right) \quad$ Neg. cost: $c=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ Supply $s=\left(\begin{array}{l}s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5}\end{array}\right)$

$$
\max c^{T} x \quad \text { s.t. } \quad A x=s, \quad x \geq 0
$$

Modified transportation problem (dual)

$$
\min s^{T} y \quad \text { s.t. } \quad A^{T} y \geq c
$$

$$
A=\left(\begin{array}{rrrrr}
\pi_{14} & 0 & 0 & 0 & 0 \\
0 & \pi_{24} & \pi_{25} & 0 & 0 \\
0 & 0 & 0 & \pi_{34} & \pi_{35} \\
-1 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1
\end{array}\right)
$$

$$
\begin{gathered}
\pi_{14} \cdot y_{1} \geq y_{4} \\
\pi_{24} \cdot y_{2} \geq y_{4} \\
\pi_{25} \cdot y_{2} \geq y_{5} \\
\pi_{34} \cdot y_{3} \geq y_{4} \\
\pi_{35} \cdot y_{3} \geq y_{5} \\
s^{T} y=0
\end{gathered}
$$

Definition (solvency cone)

Let $d \in\{2,3, \ldots\}, V=\{1, \ldots, d\}$ and let $\Pi=\left(\pi_{i j}\right)$ be a $(d \times d)$-matrix such that

$$
\begin{align*}
\forall i \in V: & \pi_{i i}=1, \tag{1}\\
\forall i, j \in V: & 0<\pi_{i j}, \tag{2}\\
\forall i, j, k \in V: & \pi_{i j} \leq \pi_{i k} \pi_{k j}, \tag{3}\\
\exists i, j, k \in V: & \pi_{i j}<\pi_{i k} \pi_{k j} . \tag{4}
\end{align*}
$$

Sometimes, (3) and (4) is replaced by

$$
\begin{equation*}
\forall i, j \in V, \forall k \in V \backslash\{i, j\}: \quad \pi_{i j}<\pi_{i k} \pi_{k j} \tag{5}
\end{equation*}
$$

The polyhedral convex cone

$$
K_{d}:=\text { cone }\left\{\pi_{i j} e^{i}-e^{j} \mid i j \in V \times V\right\}
$$

is called solvency cone induced by Π.
$K_{d}^{+}:=\left\{y \in \mathbb{R}^{d} \mid \forall x \in K_{d}: x^{T} y \geq 0\right\} \ldots$ (positive) dual cone of K_{d}
Proposition 1. One has $K_{d}^{+}=\left\{y \in \mathbb{R}^{d} \mid \forall i, j \in V: \pi_{i j} y_{i} \geq y_{j}\right\}$.

Proof: obvious
Recall: $K_{d}:=$ cone $\left\{\pi_{i j} e^{i}-e^{j} \mid i j \in V \times V\right\}$

Proposition 2. One has $\mathbb{R}_{+}^{d} \backslash\{0\} \subseteq \operatorname{int} K_{d}$ and $K_{d}^{+} \backslash\{0\} \subseteq \operatorname{int} \mathbb{R}_{+}^{d}$.
Proof: Follows from (1) to (4), a separation argument is used.

Proposition 3. One has $K_{d} \cap-\mathbb{R}_{+}^{d}=\{0\}$.

Proof: Elementary.

Feasible tree solution

$V=\{1, \ldots, d\}$
$(P, N) \ldots$ bi-partition of V, i.e., $\emptyset \neq P \subsetneq V, N=V \backslash P$
$G(P, N) \ldots$ bi-partite digraph with arc set $E=P \times N$
$y \in \mathbb{R}^{d}$ is called generated by a tree T if T is a spanning tree of $G(P, N)$ such that

$$
\begin{equation*}
\forall i j \in E(T) \subseteq P \times N: \pi_{i j} y_{i}=y_{j}>0 \tag{6}
\end{equation*}
$$

$y \in \mathbb{R}^{d}$ is called feasible with respect to (P, N) if

$$
\begin{equation*}
\forall i j \in P \times N: \pi_{i j} y_{i} \geq y_{j}>0 \tag{7}
\end{equation*}
$$

y is called feasible tree solution w.r.t (P, N) if both properties hold.

Feasible tree solution

$$
V=\{1,2,3,4,5,6,7\}, P=\{1,2,3,4\}, N=\{5,6,7\}
$$

Tree solution: $\pi_{i j} y_{i}=y_{j}$ for $i j \in E(T)$

Feasible tree solution

$$
V=\{1,2,3,4,5,6,7\}, P=\{1,2,3,4\}, N=\{5,6,7\}
$$

Feasibility: e.g. $\pi_{37} y_{3} \geq y_{7}$

Characterization of K_{d}^{+}

Theorem 1. For $y \in \mathbb{R}^{d}$, the following statements are equivalent.
(i) y is an extremal direction of K_{d}^{+};
(ii) y is a feasible tree solution w.r.t. some bipartition (P, N) of V.

Questions:

Existence of extremal directions/feasible tree solutions

Construction of extremal directions/feasible tree solutions

Structure of extremal directions/feasible tree solutions

Degree vectors

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Existence of feasible tree solutions

Theorem 2. For every bi-partition (P, N) of V and every P-configuration $c \in \mathbb{N}^{P}$ there exists a feasible tree solution $y \in \mathbb{R}^{d}$ generated by a spanning tree T of the bi-partite graph $G(P, N)$ with $\operatorname{deg}_{T}(P)=c$.

An analogous statement holds if an N-configuration is given.

Towards a proof of Theorem 2

Towards a proof of Theorem 2

1 (4)

Towards a proof of Theorem 2

Towards a proof of Theorem 2

Is there an N-configuration $b \in \mathbb{N}^{N}$ and a feasible tree solution y generated by T such that $b=\operatorname{deg}_{T}(N)$ and $c=\operatorname{deg}_{T}(P)$?

Towards a proof of Theorem 2

Towards a proof of Theorem 2

$k \in \arg \min \left\{y_{i} \cdot \pi_{i j} \mid i \in P\right\}$

Remaining question:

Given a P-configuration $c \in \mathbb{N}^{P}$.
Is there an N-configuration $b \in$ \mathbb{N}^{N} and a feasible tree solution y generated by T such that $b=$ $\operatorname{deg}_{T}(N)$ and $c=\operatorname{deg}_{T}(P)$?

Towards a proof of Theorem 2
$\mathcal{T}(H) \ldots$ set of all spanning trees of a graph H
Lemma 1. Let $H=H(P, N)$ be a bi-partite graph. Then

$$
\left|\left\{\operatorname{deg}_{T}(P) \mid T \in \mathcal{T}(H)\right\}\right|=\left|\left\{\operatorname{deg}_{T}(N) \mid T \in \mathcal{T}(H)\right\}\right|
$$

Toward a proof of Theorem 2

For a feasible tree solution y, define subgraph $H(y)$ of $G=G(P, N)$

$$
\begin{aligned}
& V(H(y)):=V(G), E(H(y)):=\left\{i j \in P \times N \mid \pi_{i j} y_{i}=y_{j}\right\} \\
& \mathcal{P}(y):=\left\{\operatorname{deg}_{T}(P) \mid T \in \mathcal{T}(H(y))\right\} \\
& \mathcal{N}(y):=\left\{\operatorname{deg}_{T}(N) \mid T \in \mathcal{T}(H(y))\right\}
\end{aligned}
$$

Lemma 2. Let x, y be two feasible tree solutions such that $x \neq \alpha y$ for all $\alpha>0$. Then

$$
\mathcal{P}(x) \cap \mathcal{P}(y)=\emptyset \quad \text { and } \quad \mathcal{N}(x) \cap \mathcal{N}(y)=\emptyset .
$$

$$
\pi_{i j} x_{i}=x_{j}, \pi_{i j} x_{i}>x_{j}
$$

$$
\mathcal{P}(x)=\left\{\left(\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right)\right\}
$$

$$
\mathcal{N}(x)=\left\{\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)\right\}
$$

$$
\pi_{i j} y_{i}=y_{j}, \pi_{i j} y_{i}>y_{j}
$$

$$
\mathcal{P}(y)=\left\{\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right)\right\}
$$

$$
\mathcal{N}(y)=\left\{\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)\right\}
$$

Consequences of Theorem 1 and 2

Corollary 1. Assume that also (5) holds. Let x, y be two feasible tree solutions with respect to bi-partitions $\left(P_{x}, N_{x}\right)$ and $\left(P_{y}, N_{y}\right)$ of V, respectively. Then $\left(P_{x}, N_{x}\right) \neq\left(P_{y}, N_{y}\right)$ implies $x \neq \alpha y$ for all $\alpha>0$. Moreover, K_{d}^{+}has at least $2^{d}-2$ extremal directions.

Corollary 2. K_{d}^{+}has at most $\sum_{p=1}^{d-1}\binom{d-2}{p-1}\binom{d}{p}$ extremal directions.
Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such that
$\left(\min \left\{\pi_{i j} \mid i j \in V \times V, i \neq j\right\}\right)^{2}>\max \left\{\pi_{i j} \mid i j \in V \times V, i \neq j\right\}$

Example. $d=20, \pi_{i} i=1, \pi_{12}=59, \pi_{12}=61 \ldots \pi_{20,19}=2713$

$$
59^{2}>2713 \Longrightarrow
$$

K_{20}^{+}has exactly $\sum_{p=1}^{19}\binom{18}{p-1}\binom{20}{p}=35.345 .263 .800$ extremal directions.
$P=\{5,6,7,8,9,10,11\}, N=\{1, \ldots, 4,12, \ldots, 20\}$.
$\binom{d-2}{p-1}=\binom{18}{6}=18564 P$-configurations for this bi-partition $(p:=|P|)$.
$c=(3,2,4,2,2,2,4)^{T} \in \mathbb{N}^{P}$

Algorithm (Matlab, about 15 minutes):
$y=\left(\frac{487 \cdot 757}{503 \cdot 859}, \frac{491 \cdot 757}{503 \cdot 859}, \frac{619.947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{757}{859}, \frac{757}{503 \cdot 859}, \frac{947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{1}{859}, \frac{1367}{953 \cdot 1427}\right.$,
$\left.\frac{1}{1117}, \frac{839}{859 \cdot 1237}, \frac{1}{1427}, \frac{1327}{1427}, \frac{947 \cdot 1367}{953 \cdot 1427}, \frac{1367}{1427}, \frac{1373}{1427}, \frac{829}{859}, \frac{839}{859}, \frac{839 \cdot 1249}{859 \cdot 1237}, \frac{1109}{1117}, 1\right)^{T}$
$b=(1,1,1,2,1,2,2,1,1,2,1,1,3)^{T} \in \mathbb{N}^{N}$

Special case 1

$$
\left.\begin{array}{l}
\pi_{i i}:=1 \text { and } \pi_{i j}:=a_{j} / b_{i}(i \neq j) \\
0<b_{i} \leq a_{i} \text { for all } i \in V \\
0<b_{k}<a_{k} \text { for at least one } k \in V
\end{array}\right\} \quad \Rightarrow \text { (1) to (4) }
$$

Recursion formula
\(Y_{2}=\left(\begin{array}{ll}a_{1} \& b_{1}

b_{2} \& a_{2}\end{array}\right) \quad Y_{d}=\left(\right.\)| | | | | | | | b_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Y_{d-1} | | \vdots | | | | |
| $d-1$ | | | a_{1} | | | | |
| | | | b_{d-1} | | | | a_{d-1} |
| a_{d} | \ldots | a_{d} | a_{d} | b_{d} | \ldots | b_{d} | b_{d} |$)$.

Direct description
$K_{d}^{+}=$cone $\left\{y \in \mathbb{R}^{d} \mid(P, N)\right.$ bi-part. of $\left.V, \forall i \in P: y_{i}=b_{i}, \forall j \in N: y_{j}=a_{j}\right\}$

Consequence

K_{d}^{+}has at most $2^{d}-2$ extremal directions.

Special case 2

$$
\left.\begin{array}{l}
\pi_{i i}:=1 \text { and } \pi_{i j}:=a_{j} / b_{i}(i \neq j) \\
0<b_{i}<a_{i} \text { for all } i \in V
\end{array}\right\} \quad \Rightarrow \text { (1) to }
$$

The same as in special case 1 , but now
K_{d}^{+}has exactly $2^{d}-2$ extremal directions.

Special case 3

$\pi_{i i}:=1$ and $\pi_{i j}:=a_{j} / b_{i}(i \neq j)$,
$\left.\begin{array}{l}0<b_{i} \leq a_{i} \text { for all } i \in V, \\ 0<b_{k}<a_{k} \text { for at least one } k \in V\end{array}\right\}$
\Rightarrow (1) to (4)
$b_{k}=a_{k}$ for some $k \in V$
Recursion formula (w.l.o.g. $a_{1}=b_{1}=1$)
$Y_{2}=\left(\begin{array}{cc}1 & 1 \\ a_{2} & b_{2}\end{array}\right) \quad Y_{d}=\left(\begin{array}{cccccc} & & & & & \\ & Y_{d-1} & & & Y_{d-1} & \\ a_{d} & \ldots & a_{d} & b_{d} & \ldots & b_{d}\end{array}\right)$.
Direct description
$K_{d}^{+}=$cone $\left\{y \in \mathbb{R}^{d} \mid Q \subseteq V \backslash\{k\}, \forall i \in Q: y_{i}=b_{i}, \forall j \in V \backslash Q: y_{j}=a_{j}\right\}$.
Consequence
K_{d}^{+}has at most 2^{d-1} extremal directions.

References

Jewell, W. S. (1962): Optimal flow through networks with gains. Operations Research, 10, 476-499

Kabanov, Y. M. (1999): Hedging and liquidation under transaction costs in currency markets. Finance and Stochastics 3, 237-248

Postnikov, A (2009): Permutohedra, associahedra, and beyond, Int. Math. Res. Not. 6, 1026-1106
L., Rudloff, B. (2015): On the dual of the solvency cone, Discrete Applied Mathematics 186, 176-185

