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Simplest solvency cone example

Exchange between:

Currency 1: Nepalese Rupee

Currency 2: Euro

π12 = 130
1 2

π21 = 1
110

2 1

(
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)
-portfolios:

(
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−1

)
→
(

0
0

)
(
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)
→
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)
,

(
−110

1

)}

price systems:

(
1
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)
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1

) K+ = cone
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1
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)
,

(
1

110
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Solve a problem stated in

Bouchard, B., Touzi, N. (2000): Explicit solution to the multivari-

ate super-replication problem under transaction costs, Ann. Appl.

Probab.

“provide explicitly a generating family

for the polar [or dual] cone [of Kd for d > 2]”



Basic facts about transportation problem

d4 = −s2 > 0

s1 > 0

s3 > 0

s2 > 0

d5 = −s5 > 0

1

2

3

5

4

A =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
−1 −1 0 −1 0

0 0 −1 0 −1



Variables: x =


x14
x24
x25
x34
x35

 Neg. cost: c =


c14
c24
c25
c34
c35

 Supply s =


s1
s2
s3
s4
s5



max cTx s.t. Ax = s, x ≥ 0



Dual transportation problem

min sTy s.t. ATy ≥ c

d4 = −s2 > 0

s1 > 0

s3 > 0

s2 > 0

d5 = −s5 > 0

1

2

3

5

4

A =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
−1 −1 0 −1 0

0 0 −1 0 −1



y1 ≥ y4 + c14

y2 ≥ y4 + c24

y2 ≥ y5 + c25

y3 ≥ y4 + c34

y3 ≥ y5 + c35

c = 0

(primal problem =

feasibility problem)

y1 ≥ y4

y2 ≥ y4

y2 ≥ y5

y3 ≥ y4

y3 ≥ y5

sTy = 0



Modified transportation problem

d4 = −s2 > 0

s1 > 0

s3 > 0

s2 > 0

d5 = −s5 > 0

1

2

3

5

4

A =


π14 0 0 0 0

0 π24 π25 0 0
0 0 0 π34 π35
−1 −1 0 −1 0

0 0 −1 0 −1



Variables: x =


x14
x24
x25
x34
x35

 Neg. cost: c =


0
0
0
0
0

 Supply s =


s1
s2
s3
s4
s5



max cTx s.t. Ax = s, x ≥ 0



Modified transportation problem (dual)

min sTy s.t. ATy ≥ c

d4 = −s2 > 0

s1 > 0

s3 > 0

s2 > 0

d5 = −s5 > 0

1

2

3

5

4

A =


π14 0 0 0 0

0 π24 π25 0 0
0 0 0 π34 π35
−1 −1 0 −1 0

0 0 −1 0 −1



π14 · y1 ≥ y4

π24 · y2 ≥ y4

π25 · y2 ≥ y5

π34 · y3 ≥ y4

π35 · y3 ≥ y5

sTy = 0



Definition (solvency cone)

Let d ∈ {2,3, . . .}, V = {1, . . . , d} and let Π = (πij) be a (d× d)-matrix

such that

∀i ∈ V : πii = 1, (1)

∀i, j ∈ V : 0 < πij, (2)

∀i, j, k ∈ V : πij ≤ πikπkj, (3)

∃i, j, k ∈ V : πij < πikπkj. (4)

Sometimes, (3) and (4) is replaced by

∀i, j ∈ V, ∀k ∈ V \ {i, j} : πij < πikπkj. (5)

The polyhedral convex cone

Kd := cone
{
πije

i − ej| ij ∈ V × V
}

is called solvency cone induced by Π.



The dual cone

K+
d :=

{
y ∈ Rd| ∀x ∈ Kd : xTy ≥ 0

}
... (positive) dual cone of Kd

Proposition 1. One has K+
d =

{
y ∈ Rd| ∀i, j ∈ V : πijyi ≥ yj

}
.

Proof: obvious

Recall: Kd := cone
{
πije

i − ej| ij ∈ V × V
}

Proposition 2. One has Rd+ \ {0} ⊆ intKd and K+
d \ {0} ⊆ intRd+.

Proof: Follows from (1) to (4), a separation argument is used.

Proposition 3. One has Kd ∩ −Rd+ = {0}.

Proof: Elementary.



Feasible tree solution

V = {1, . . . , d}
(P,N) ... bi-partition of V , i.e., ∅ 6= P ( V , N = V \ P
G(P,N) ... bi-partite digraph with arc set E = P ×N

y ∈ Rd is called generated by a tree T if T is a spanning tree of G(P,N)

such that

∀ij ∈ E(T ) ⊆ P ×N : πijyi = yj > 0. (6)

y ∈ Rd is called feasible with respect to (P,N) if

∀ij ∈ P ×N : πijyi ≥ yj > 0. (7)

y is called feasible tree solution w.r.t (P,N) if both properties hold.



Feasible tree solution

V = {1,2,3,4,5,6,7}, P = {1,2,3,4}, N = {5,6,7}

y7 =
π15π27

π25

y4 =
π15π27

π25π47

y3 =
π15

π35

y2 =
π15

π25

y6 =
π15π26

π25

y5 = π15

y1 = 1 1

2

3

4

7

6

5

T

Tree solution: πijyi = yj for ij ∈ E(T )



Feasible tree solution

V = {1,2,3,4,5,6,7}, P = {1,2,3,4}, N = {5,6,7}

y7 =
π15π27

π25

y4 =
π15π27

π25π47

y3 =
π15

π35

y2 =
π15

π25

y6 =
π15π26

π25

y5 = π15

y1 = 1 1

2

3

4

7

6

5

T

Feasibility: e.g. π37y3 ≥ y7



Characterization of K+
d

Theorem 1. For y ∈ Rd, the following statements are equivalent.

(i) y is an extremal direction of K+
d ;

(ii) y is a feasible tree solution w.r.t. some bipartition (P,N) of V .



Questions:

Existence of extremal directions/feasible tree solutions

Construction of extremal directions/feasible tree solutions

Structure of extremal directions/feasible tree solutions



Degree vectors

degT (P ) =


1
3
1
1



N

P

T

7

5

1

2

3

4

6
degT (N) =

3
1
2





Degree vectors of spanning trees


3 1 1 1 2 2 2 1 1 1
1 3 1 1 2 1 1 2 2 1
1 1 3 1 1 2 1 2 1 2
1 1 1 3 1 1 2 1 2 2



N

P

7

5

1

2

3

4

6

4 1 1 3 3 2 1 2 1 2
1 4 1 2 1 3 3 1 2 2
1 1 4 1 2 1 2 3 3 2



c ∈ NP is called P -configuration if
∑
i∈P

ci = d− 1

b ∈ NN is called N-configuration if
∑
i∈N

bi = d− 1

N = {1,2, . . .}



Degree vectors of spanning trees


3 1 1 1 2 2 2 1 1 1
1 3 1 1 2 1 1 2 2 1
1 1 3 1 1 2 1 2 1 2
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1
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4 1 1 3 3 2 1 2 1 2
1 4 1 2 1 3 3 1 2 2
1 1 4 1 2 1 2 3 3 2



c ∈ NP is called P -configuration if
∑
i∈P

ci = d− 1

b ∈ NN is called N-configuration if
∑
i∈N

bi = d− 1

N = {1,2, . . .}



Degree vectors of spanning trees
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c ∈ NP is called P -configuration if
∑
i∈P

ci = d− 1

b ∈ NN is called N-configuration if
∑
i∈N

bi = d− 1

N = {1,2, . . .}



Degree vectors of spanning trees


3 1 1 1 2 2 2 1 1 1
1 3 1 1 2 1 1 2 2 1
1 1 3 1 1 2 1 2 1 2
1 1 1 3 1 1 2 1 2 2
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T

7

5
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4 1 1 3 3 2 1 2 1 2
1 4 1 2 1 3 3 1 2 2
1 1 4 1 2 1 2 3 3 2



c ∈ NP is called P -configuration if
∑
i∈P

ci = d− 1

b ∈ NN is called N-configuration if
∑
i∈N

bi = d− 1

N = {1,2, . . .}



Existence of feasible tree solutions

Theorem 2. For every bi-partition (P,N) of V and every P -configuration

c ∈ NP there exists a feasible tree solution y ∈ Rd generated by a span-

ning tree T of the bi-partite graph G(P,N) with degT (P ) = c.

An analogous statement holds if an N-configuration is given.



Towards a proof of Theorem 2
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Towards a proof of Theorem 2
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Towards a proof of Theorem 2

k = 6

2

1

2

1

5

7

4

2

1

6

3

k ∈ arg max{yj/π1j | j ∈ N}



Towards a proof of Theorem 2
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1

1
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2 1 1

1 1 2

1 2 1

2

5

3

1

4

6

7

Is there an N-configuration

b ∈ NN and a feasible tree

solution y generated by T

such that b = degT (N) and

c = degT (P ) ?



Towards a proof of Theorem 2
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Towards a proof of Theorem 2

2

1

1
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2 1 1

1 1 2

1 2 1

2
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4

6

7

1

2

2

2

16

5

7

3

2

k ∈ arg min{yi · πij | i ∈ P}



Remaining question:

2

2

1 1 2

1 2 1

2 1 1
Given a P -configuration c ∈ NP .

Is there an N-configuration b ∈
NN and a feasible tree solution

y generated by T such that b =

degT (N) and c = degT (P ) ?



Towards a proof of Theorem 2

T (H) ... set of all spanning trees of a graph H

Lemma 1. Let H = H(P,N) be a bi-partite graph. Then

|{degT (P )| T ∈ T (H)}| = |{degT (N)| T ∈ T (H)}|.


1 2 2 1 1 1
1 1 1 2 2 1
3 2 1 2 1 2
1 1 2 1 2 2



N

P

H

7

5

1

2

3

4

6

1 2 1 2 1 2
4 3 3 1 2 2
1 1 2 3 3 2



Sang-Il Oum −→ Postnikov 2009 (about generalized permutohedra)



Toward a proof of Theorem 2

For a feasible tree solution y, define subgraph H(y) of G = G(P,N)

V (H(y)) := V (G), E(H(y)) :=
{
ij ∈ P ×N | πijyi = yj

}
P(y) := {degT (P )| T ∈ T (H(y))}
N (y) := {degT (N)| T ∈ T (H(y))}

Lemma 2. Let x, y be two feasible tree solutions such that x 6= αy

for all α > 0. Then

P(x) ∩ P(y) = ∅ and N (x) ∩N (y) = ∅.



Illustration of Lemma 1 and Lemma 2

x4

x2

x1

x3

x5

x7

x6

H(x)

2

7

1

5

3
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πijxi = xj, πijxi > xj

P(x) =




1
1
3
1




N (x) =


2

1
3




y3

y4

y6

y7

y5

y1

y2

H(y)
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7
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6
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πijyi = yj, πijyi > yj

P(y) =




1
2
1
2

 ,


1
3
1
1




N (y) =


3

1
2

 ,
3

2
1






Consequences of Theorem 1 and 2

Corollary 1. Assume that also (5) holds. Let x, y be two feasible

tree solutions with respect to bi-partitions (Px, Nx) and (Py, Ny) of V ,

respectively. Then (Px, Nx) 6= (Py, Ny) implies x 6= αy for all α > 0.

Moreover, K+
d has at least 2d − 2 extremal directions.

Corollary 2. K+
d has at most

∑d−1
p=1

(
d−2
p−1

)(
d
p

)
extremal directions.

Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such

that

(
min

{
πij| ij ∈ V × V, i 6= j

})2
> max

{
πij| ij ∈ V × V, i 6= j

}



Example. d = 20, πii = 1, π12 = 59, π12 = 61 ... π20,19 = 2713

592 > 2713 =⇒ (5)

K+
20 has exactly

∑19
p=1

(
18
p−1

)(
20
p

)
= 35.345.263.800 extremal directions.

P = {5,6,7,8,9,10,11}, N = {1, . . . ,4,12, . . . ,20}.

(
d−2
p−1

)
=
(

18
6

)
= 18564 P -configurations for this bi-partition (p := |P |).

c = (3,2,4,2,2,2,4)T ∈ NP

Algorithm (Matlab, about 15 minutes):

y =
(

487·757
503·859,

491·757
503·859,

619·947·1367
677·953·1427,

757
859,

757
503·859,

947·1367
677·953·1427,

1
859,

1367
953·1427,

1
1117,

839
859·1237,

1
1427,

1327
1427,

947·1367
953·1427,

1367
1427,

1373
1427,

829
859,

839
859,

839·1249
859·1237,

1109
1117,1

)T
b = (1,1,1,2,1,2,2,1,1,2,1,1,3)T ∈ NN



Special case 1

πii := 1 and πij := aj/bi (i 6= j),

0 < bi ≤ ai for all i ∈ V ,
0 < bk < ak for at least one k ∈ V

 ⇒ (1) to (4)

Recursion formula

Y2 =

(
a1 b1
b2 a2

)
Yd =


b1 a1

Yd−1
... Yd−1

...
bd−1 ad−1

ad . . . ad ad bd . . . bd bd

 .

Direct description

K+
d = cone

{
y ∈ Rd| (P,N) bi-part. of V, ∀i ∈ P : yi = bi, ∀j ∈ N : yj = aj

}
Consequence

K+
d has at most 2d − 2 extremal directions.



Special case 2

πii := 1 and πij := aj/bi (i 6= j),

0 < bi < ai for all i ∈ V ,

}
⇒ (1) to (5)

The same as in special case 1, but now

K+
d has exactly 2d − 2 extremal directions.



Special case 3

πii := 1 and πij := aj/bi (i 6= j),

0 < bi ≤ ai for all i ∈ V ,
0 < bk < ak for at least one k ∈ V

 ⇒ (1) to (4)

bk = ak for some k ∈ V

Recursion formula (w.l.o.g. a1 = b1 = 1)

Y2 =

(
1 1
a2 b2

)
Yd =

 Yd−1 Yd−1

ad . . . ad bd . . . bd

 .

Direct description

K+
d = cone

{
y ∈ Rd| Q ⊆ V \ {k} , ∀i ∈ Q : yi = bi, ∀j ∈ V \Q : yj = aj

}
.

Consequence

K+
d has at most 2d−1 extremal directions.
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