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Systemic risk

Interconnected financial system

Failures affecting multiple entities

e.g. chain of defaults

Important in the event of financial crisis

Systemic vs. institutional risk
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Measuring systemic risk

1 Aggregation function Λ

2 Acceptance set A

3 Systemic risk measure Rsys
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1. Aggregation function

Financial system with d entities

Network of banks: Eisenberg, Noe (’01), Cifuentes, Ferrucci, Shin (’05)

OTC market with/without central clearing: Amini, Filipovic, Minca (’15)

Future wealths of entities: X = (X1, . . . , Xd) ∈ L0
d(Ω,F ,P)

Aggregation function: Λ: Rd → R
Λ(X) is a quantification of the impact of wealths of the institutions to the society.

Increasing: More wealth brings more impact to the society.

Concave: Diversification increases the impact to the society.

Like a utility function but multivariate!
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1. Aggregation function: Example

Example: Eisenberg, Noe (’01)

Banks: nodes 1, . . . , d

Society: node 0

Wealth vector: x = (x1, . . . , xd) ∈ Rd
+ (i.e. positions in a liquid asset)

Liability matrix: (`ij)0≤i,j≤d

x1

x2

x3

`12

`13
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1. Aggregation function: Example

Example: Eisenberg, Noe (’01)

Banks: nodes 1, . . . , d

Society: node 0

Wealth vector: x = (x1, . . . , xd) ∈ Rd
+ (i.e. positions in a liquid asset)

Liability matrix: (`ij)0≤i,j≤d

Total liability of entity i: p̄i =
∑d

j=0 `ij

Relative liabilitiy of i to j: aij =
`ij
p̄i

x1

x2

x3

a12

a13
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1. Aggregation function: Example

Example: Eisenberg, Noe (’01) (cont’d)

Clearing/realized payment vector (equilibrium): p(x) = (p1(x), . . . , pd(x))

p(x) ∈ Rd
+ is the solution of the fixed point problem

pi(x) = p̄i ∧

(
xi +

d∑
j=1

pj(x)aji

)
, i ∈ {1, . . . , d} .

Equilibrium: Pay either what you owe or what you have.

There exists a unique p(x) under mild conditions.
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1. Aggregation function: Example

Example: Eisenberg, Noe (’01) (cont’d)

Equity/loss of entity i after clearing:

ei(x) = xi +
d∑

j=1

pj(x)aji − p̄i

Aggregation function: equity of the society

Λ(x) := e0(x) =

d∑
j=1

pj(x)aj0.

The impact of wealth vector X on society is Λ(X).

More features could be modeled:
Liquid and illiquid assets (e.g. Cifuentes, Shin, Ferrucci (’05))

Random liability matrix (e.g. Amini, Filipovic, Minca (’15))

Impact on a group of entities: Λ: Rd → Rm with Λ(x) = (e1(x), . . . , em(x)),
e.g. {1, . . . ,m} are the small banks
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1. Aggregation function: More examples

System-wide profit and loss: Λ(x) =
∑d

i=1 xi

System-wide loss: Λ(x) = −
∑d

i=1 x
−
i

Exponential profit and loss: Λ(x) = −
∑d

i=1 e
−xi−1

Exponential loss: Λ(x) = −
∑d

i=1 e
x−i −1

Chen, Iyengar, Moallemi (’13), Kromer, Overbeck, Zilch (’14)

More naive choices as they ignore the network structure
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2. Acceptance set

Which values of Λ(X) are acceptable?

A ⊆ L∞ acceptance set of a scalar convex risk measure ρ

A = {Y ∈ L∞ | ρ(Y ) ≤ 0}
ρ(Y ) = inf {y ∈ R | Y + y ∈ A}
If A is weak∗-closed and convex, then ρ admits the dual representation

ρ(Y ) = sup
S∈M(P)

(
ES [−Y ]− α(S)

)
,

where α can be chosen as

α(S) = sup
Y ∈L∞

(
ES [−Y ]− ρ(Y )

)
.
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3. Systemic risk measure

A measure of systemic risk is the set of all capital allocations that make the impact
to the society acceptable.

1 Aggregation mechanism insensitive to capital levels

Rins(X) =

{
z ∈ Rd | Λ(X) +

d∑
i=1

zi ∈ A

}

Set-valued version of the systemic risk measure of Chen, Iyengar, Moallemi (’13):

ρins(X) = ρ(Λ(X)) = inf {y ∈ R | Λ(X) + y ∈ A}

Half-space valued: Rins(X) =
{
z ∈ Rd |

∑d
i=1 zi = 1Tz ≥ ρ(Λ(X))

}
2 Aggregation mechanism sensitive to capital levels

Rsen(X) =
{
z ∈ Rd | Λ(X + z) ∈ A

}
Feedback from capital levels is taken into account.
Feinstein, Rudloff, Weber (’15): grid search algorithm
Biagini, Fouque, Fritelli, Meyer-Brandis (’15): similar structure
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3. Systemic risk measure

Focus: Aggregation mechanism sensitive to capital allocations

Rsen(X) =
{
z ∈ Rd | Λ(X + z) ∈ A

}
.

Rsen : L∞d → 2Rd

is a set-valued risk measure (Jouini, Meddeb, Touzi (’04), Hamel,
Heyde(’10)):

Finiteness at zero: Rsen(0) /∈
{
∅,Rd

}
.

Monotonicity: X ≥ Z implies Rsen(X) ⊇ Rsen(Z) for every X,Z ∈ L∞d .

Translativity: Rsen(X + z) = Rsen(X)− z for every X ∈ L∞d , z ∈ Rd.

Convexity: Asen =
{
X ∈ L∞d | Λ(X) ∈ A

}
is a convex set.

Closedness: Asen is a weak∗-closed set.

... under mild assumptions:
ρ is a convex weak∗-lsc risk measure.

Λ is concave and increasing (with respect to componentwise ordering).

ρ(0) ∈ int Λ(Rd).
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Dual representation

Want: Representation of Rsen(X) in terms of vector probability measures and
direction vectors in Rd

+

Recall scalar case:
ρ(X) = sup

S∈M(P)

(
ES [−X]− α(S)

)
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Dual representations for systemic risk measures

Rsen(X) =
{
z ∈ Rd | Λ(X + z) ∈ A

}

The systemic risk measure Rsen has the dual representation

Rsen(X) =
⋂

Q∈Md(P),w∈Rd
+\{0}

EQ [−X] +
{
z ∈ Rd | wTz ≥ −αsys(Q, w)

}
,

where

αsys(Q, w) = inf
S∈Me(P)

(
α(S) + ES

[
g

(
w · dQ

dS

)])
.

S ∈Me(P) equivalent probability measure

g(z) = supx∈Rd

(
Λ(x)− xTz

)
Legendre-Fenchel conjugate of x 7→ −Λ(−x)

x · z = (x1z1, . . . , xdzd)T

Q = (Q1, . . . ,Qd) ∈Md(P) vector probability measure with Qi � P for each i

EQ [X] = (EQ1 [X1] , . . . ,EQd [Xd])

w ∈ Rd
+\{0}
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Dual representation: Interpretation

Fix an absolutely continuous probability measure Qi and a weight wi for each
institution i ∈ {1, . . . , d}.

Fix an equivalent probability measure S for the society.

wi: relative weight of institution i with respect to the society

Penalty for using (Q, w) relative to the society’s probability measure S:

ES
[
g

(
w1
dQ1

dS
, . . . , wd

dQd

dS

)]
.

“Weighted distance” of the vector probability measure Q to the society’s probability
measure S (multivariate version of the well-known f -divergence).
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Dual representation: Interpretation

In addition: Penalty for assuming S as the society’s probability measure is α(S).

Then, we minimize the sum of these two quantities over all choices for S.

αsys(Q, w) = inf
S∈Me(P)

(
α(S) + ES

[
g

(
w · dQ

dS

)])
.
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Dual representation: Interpretation

A capital allocation vector z ∈ Rd is considered feasible with respect to the model
Q ∈Md(P) and weight vector w ∈ Rd

+\{0} if its weighted sum exceeds a certain
thresold threshold, precisely, if

wTz ≥ wTEQ [−X]− αsys(Q, w).

The final step: intersection over all choices of (Q, w) – conservatively take into
account the different probability models and scalarizations for the institutions.

Rsen(X) =
⋂

Q∈Md(P),w∈Rd
+\{0}

{
z ∈ Rd | wTz ≥ wTEQ [−X]− αsys(Q, w)

}
.

The dual representation is a conservative computation of the cash requirements
based on the expected negative wealths in the presence of model uncertainty and
weight ambiguity for the institutions.

Derived by set-valued convex analysis + a conjugation result for the composition of
convex functions (Boţ, Grad, Wanka (’13)).
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Dual representation: Example (Entropic model)

Exponential aggregation: Λ(x) = −
∑d

i=1 e
−xi−1

Entropic risk measure: ρ(Y ) = logE
[
e−Y

]

Systemic penalty function becomes

αsen(Q, w) = inf
S∈Me(P)

(
H (S‖P) +

d∑
i=1

wiH (Qi‖S)

)
+ c(w).

H(Qi‖S) = ES
[
dQi
dS log

(
dQi
dS

)]
(relative entropy)
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Dual representation: Example (Eisenberg-Noe model)

Realized wealth: x ∈ Rd
+

Clearing payments: p(x) = (p1(x), . . . , pd(x))

Aggregation function: Λ(x) =
∑d

j=1 aj0pj(x)

Multivariate divergence function takes the form

ES
[
g

(
w · dQ

dS

)]
=

d∑
i=1

ES

( d∑
j=0

`ij

(
wj
dQj

dS
− wi

dQi

dS

))+
 .
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A model uncertainty interpretation

Aggregation function Λ is a multivariate utility function.

Campi, Owen (’11): same type of utility function for utility maximization

A., Hamel, Rudloff (’15): vector-valued versions for shortfall risk measures

Use the dual representation of ρ:

Rsen(X) =
{
z ∈ Rd | Λ(X + z) ∈ A

}
=
{
z ∈ Rd | ρ(Λ(X + z)) ≤ 0

}
=
{
z ∈ Rd | sup

S∈M1(P)

(
ES[−Λ(X + z)]− α(S)

)
≤ 0
}

=
⋂

S∈M1(P)

{
z ∈ Rd | ES[−Λ(X + z)] ≤ α(S)

}
=

⋂
S∈M1(P)

{
z ∈ Rd | ES[`(−X − z)] ≤ α(S)

}
=

⋂
S∈M1(P)

RS(X),

where RS is a multivariate utility-based shortfall risk measure with threshold value
x0 = α(S) under the model (Ω,F , S).
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Thank you!
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