Hierarchical High-Dimensional Statistical Inference

Peter Bühlmann ETH Zürich

main collaborators:

Sara van de Geer, Nicolai Meinshausen, Lukas Meier, Ruben

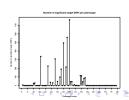
Dezeure, Jacopo Mandozzi, Laura Buzdugan

High-dimensional data

Behavioral economics and genetics (with Ernst Fehr, U. Zurich)

- ightharpoonup n = 1'525 persons
- genetic information (SNPs): $p \approx 10^6$
- ▶ 79 response variables, measuring "behavior"

goal: find significant associations between behavioral responses and genetic markers



... and let's have a look at *Nature 496, 398 (25 April 2013)*

Challenges in irreproducible research

..

"the complexity of the system and of the techniques ... do not stand the test of further studies"

- "We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data."
- "We will also demand more precise descriptions of statistics, and we will commission statisticians as consultants on certain papers, at the editors discretion and at the referees suggestion."
- "Too few budding scientists receive adequate training in statistics and other quantitative aspects of their subject."

... and let's have a look at *Nature 496, 398 (25 April 2013)*

Challenges in irreproducible research

٠.

"the complexity of the system and of the techniques ... do not stand the test of further studies"

- "We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data."
- "We will also demand more precise descriptions of statistics, and we will commission statisticians as consultants on certain papers, at the editors discretion and at the referees suggestion."
- "Too few budding scientists receive adequate training in statistics and other quantitative aspects of their subject."

Linear model

$$\underbrace{Y_i}_{\text{response } i \text{th obs.}} = \sum_{j=1}^p \beta_j^0 \underbrace{X_i^{(j)}}_{\text{jth covariate } i \text{th. obs.}} + \underbrace{\varepsilon_i}_{\text{ith error term}}, i = 1, \ldots, n$$

standard vector- and matrix-notation:

$$Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}^0+\varepsilon_{n\times 1}$$
 in short :
$$Y=X\beta^0+\varepsilon$$

- design matrix X: either deterministic or stochastic
- error/noise ε : $\varepsilon_1, \dots, \varepsilon_n$ independent, $\mathbb{E}[\varepsilon_i] = 0$, $\operatorname{Var}(\varepsilon_i) = \sigma_i^2 \le \sigma^2$ ε_i uncorrelated from X_i (when X is stochastic)

interpretation:

 β_j^0 measures the effect of $X^{(j)}$ on Y when "conditioning on" the other covariables $\{X^{(k)}; k \neq j\}$ that is: it measures the effect of $X^{(j)}$ on Y which is not explained by the other covariables much more a "causal" interpretation very different from (marginal) correlation between $X^{(j)}$ and Y

Regularized parameter estimation

ℓ_1 -norm regularization

(Tibshirani, 1996; Chen, Donoho and Saunders, 1998) also called Lasso (Tibshirani, 1996):

$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta}(n^{-1} \| Y - X\beta \|_{2}^{2} + \lambda \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p} |\beta_{j}|})$$

convex optimization problem

- ▶ sparse solution (because of "ℓ₁-geometry")
- not unique in general... but unique with high probability under some assumptions (which we make "anyway")

LASSO = Least Absolute Shrinkage and Selection Operator

Near-optimal statistical properties of Lasso

assumptions:

- identifiability: note $X\beta^0 = X\theta$ for any $\theta = \beta^0 + \xi$, ξ in the null-space of $X \sim$ restricted eigenvalue or compatibility condition (weaker than RIP)
- ▶ sparsity: let $S_0 = \operatorname{supp}(\beta^0) = \{j; \ \beta_j^0 \neq 0\}$ and assume $s_0 = |S_0| = o(n/\log(p))$ (or $o(\sqrt{n/\log(p)})$)
- sub-Gaussian error distribution
- → with high probability

$$\begin{split} \|\hat{\beta} - \beta^0\|_2^2 &= O(s_0 \log(p)/n), \ \|\hat{\beta} - \beta^0\|_1 = O(s_0 \sqrt{\log(p)/n}), \\ \|X(\hat{\beta} - \beta^0)\|_2^2/n &= O(s_0 \log(p)/n) \end{split}$$

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...)

→ Lasso is a standard workhorse in high-dimensional statistics

Near-optimal statistical properties of Lasso

assumptions:

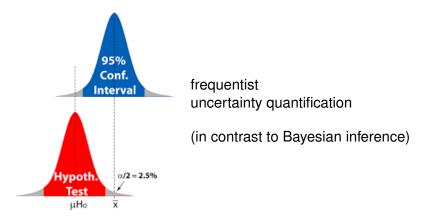
- identifiability:
 note Xβ⁰ = Xθ for any θ = β⁰ + ξ, ξ in the null-space of X
 ∴ restricted eigenvalue or compatibility condition (weaker than RIP)
- ▶ sparsity: let $S_0 = \operatorname{supp}(\beta^0) = \{j; \ \beta_j^0 \neq 0\}$ and assume $s_0 = |S_0| = o(n/\log(p))$ (or $o(\sqrt{n/\log(p)})$)
- sub-Gaussian error distribution
- → with high probability

$$\begin{split} \|\hat{\beta} - \beta^0\|_2^2 &= O(s_0 \log(p)/n), \ \|\hat{\beta} - \beta^0\|_1 = O(s_0 \sqrt{\log(p)/n}), \\ \|X(\hat{\beta} - \beta^0)\|_2^2/n &= O(s_0 \log(p)/n) \end{split}$$

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...)

→ Lasso is a standard workhorse in high-dimensional statistics

Uncertainty quantification: p-values and confidence intervals

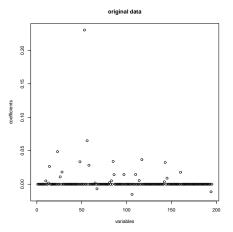


- use classical concepts but in high-dimensional non-classical settings
- ▶ develop less classical things → hierarchical inference

...

Toy example: Motif regression (p = 195, n = 143)

Lasso estimated coefficients $\hat{\beta}(\hat{\lambda}_{CV})$



p-values/quantifying uncertainty would be very useful!

$$Y = X\beta^0 + \varepsilon \ (p \gg n)$$

classical goal: statistical hypothesis testing

$$H_{0,j}:eta_j^0=0 ext{ versus } H_{A,j}:eta_j^0
eq 0$$
 or $H_{0,G}:eta_j^0=0 ext{ } orall j\in \underbrace{G}_{\subseteq\{1,\ldots,p\}} ext{ versus } H_{A,G}:\exists j\in G ext{ with } eta_j^0
eq 0$

background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis

→ could construct p-values

this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p < \infty$ and $n \to \infty$

because of "non-regularity" of sparse estimators "point mass at zero" phenomenon → "super-efficiency"

(Hodges, 1951)

→ standard bootstrapping and subsampling should not be used

Low-dimensional projections and bias correction (Zhang & Zhang, 2014) Or de-sparsifying the Lasso estimator (van de Geer, PB, Ritov & Dezeure, 2014)

motivation (for p < n):

$$\hat{\beta}_{\mathrm{LS},j}$$
 from projection of Y onto residuals (X_j - X_{-j} \hat{\gamma}_{\mathrm{LS}}^{(j)})

projection not well defined if p > n \sim use "regularized" residuals from Lasso on X-variables

$$Z_j = X_j - X_{-j} \hat{\gamma}_{\text{Lasso}}^{(j)}$$

using $Y = X\beta^0 + \varepsilon \rightsquigarrow$

$$Z_j^T Y = Z_j^T X_j \beta_j^0 + \sum_{k \neq j} Z_j^T X_k \beta_k^0 + Z_j^T \varepsilon$$

and hence

$$\frac{Z_j^T Y}{Z_j^T X_j} = \beta_j^0 + \underbrace{\sum_{k \neq j} \frac{Z_j^T X_k}{Z_j^T X_j} \beta_k^0}_{\text{bias}} + \underbrace{\frac{Z_j^T \varepsilon}{Z_j^T X_j}}_{\text{noise component}}$$

→ de-sparsified Lasso:

$$\hat{b}_{j} = \frac{Z_{j}^{T} Y}{Z_{j}^{T} X_{j}} - \sum_{k \neq j} \frac{Z_{j}^{T} X_{k}}{Z_{j}^{T} X_{j}} \hat{\beta}_{\text{Lasso};k}$$
Lasso-estim, bias corr.

 $\{\hat{b}_j\}_{j=1}^p$ is not sparse!... and this is crucial for Gaussian limit and it is "optimal" (see next)

- target: low-dimensional component β_i⁰
- $\eta := \{\beta_k^0; \ k \neq j\}$ is a high-dimensional nuisance parameter \sim exactly as in semiparametric modeling! and sparsely estimated (e.g. with Lasso)

Asymptotic pivot and optimality

Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

$$\frac{\sqrt{n}(\hat{b}_j - \beta_j^0)}{\sigma_{\varepsilon}\sqrt{\Omega_{jj}}} \Rightarrow \mathcal{N}(0,1) \text{ as } p \geq n \to \infty$$

 Ω_{jj} explicit expression $\sim (\Sigma^{-1})_{jj}$ optimal! reaching semiparametric information bound

→ asympt. optimal p-values and confidence intervals
if we assume:

- ▶ population $Cov(X) = \Sigma$ has minimal eigenvalue $\geq M > 0\sqrt{}$
- ▶ sparsity for regr. *Y* vs. *X*: $s_0 = o(\sqrt{n}/\log(p))$ "quite sparse"
- ▶ sparsity of design: Σ^{-1} sparse i.e. sparse regressions X_j vs. X_{-j} : $s_j \le o(\sqrt{n/\log(p)})$ may not be realistic
- ▶ no beta-min assumption ! $\min_{j \in S_0} |\beta_j^0| \gg s_0 \sqrt{\log(p)/n}$ (or $s_0 \log(p)/n$)

Asymptotic pivot and optimality

Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

$$rac{\sqrt{n}(\hat{b}_j - eta_j^0)}{\sigma_{arepsilon}\sqrt{\Omega_{jj}}} \Rightarrow \mathcal{N}(0,1) \ \ ext{as } p \geq n
ightarrow \infty$$

 Ω_{jj} explicit expression $\sim (\Sigma^{-1})_{jj}$ optimal! reaching semiparametric information bound

→ asympt. optimal p-values and confidence intervals
if we assume:

- ▶ population $Cov(X) = \Sigma$ has minimal eigenvalue $\geq M > 0\sqrt{}$
- ▶ sparsity for regr. *Y* vs. *X*: $s_0 = o(\sqrt{n}/\log(p))$ "quite sparse"
- ▶ sparsity of design: Σ^{-1} sparse i.e. sparse regressions X_j vs. X_{-j} : $s_j \le o(\sqrt{n/\log(p)})$ may not be realistic
- ▶ no beta-min assumption ! $\min_{j \in S_0} |\beta_j^0| \gg s_0 \sqrt{\log(p)/n}$ (or $s_0 \log(p)/n$)

It is optimal! Cramer-Rao

for data-sets with $p \approx 4'000 - 10'000$ and $n \approx 100$ \sim often no significant variable

because

" eta_j^0 is the effect when conditioning on all other variables..."

for example:

cannot distinguish between highly correlated variables $X^{(j)}$, $X^{(k)}$ but can find them as a significant group of variables where

at least one among $\{\beta_j^0, \beta_k^0\}$ is $\neq 0$ but unable to tell which of the two is different from zero

Behavioral economics and genomewide association with Ernst Fehr, University of Zurich

- ▶ n = 1525 probands (all students!)
- m = 79 response variables measuring various behavioral characteristics (e.g. risk aversion) from well-designed experiments
- ▶ biomarkers: ≈ 10⁶ SNPs

model: multivariate linear model

$$\underline{\mathbf{Y}_{n \times m}} = \underline{X_{n \times p}} \quad \beta_{p \times m}^{0} + \underline{\varepsilon_{n \times m}}$$
 responses SNP data error

$$\mathbf{Y}_{n\times m}=X_{n\times p}\beta_{p\times m}^0+\varepsilon_{n\times m}$$

interested in p-values for

$$H_{0,jk}: \ \beta_{jk}^0 = 0 \text{ versus } H_{A,jk}: \ \beta_{jk}^0 \neq 0,$$

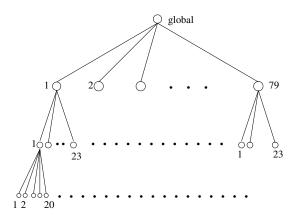
 $H_{0,G}: \ \beta_{jk}^0 = 0 \text{ for all } j,k \in G \text{ versus } H_{A,G} = H_{0,G}^c$

adjusted for multiple testing (among $m = O(10^6)$ hypotheses)

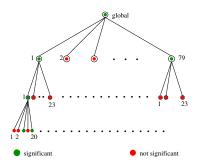
- ▶ standard: Bonferroni-Holm adjustment \sim p-value $P_G \rightarrow P_{G:adi} = P_G \cdot m = P_q \cdot O(10^6)$!!!
- we want to do something much more efficient (statistically and computationally)

there is structure!

- 79 response experiments
- 23 chromosomes per response experiment
- groups of highly correlated SNPs per chromosome

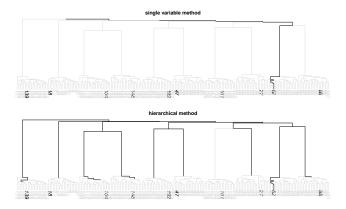


do hierarchical FWER adjustment (Meinshausen, 2008)



- 1. test global hypothesis
- 2. if significant: test all single response hypotheses
- 3. for the significant responses: test all single chromosome hyp.
- 4. for the significant chromosomes: test all groups of SNPs
- powerful multiple testing with data dependent adaptation of the resolution level
- cf. general sequential testing principle (Goeman & Solari, 2010)

Mandozzi & PB (2015, 2016):



a hierarchical inference method is able to find additional groups of (highly correlated) variables

m hypothesis tests, ordered sequentially with hypotheses:

$$H_1 \prec H_2 \prec \ldots \prec H_m$$

the rule:

- hypotheses are always tested on significance level α (no adjustment!)
- ▶ if H_r not rejected: stop considering further tests $(H_{r+1}, \ldots, H_m \text{ will not be considered})$

easy to prove that

 $\mathsf{FWER} = \mathbb{P}[\mathsf{at} \; \mathsf{least} \; \mathsf{one} \; \mathsf{false} \; \mathsf{rejection}] \leq \alpha$

input:

- ▶ a hierarchy of groups/clusters $G \subseteq \{1, ..., p\}$
- valid p-values P_G for

$$H_{0,G}:\ eta_j^0=0\ orall j\in G\ ext{ vs. }\ H_{A,G}:\ eta_j^0
eq 0\ ext{for some }j\in G$$

(use de-sparsified Lasso with test-statistics $\max_{j \in G} \frac{|\hat{b}_j|}{\widehat{\mathbf{s.e.}}_j}$)

the essential operation is very simple:

$$egin{aligned} P_{G; ext{adj}} &= P_G \cdot rac{p}{|G|}, \quad P_G = ext{ p-value for } H_{0,G} \ P_{G; ext{hier-adj}} &= \max_{D \in \mathcal{T}; G \subseteq D} P_{G; ext{adj}} \quad ext{("stop when not rejecting at a node")} \end{aligned}$$

if the p-values P_G are valid, the FWER is controlled

(Meinshausen, 2008)

$$\Longrightarrow \mathbb{P}[\mathsf{at} \; \mathsf{least} \; \mathsf{one} \; \mathsf{false} \; \mathsf{rejection}] \leq \alpha$$

- ightharpoonup root node: tested at level α
- ▶ next two nodes: tested at level $\approx (\alpha f_1, \alpha f_2)$ where $|G_1| = f_1 p$, $|G_2| = f_2 p$
- ▶ at a certain depth in the tree: the sum of the levels $\approx \alpha$ on each level of depth: \approx Bonferroni correction

optimizing the procedure: α -weight distribution with inheritance (Goeman and Finos, 2012)

optimizing the procedure: $\alpha\text{-weight}$ distribution with inheritance (Goeman and Finos, 2012)

{1,2,3,4}

 $\{1,2\}$ $\alpha/2$

 $\{3,4\} \mid \alpha/2$

{1}

{2}

{3}

{4}

{1,2,3,4}

{1,2}

 $\{3,4\} \mid \alpha/2$

 $\{1\} \alpha/4$

 $\{2\} \mid \alpha/4$

{3}

{4}

{1,2,3,4}

{1,2}

 $\{3,4\} \mid \alpha/\beta$

{1}

 $\{2\} \mid \alpha/2$

{3}

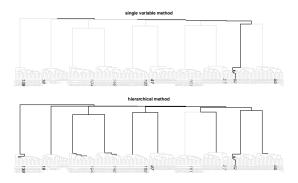
{4}

{1}

 $\begin{tabular}{|c|c|c|c|}\hline \{1,2,3,4\} \\ \hline \{1,2\} \\ \hline \{2\} \\ \hline \{3\} \\ \hline \{4\} \\ \hline \end{tabular}$

the main benefit is not primarily the "efficient" multiple testing adjustment

it is the fact that we automatically (data-driven) adapt to an appropriate resolution level of the groups

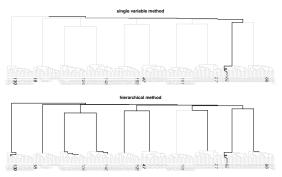


and avoid to test all possible subset of groups...!!!
which would be a disaster from a computational and multiple
testing adjustment point of view

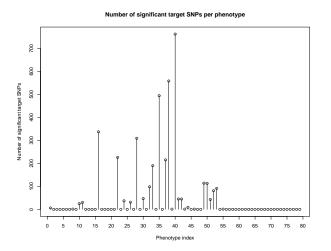
Does this work?

Mandozzi and PB (2015, 2016) provide some theory, implementation and empirical results for simulation study

- fairly reliable type I error control (control of false positives)
- reasonable power to detect true positives (and clearly better than single variable testing method)



Behavioral economics example: number of significant SNP parameters per response



response 40 (?): most significant groups of SNPs

Genomewide association studies in medicine/biology a case for hierarchical inference!

where the ground truth is much better known (Buzdugan, Kalisch, Navarro, Schunk, Fehr & PB, 2016)

The Wellcome Trust Case Control Consortium (2007)

- 7 major diseases
- after missing data handling:
 2934 control cases
 about 1700 1800 diseased cases (depend. on disease)
 approx. p = 380'000 SNPs per individual

coronary artery disease (CAD); Crohn's disease (CD); rheumatoid arthritis (RA); type 1 diabetes (T1D); type 2 diabetes (T2D)

significant small groups and single! SNPs

Disa	Significant	Chrc	Gened	P-value ^e	R ^{2f}
	group of				
	SNPs ^b				
CAD	rs1333049	9	intergenic	$1.7 * 10^{-3}$	0.013
CD	rs11805303,	1	IL23R	$4.5 * 10^{-2}$	0.014
	rs2201841,				
	rs11209033,				
	rs12141431,				
	rs12119179				
CD	rs10210302	2	ATG16L1	$4.6 * 10^{-5}$	0.014
CD	rs6871834,	5	intergenic	$2.7 * 10^{-3}$	0.016
	rs4957295,		-		
	rs11957215,				
	rs10213846,				
	rs4957297,				
	rs4957300,				
	rs9292777,				
	rs10512734,				
	rs16869934				
CD	rs10883371	10	LINC01475,	$2.4 * 10^{-2}$	0.004
			NKX2-3		
CD	rs10761659	10	ZNF365	$1.5 * 10^{-2}$	0.007
CD	rs2076756	16	NOD2	$1.3 * 10^{-3}$	0.017
CD	rs2542151	18	intergenic	$1.5 * 10^{-2}$	0.005
RA	rs6679677	1	PHTF1	$5.9*10^{-11}$	0.031
RA	rs9272346	6	HLA-	$1.4 * 10^{-6}$	0.017
			DQA1		

Disa	Significant	Chrc	Gened	P-value ^e	R ^{2f}
	group of				
	SNPsb				
TID	rs6679677	1	PHTF1	$3.6*10^{-11}$	0.03
TID	rs17388568	4	ADAD1	$2.7 * 10^{-2}$	0.006
TID	rs9272346	6	HLA-	$2.4 * 10^{-3}$	0.17
			DQA1		
TID	rs9272723	6	HLA-	$2.2 * 10^{-4}$	0.17
			DQA1		
TID	rs2523691	6	intergenic	6.04 *	0.004
				10^{-5}	
TID	rs11171739	12	intergenic	$1.3 * 10^{-2}$	0.01
TID	rs17696736	12	NAA25	$6.5 * 10^{-4}$	0.018
TID	rs12924729	16	CLEC16A	$3.4 * 10^{-2}$	0.007
T2D	rs4074720,	10	TCF7L2	$1.7 * 10^{-5}$	0.015
	rs10787472,				
	rs7077039,				
	rs11196208,				
	rs11196205,				
	rs10885409,				
	rs12243326,				
	rs4132670,				
	rs7901695,				
	rs4506565				
T2D	rs9926289,	16	FTO	$4.7 * 10^{-2}$	0.007
	rs7193144,				
	rs8050136,				
	rs9939609				

for bipolar disorder (BD) and hypertension (HT): only large significant groups (containing between 1'000 - 20'000 SNPs)

findings:

- recover some "well-established" associations:
 - single "established" SNPs
 - small groups containing an "established" SNP

"established": SNP (in the group) is found by WTCCC or by WTCCC replication studies

- infer some significant non-reported groups
- automatically infer whether a disease exhibits high or low resolution associations to
 - single or a small groups of SNPs (high resolution)
 CAD, CD, RA, T1D, T2D
 - large groups of SNPs (low resolution) only BD, HT

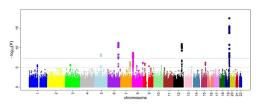
Crohn's disease

large groups

SNP group size	chrom.	p-value
3622	1	0.036
7571	2	0.003
18161	3	0.001
6948	4	0.028
16144	5	0.007
8077	6	0.005
12624	6	0.019
13899	7	0.027
15434	8	0.031
18238	9	0.003
4972	10	0.036
14419	11	0.013
11900	14	0.006
2965	19	0.037
9852	20	0.032
4879	21	0.009

most chromosomes exhibit signific. associations no further resolution to finer groups

standard approach: identifies single SNPs by marginal correlation



→ significant marginal findings cluster in regions

and then assign ad-hoc regions $\pm 10 \emph{k}$ base pairs around the single significant SNPs

still: this is only marginal inference

not the effect of a SNP which is adjusted by the presence of many other SNPs

i.e., not the causal SNPs

(causal direction goes from SNPs to disease status)

improvement by linear mixed models: instead of marginal correlation, try to partially adjust for presence of other SNPs (Peter Donnelly et al., Matthew Stephens et al., Peter Visscher et al.,... 2008-2016)

when adjusting for all other SNPs:

- less false positive findings!
- hierarchical inference is the "first" promising method to infer causal (groups of) SNPs

improvement by linear mixed models: instead of marginal correlation, try to partially adjust for presence of other SNPs (Peter Donnelly et al., Matthew Stephens et al., Peter Visscher et al.,...

2008-2016)

when adjusting for all other SNPs:

- less false positive findings!
- hierarchical inference is the "first" promising method to infer causal (groups of) SNPs

Genomewide association study in plant biology push it further...

collaboration with Max Planck Institute for Plant Breeding Research (Köln):

Klasen, Barbez, Meier, Meinshausen, PB, Koornneef, Busch & Schneeberger (2015)

root development in Arabidopsis Thaliana resp. Y: root meristem zone-lenhth (root size) n = 201, p = 214'051

hierarchical inference: 4 new significant small groups assoc. (besides nearly all known associations)

Model misspecification

true nonlinear model:

$$Y_i = f^0(X_i) + \eta_i, \ \eta_i$$
 independent of X_i $(i = 1, ..., n)$ or multiplicative error potentially heteroscedastic error: $\mathbb{E}[\eta_i] = 0, \ \operatorname{Var}(\eta_i) = \sigma_i^2 \not\equiv \operatorname{const.}, \eta_i's \ \text{independent}$

fitted model:

$$Y_i = X_i \beta^0 + \varepsilon_i \ (i = 1, ..., n),$$

assuming i.i.d. errors with same variances

questions:

- what is β^0 ?
- ▶ is inference machinery (uncertainty quant.) valid for β^0 ?

crucial conceptual difference between random and fixed design X (when conditioning on X)

this difference is not relevant if model is true

Random design

data: n i.i.d. realizations of X assume $\Sigma = Cov(X)$ is positive definite

$$\beta^{0} = \operatorname{argmin}_{\beta} \mathbb{E}|f^{0}(X) - X\beta|^{2} \quad \text{(projection)}$$
$$= \Sigma^{-1} \underbrace{\left(\operatorname{Cov}(f^{0}(X), X_{1}), \dots, \operatorname{Cov}(f^{0}(X), X_{p})\right)^{T}}_{\Gamma}$$

error:

$$\varepsilon = f^{0}(X) - X\beta^{0} + \eta,$$

$$\mathbb{E}[\varepsilon|X] \neq 0, \ \mathbb{E}[\varepsilon] = 0$$

 \rightarrow inference has to be unconditional on X

support and sparsity of β^0 :

Proposition (PB and van de Geer, 2015)

$$\|\beta^0\|_r \leq (\max_{\ell} \underbrace{s_\ell}_{\ell_0\text{-spar. } X_\ell} \underbrace{s_\ell}_{vs.X_{-\ell}} + 1)^{1/r} \|\Sigma^{-1}\|_{\infty} \|\Gamma\|_r \ (0 < r \leq 1)$$

If Σ exhibits block-dependence with maximal block-size b_{max} :

$$\|\beta^0\|_0 \le b_{\max}^2 |\mathcal{S}_{f^0}|$$

 S_{f^0} denotes the support (active) variables of $f^0(.)$

in general: linear projection is less sparse than $f^0(.)$ but ℓ_r -sparsity assump. is sufficient for e.g. de-sparsified Lasso

Proposition (PB and van de Geer, 2015)

for Gaussian design: $S_0 \subseteq S_{f^0}$

if a variable is significant in the misspecified linear model → it must be a relevant variable in the nonlinear function

protection against false positive findings even though the linear model is wrong

but we typically miss some true active variables

$$S_0 \subset S_{f^0}$$

Proposition (PB and van de Geer, 2015)

for Gaussian design: $S_0 \subseteq S_{f^0}$

if a variable is significant in the misspecified linear model → it must be a relevant variable in the nonlinear function

protection against false positive findings even though the linear model is wrong

but we typically miss some true active variables

$$\mathcal{S}_0 \overset{\text{strict}}{\subset} \mathcal{S}_{\mathit{f}^0}$$

we need to adjust the variance formula

(Huber, 1967; Eicker, 1967; White, 1980)

easy to do: e.g. for the de-sparsified Lasso, we compute

$$Z_j = X_j - X_{-j} \hat{\gamma}_j$$
 Lasso residuals from $X_j \ vs. X_{-j}$ $\hat{\varepsilon} = Y - X \hat{\beta}$ Lasso residuals from $Y \ vs. X$ $\hat{\omega}_{jj}^2 = \text{empirical variance of } \hat{\varepsilon}_i Z_{j;i} \ (i=1,\ldots,n)$

Theorem (PB and van de Geer, 2015) assume: ℓ_r -sparsity of β^0 (0 < r < 1), $\mathbb{E}|\varepsilon|^{2+\delta} \le K < \infty$, and ℓ_r -sparsity (0 < r < 1) for rows of $\Sigma = \text{Cov}(X)$:

$$\sqrt{n} \frac{Z_j^T X_j / n}{\hat{\omega}_{jj}} (\hat{b}_j - \beta_j^0) \Rightarrow \mathcal{N}(0, 1)$$

message:

for random design, inference machinery for projected parameter β^0 "works" when adjusting the variance formula

in addition for Gaussian design:

if a variable is significant in the projected linear model

→ it must be significant in the nonlinear function

Fixed design (e.g. "engineering type" applications)

data: realizations of

$$Y_i = f^0(X_i) + \eta_i \ (i = 1, ..., n),$$

 $\eta_1, ..., \eta_n$ independent, but potentially heteroscedastic

if $p \ge n$ and rank(X) = n: can always write

$$f^{0}(X) = X\beta^{0} \quad \rightsquigarrow \quad Y = X\beta^{0} + \varepsilon, \quad \varepsilon = \eta$$

for many β^0 's !

take e.g. the basis pursuit solution (compressed sensing):

$$\beta^0 = \operatorname{argmin}_{\beta} \|\beta\|_1$$
 such that $X\beta = (f^0(X_1), \dots, f^0(X_n))^T$

sparsity of β^0 :

"simply" assume that there exists β^0 which is sufficiently ℓ_r -sparse (0 < r \le 1)

no new theory is required; adapted variance formula captures heteroscedastic errors

interpretation: the inference procedure leads to e.g. a confidence interval which covers all ℓ_r -sparse solutions (PB and van de Geer, 2015)

message:

for fixed design, there is no misspecification w.r.t. linearity ! we "only" need to "bet on (weak) ℓ_r -sparsity"

Computational issue

de-sparsified Lasso for all components j = 1, ..., p:

requires p + 1 Lasso regressions for $p \gg n : O(p^2n^2)$ computational cost

 $p = O(10^6) \sim O(10^{12} n^2)$ despite trivial distributed computing

work in progress with Rajen Shah using thresholded Ridge or generalized LS

the GWAS examples have been computed with preliminary Lasso variable screening and multiple sample splitting

The bootstrap (Efron, 1979): more reliable inference

residual bootstrap for fixed design:

$$Y=Xeta^0+arepsilon$$
 $\hat{arepsilon}=Y-X\hat{eta},\;\hat{eta}$ from the Lasso

- ▶ i.i.d. resampling of centered residuals $\hat{\varepsilon}_i \leadsto \varepsilon_1^*, \dots, \varepsilon_n^*$
- wild bootstrapping for heteroscedastic errors

(Wu (1986), Mammen (1993)):

$$\varepsilon_i^* = W_i \hat{\varepsilon}_i, \ W_1, \dots, W_n \text{ i.i.d. } \mathbb{E}[W_i] = \mathbb{E}[W_i^3] = 0$$

then:

$$\mathbf{Y}^* = \mathbf{X}\hat{\boldsymbol{\beta}} + \boldsymbol{\varepsilon}^*$$

bootstrap sample: $(X_1, Y_1^*), \dots, (X_n, Y_n^*)$

goal: distribution of an algorithm/estimator $\hat{\theta} = g(\{X_i, Y_i\}_{i=1}^n)$

goal: distribution of an algorithm/estimator $\hat{\theta} = g(\{X_i, Y_i\}_{i=1}^n)$ compute algorithm/estimator

$$\hat{\theta}^* = g(\underbrace{X_i, Y_i^*\}_{i=1}^n}_{\text{bootstrap sample}})$$
 (plug-in principle)

many times to approximate the true distribution of $\hat{\theta}$ (with importance sampling for some cases...)

bootstrapping the Lasso \leadsto "bad" because of sparsity of the estimator and super-efficiency phenomenon

Joe Hodges

- poor for estimating uncertainty about non-zero regression parameters
- uncertainty about zero parameters overly optimistic

one should bootstrap a regular non-sparse estimator

(Giné & Zinn, 1989, 1990)

 \rightarrow bootstrap the de-sparsified Lasso \hat{b}

(Dezeure, PB & Zhang, 2016)

Bootstrapping the de-sparsified Lasso (Dezeure, PB & Zhang, 2016)

assumptions:

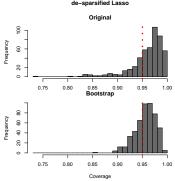
- ▶ linear model with fixed design $Y = X\beta^0 + \varepsilon$ "always true"
- ▶ sparsity for Y vs. X: $s_0 = o(n^{1/2} \log(p)^{-3/2})$ "OK" sparsity X_j vs. X_{-j} real assumption
- errors can be heteroscedastic and non-Gaussian with 4th moments (wild bootstrap for heter. errors) weak assumption
- ► $log(p)^7 = o(n)$ weak assumption

→ consistency of the bootstrap for simultaneous inference!

$$\sup_{c} \left| \mathbb{P}[\max_{j=1,\dots,p} \pm \frac{\hat{b}_{j} - \beta_{j}^{0}}{\widehat{s.e._{j}}} \leq c] - \mathbb{P}^{*}[\max_{j=1,\dots,p} \pm \frac{\hat{b}_{j}^{*} - \hat{\beta}_{j}}{\widehat{s.e._{j}}^{*}} \leq c] \right| = o_{P}(1)$$

(Dezeure, PB & Zhang, 2016)

involves very high-dimensional maxima of non-Gaussian (but limiting Gaussian) quantities (cf. Chernozhukov et al. (2013))

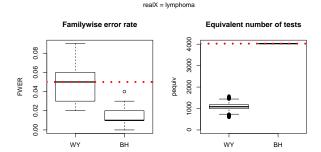


implications:

- more reliable confidence intervals and tests for individual parameters
- powerful simultaneous inference for many parameters
- more powerful multiple testing correction (than Bonferroni-Holm), in spirit of Westfall and Young (1993): effective dimension is e.g. $p_{\rm eff} = 100 K$ instead of p = 1 M

this seems to be the "state of the art" technique at the moment

effective dimension is e.g. $p_{\rm eff} \approx 1000$ instead of $p \approx 4000$

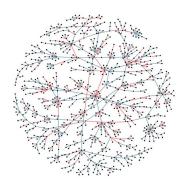


need to control under the "complete null-hypotheses"

$$\mathbb{P}[\max_{j=1,\ldots,p}|\hat{b}_j/\widehat{s.e._j}| \leq c] \approx \mathbb{P}^*[\max_{j=1,\ldots,p}|\hat{b}_j^*/\widehat{s.e._j^*}| \leq c]$$

maximum over (highly) correlated components with p variables is equivalent to maximum of p_{eff} independent components

Outlook: Network models



Gaussian Graphical model Ising model

undirected edge encodes conditional dependence given all other random variables

problem: given data, infer the undirected edges Gaussian Graphical model: (Meinshausen & PB, 2006) Ising model: (Ravikumar, Wainwright & Lafferty; 2010)

→ uncertainty quantification; "similarly" as discussed

Conclusions

key concepts for high-dimensional statistics:

- sparsity of the underlying regression vector
 - sparse estimator is optimal for prediction
 - non-sparse estimators are optimal for uncertainty quantification
- identifiability via restricted eigenvalue assumption

hierarchical inference:

- very powerful to detect significant groups of variables at data-driven resolution
- exhibits impressive performance and validation on bio-/medical data

model misspecification: some issues have been addressed (PB & van de Geer, 2015)

bootstrapping non-sparse estimators improves inference (Dezeure, PB & Zhang, 2016)

robustness, reliability and reproducibility of results...

in view of (yet) uncheckable assumptions

 \sim

confirmatory high-dimensional inference remains an interesting challenge

Thank you!

Software:

R-package hdi (Meier, Dezeure, Meinshausen, Mächler & PB, since 2013) Bioconductor-package hierGWAS (Buzdugan, 2016)

References to some of our own work:

Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methodology, Theory and Applications. Springer.

- Statistics for High-Dimensional Data
- van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics 42, 1166-1202.
- Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015). High-dimensional inference: confidence intervals, p-values and R-software hdi. Statistical Science 30, 533–558.
- Mandozzi, J. and Bühlmann, P. (2016). Hierarchical testing in the high-dimensional setting with correlated variables. Journal of the American Statistical Association 111, 331-343.
- Buzdugan, L., Kalisch, M., Navarro, A., Schunk, D., Fehr, E. and Bühlmann, P. (2016). Assessing statistical significance in joint analysis for genome-wide association studies. Bioinformatics, published online (DOI: 10.1093/bioinformatics/btw128).
- Mandozzi, J. and Bühlmann, P. (2015). A sequential rejection testing method for high-dimensional regression with correlated variables. To appear in International Journal of Biostatistics. Preprint arXiv:1502.03300
- Bühlmann, P. and van de Geer, S. (2015). High-dimensional inference in misspecified linear models. Electronic Journal of Statistics 9. 1449-1473.
- Shah, R.D. and Bühlmann, P. (2015). Goodness of fit tests for high-dimensional models. Preprint arXiv:1511.03334

