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Introduction

Initial capital x0 > 0

Horizon [0,T ]

Aim Maximize expected utility of terminal wealth

Problem Find an optimal investment strategy

How many shares

of which asset

have to be held at which time by the portfolio manager ?

Market model continuously tradable assets

drift depends on unobservable factor process

investor only observes stock prices and

expert opinions
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Financial Market with Partial Information

(Ω,G = (Gt )t∈[0,T ],P) filtered probability space

Money market with interest rate 0

Stock market prices St = (S1
t , . . . ,S

n
t )>, returns dR i

t = dSi
t/S

i
t

dRt = µt dt + σ dW R
t

W R = (W R
t )t∈[0,T ] n-dimensional Brownian motion

µ = (µt )t∈[0,T ] stochastic drift, independent on W R

σ volatility, non-singular

Information investor filtration F = (Ft )t∈[0,T ] ⊂ G

classical situation Ft = FR
t = FS

t ⊂ FW R, µ ⊂ G

filtering with observation R and signal µ

we may also consider additional information leading to FH
t ⊂ G

optimal strategies depend on filter µ̂H
t = E [µt |FH

t ]

and its dynamics
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Trading and Portfolio Optimization

Xt wealth (portfolio value) at time t

π = (πt )t∈[0,T ] trading strategy

πi
t is fraction of wealth Xt invested in stock i

π has to be FH -adapted

Wealth Xt = Xπ
t is controlled by π and satisfies

dXt = Xtπ
>
t dRt = Xtπ

>
t (µtdt + σdW R

t ), X0 = x0

Evaluation of terminal wealth with utility function U, e.g.

Uθ(x) =
xθ

θ
, θ < 1, θ 6= 0, or U0(x) = log(x)

Stochastic control problem: maximize expected utility

E [U(Xπ
T )] over admissible strategies π for x0 > 0
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Optimal Strategies in Special Cases

For constant µ: π∗t = 1
1−θ (σσ>)−1µ = const Merton strategy

For stochastic µ, information FH and U = U0 = log
optimal strategy is obtained by substituting filter µ̂H

t for µ

(Certainty equivalence principle)

I Proof: (for n = 1 and x0 = 1):

log Xπ
T =

∫ T

0

(
πt µt −

1
2

(σπt )
2
)

dt +

∫ T

0
πtσdW R

t

I For FH -adapted π we obtain

E [log Xπ
T ] =

∫ T

0
E
[
πt E

[
µt | FH

t
]
− 1

2
(σπt )

2
]

dt + 0

=

∫ T

0
E
[
πt µ̂

H
t −

1
2

(σπt )
2
]

dt

I Pointwise maximization yields π∗
t = σ−2µ̂H

t

In general we expect a dependency of π∗t on filter µ̂H
t and its dynamics
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Drift Models

Bayesian Model: µ is random but time-independent
KARATZAS/XUE (1991)

Linear Gaussian Model (LGM) or Kim-Omberg model

dµt = κ(µ− µt )dt + δdWµ
t

leads to Kalman filter
LAKNER (1998), BRENDLE (2006)

Hidden Markov Model (HMM)
µ as a continuous-time Markov chain
leads to Wonham or HMM filter
SASS, HAUSSMANN (2004), RIEDER, BÄUERLE (2005)
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Linear Gaussian Model (LGM)

Drift is a Gaussian mean-reversion (Ornstein-Uhlenbeck) process

dµt = κ(µ− µt )dt + δdWµ
t

where Wµ
t is a Brownian motion (in)dependent of W R

t

Closed-form solution available

Stationary distribution for t →∞ is N (µ, δ
2

2κ)
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Hidden Markov Model (HMM)

Drift µt = µ(Yt ) is a finite-state Markov chain, independent of W R
t

Y has state space {e1, . . . ,ed}, unit vectors in Rd

µ(Yt ) = MYt where M = (µ1, . . . , µd ) contains states of drift

generator or rate matrix Q ∈ Rd×d

diagonal: Qkk = −λk exponential rate of leaving state k

conditional transition prob. P(Yt = el | Yt− = k ,Yt 6= Yt−) = Qkl/λk

initial distribution (ρ1, . . . , ρd )>
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Expert Opinions

Motivation: static Black-Litterman model
Practitioners apply Bayesian updating to combine

subjective views (such as “asset 1 will grow by 5%”)
with empirical or implied drift estimates.

Present paper includes such views or expert opinions
into dynamic models with partial observation.
Investor receives noisy signals about current drift

I at fixed and known points in time e.g. analysts, company reports

I at random (unknown) points in time e.g. news, ratings
timing does not carry any useful information
jump times of a Poisson process

I in continuous time (limiting case)
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Discrete-Time Expert Opinions

At times Tk investor observes r.v. Zn ∈ Z (views)
Zk depends on current drift µTk , density f (z, µTn )

(Zk ) cond. independent given FµT = σ(µs : s ∈ [0,T ])

Examples
Absolute view: Zk = µTk +

√
Γk εk , (εk ) i.i.d. N(0,1)

The view “S will grow by 5%” is modelled by Zk = 0.05
Γk models confidence of expert

Relative view (2 assets): Zk = µ1
Tk
− µ2

Tk
+
√

Γk εk

Tk = tk fixed or Tk jump times of a Poisson process with intensity λ
⇒ marked point process
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Literature on Expert Opinions

Discrete-time expert opinions

I LGM: GABIH/KONDAKJI/SASS/W.(2014)

I HMM: FREY/GABIH/W. (2012, 2014)

Continuous-time expert opinions

I LGM: DAVIS/LLEO (2013)

I HMM: SEIFRIED/SASS/W. (working paper)

Diffusion approximations
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Maximizing Log-Utility in a Model with Gaussian Drift

We consider one stock (n = 1) with

returns dRt = µtdt + σdW R
t

and drift dµt = κ(µ− µt )dt + δdWµ
t , µ0 ∼ N (m0, η0)

N expert opinions arrive at fixed times 0 = t0 < t1 < . . . < tN−1 < T .
Views are modeled as Gaussian unbiased estimates Zk of the current drift.

Zk = µtk +
√

Γkεk , for i.i.d. ε1, . . . , εN ∼ N (0,1).

Γk > 0 describes the confidence of the expert.

We distinguish four information regimes for the investor

FR observing returns only
FE expert opinions only
FC both returns and expert opinions
FF having full information

We have to compute filters µ̂H
t = E [µt |FH

t ]

and conditional variances qH
t = E [(µt − µ̂H

t )2|FH
t ] for H = R,E ,C,F .
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Filtering: Returns Only (H = R)

For H = R, we are in the classical Kalman filter case and get

d µ̂R
t = κ(µ− µ̂R

t )dt + σ−2qR
t
(
dRt − µ̂R

t dt
)
, µ̂R

0 = m0,

and deterministic conditional variance satisfying the Riccati equation

d
dt

qR
t = δ2 − 2κqR

t − σ−2(qR
t )

2
, qR

0 = η0.

For n = 1 we have a closed-form solution for qR
t .

For t →∞ we have qR
t → qR

∞ := κσ2
(√

1 + ( δ
κσ )2 − 1

)
qR

t is decreasing if η0 > qR
∞ and

increasing if η0 < qR
∞.
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Filtering: Returns and Expert Opinions (H = C)

Between the information dates the filter and the conditional variance evolve
as in regime H = R (Kalman filter).

At the information dates tk the expert opinion Zk ∼ N (µtk , Γk ) leads to a
Bayesian update

µ̂C
tk = ρk µ̂

C
tk− + (1− ρk ) Zn

qC
tk = ρkqC

tk−

with the factor
ρk =

Γk

Γk + qtk−
∈ (0,1)

For H = E we get corresponding updating formulas and between the

information dates we can consider the limiting case σ =∞ in regime H = C.

For H = F we have full information and thus µ̂F
t = µt and qF

t = 0.
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Example: Filter µ̂H
t
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Example: Filter µ̂H
t
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Example: Conditional Variance qH
t
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Properties of Conditional Variance

The conditional variances in all cases H = R,E ,C,F are deterministic, thus

qH
t = E [(µt − µ̂H

t )2|FH
t ] = E [(µt − µ̂H

t )2]

= E [µ2
t ]− E [(µ̂H

t )2] = Var(µt )− Var(µ̂H
t )

Small qH
t means that the filter is close to the true state.

Therefore qH
t may serve as good performance measure.

qC
t ≤ qR

t and qC
t ≤ qE

t
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Asymptotics of Conditional Variance for t →∞

Let T =∞

qR
t → qR

∞ for t →∞

For equidistant expert opinions with Γk = Γ > 0 we get for H = E ,C

lim sup
t→∞

qH
t = UH and lim inf

t→∞
qH

t = LH ,

where UH > LH > 0 can be computed explicitly.
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Asymptotics of Conditional Variance for N →∞

Let T <∞ fixed

Expert opinions arrive more frequent and have some minimum confidence:

For N →∞ and H = E ,C it holds qH,N
t → qF

t = 0 (full info, LLN)

Expert opinions arrive more frequent and become ”less confident”:

Consider equidistant expert opinions with tk = k∆N with ∆N = T/N

Γk = Γ =
σ2

J
∆N

with σJ > 0

Diffusion process dJt = µtdt + σJdW J
t models ”continuous-time expert”

An estimator for the drift in [tk , tk + ∆N ] is Zk = 1
∆N

(Jtk +∆N − Jtk )

For constant µt = µtk we have Zk ∼ N (µtk , σ
2
J/∆N)

Let µ̂J and qJ denote Kalman filter and cond. variance from observing J

Diffusion approximation

For N →∞ it holds |qE ,N
t − qJ

t | → 0 uniformly for all t ∈ [0,T ]∫ T

0
E [ |µ̂E ,N

t − µ̂J
t |2 ]dt → 0
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Example: Diffusion approximation

Diffusion approximation

For N →∞ it holds |qE ,N
t − qJ

t | → 0 uniformly for all t ∈ [0,T ]∫ T

0
E [ |µ̂E ,N

t − µ̂J
t |2 ]dt → 0

Conditional variances qE ,N
t and qJ

t
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Optimal Expected Logarithmic Utility

V (x0) = sup
π∈AH

E [log X ∗T ]

Already known: for U = U0 = log and information FH the optimal strategy is

π∗t = σ−2µ̂H
t

Therefore, V H(x0) = E [log Xπ∗

T ] = log x0 + E
[ ∫ T

0

(
π∗t µ̂

H
t −

1
2

(σπ∗t )2
)

dt
]

= log x0 +
1

2σ2

∫ T

0
E
[
(µ̂H

t )2]︸ ︷︷ ︸ dt

E [µ2
t ]− qH

t

Theorem (Gabih/Kondakji/Sass/W. 2014)

V H(x0) = log x0 +
1

2σ2

(∫ T

0
E [µ2

t ] dt −
∫ T

0
qH

t dt
)

where the integrals (in all four cases) can be computed explicitly.

Properties derived for qH
t allow to derive corresponding properties for V H(x0).
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Efficiency

We want to quantify the monetary value of the information.

Investor F H (= R,E ,C)

Information (observations) FF FH

Initial capital xF
0 = 1 xH

0

Opt. terminal wealth X F
T X H

T

How much initial capital xH
0 needs H to

obtain the same expected utility as F?

Solve V F (1) = V H(xH
0 ) :

xH
0 = exp

( 1
2σ2

∫ T

0
qH

t dt
)

Loss of information xH
0 − 1

Efficiency %H = 1/xH
0

for (non-fully informed) H-investor .
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Efficiency: Numerical Example

Value V H(1) and efficiency %H in % for various numbers N

V H(1) %H

R 0.3213 35.63

N E C E C
10 0.5208 0.6008 43.49 47.12

100 0.9957 1.0017 69.94 70.36
1.000 1.2297 1.2299 88.37 88.39

10.000 1.3134 1.3134 96.09 96.09
100.000 1.3407 1.3407 98.74 98.74

1.000.000 1.3493 1.3493 99.60 99.60
10.000.000 1.3521 1.3521 99.87 99.87

F 1.3533 100.00
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Maximizing Power Utility in an HMM Model

We consider n stocks with returns dRt = µ(Yt )dt + σdW R
t

and drift driven by a finite-state Markov chain Y .

expert opinions arrive at jump times of a Poisson process with intensity λ
and modeled by a marked point process (Tk ,Zk )

Zn depends on current state YTn , density f (z,YTn )

(Zn) cond. independent given FY
T = σ(Ys : s ∈ [0,T ])

We are mainly interested in the information regimes

FR observing returns only
FC both returns and expert opinions

and want to maximize E [U(Xπ
T )] for power utility Uθ(x) = xθ

θ , θ < 1, θ 6= 0

For H = F (full info) the problem is solved in RIEDER & BÄUERLE (2004)
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HMM Filtering: Returns Only (H = R)

Returns dRt = dSt
St

= µ(Yt ) dt + σ dWt observations

Drift µ(Yt ) = M Yt non-observable (hidden) state

Investor filtration FR = (FR
t )t∈[0,T ] with FR

t = σ(Ru : u ≤ t) ⊂ Gt

Filter pk
t := P(Yt = ek |FR

t )

µ̂(Yt ) := E [µ(Yt )|FR
t ] = µ(pt ) =

d∑
j=1

pj
t µj

Innovations process W̃ R
t := σ−1( Rt −

∫ t
0 µ̂(Ys)ds ) is an FR-BM

HMM filter LIPTSER, SHIRYAEV (1974), WONHAM (1965), ELLIOTT (1993)

pk
0 = ρk

dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dW̃ R
t

where βk (p) = pkσ−1
(
µk −

d∑
j=1

pjµj

)
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HMM Filtering: Returns and Expert Opinions (H = C)

Extra information has no impact on filter pt between ‘information dates’ Tn

Bayesian updating at t = Tn:

pk
Tn
∝ pk

Tn− f (Zn,ek ) recall: f (·,YTn ) is density of Zn given YTn

with normalizer
d∑

j=1
pj

Tn−f (Zn,ej) =: f (Zn,pTn−)

HMM filter
pk

0 = ρk

dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dW̃ R
t + pk

t−

∫
Z

(
f (z,ek )

f (z,pt−)
− 1
)

Ĩ(dt × dz)

Compensated measure Ĩ(dt×dz) := I(dt×dz)− λdt
d∑

k=1

pk
t−f (z,ek ) dz︸ ︷︷ ︸

compensator

Zakai equation for the unnormalized filter & robust filter
see ELLIOTT, SIU, YANG (2010), KONDAKJI (2012)
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Filter: Example

Start animation
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Filter: Example
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Filter: Example
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Filter: Example
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Optimization Problem Under Partial Information

Wealth dX (π)
t = X (π)

t π>t (µ(Yt)dt + σdWt ), X (π)
0 = x0

Admissible strategies AH = {(πt )t∈[0,T ] | πt ∈ K ⊂ Rn with K compact

π is FH -adapted }

Reward function v(t , x , π) = Et ,x [ U(X (π)
T ) ] for π ∈ AH

Value function V (t , x) = sup
π∈AH

v(t , x , π)

Find optimal strategy π∗ ∈ AH such that V (0, x0) = v(0, x0, π
∗)
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Reduction to an OP Under Full Information

Consider augmented state process (Xt ,pt )

Wealth dX (π)
t = X (π)

t π>t ( µ̂(Yt)︸ ︷︷ ︸
=M pt

dt + σdW̃ R
t ), X (π)

0 = x0

Filter dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dW̃ R
t

+pk
t−

∫
Z

(
f (z,ek )

f (z,pt−)
− 1
)

Ĩ(dt × dz), pk
0 = ρk

Reward function v(t , x ,p, π) = Et ,x ,p[ U(X (π)
T ) ] for π ∈ AH

Value function V (t , x ,p) = sup
π∈AH

v(t , x ,p, π)

Find π∗ ∈ AH(0) such that V (0, x0, ρ) = v(0, x0, ρ, π
∗)
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Dynamic Programming Approach

Transformation to risk-sensitive control problem
NAGAI & RUNGGALDIER (2008), DAVIS & LLEO (2012)

Change of measure: P(π)(A) = E [Zπ1A] for A ∈ FT

where Zπ := exp
{
θ

∫ T

0
π>s σdW̃ R

s −
θ2

2

∫ T

0
π>s σσ

>πsds
}

Reward function

Et ,x ,p[U(X (π)
T )] =

xθ

θ
E (π)

t ,p

[
exp

{
−
∫ T

t
b(ps, πs)ds

}]
︸ ︷︷ ︸

=: v(t ,p, π) independent of x

where b(p, π) := −θ
(
π>Mp − 1− θ

2
π>σσ>π

)
Value function V (t ,p) = sup

π∈AH
v(t ,p, π) for 0 < θ < 1

Find π∗ ∈ AH such that V (0, ρ) = v(0, ρ, π∗)
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Dynamic Programming Equation (DPE)

State dpt = α(pt , πt )dt + β>(pt )dBt +
∫
Z γI(pt , z )̃I(dt × dz)

Generator Lag(p) = 1
2 tr
[
β>(p)β(p)D2g

]
+ α>(p,a)∇g

+λ
∫
Z{g(p + γI(p, z))− g(p)}f (z,p)dz

DPE (Generalized Hamilton-Jacobi-Bellman Equation)

Vt (t ,p) + sup
a∈K

{
LaV (t ,p)− b(p, π)V (t ,p)

}
= 0

terminal condition V (T ,p) = 1

Candidate for the Optimal Strategy

π∗ = π∗(t ,p) =
1

(1− θ)
(σσ>)−1

{
Mp +

1
V (t ,p)

σβ(p)∇pV (t ,p)
}

︸ ︷︷ ︸
myopic strategy + correction

Certainty equivalence principle does not hold

Justification and regularization of DPE FREY, GABIH, W. (2014)
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Computation of the Optimal Strategy

Dynamic Programming Equation

Vt (t ,p) + sup
a∈K

{
LaV (t ,p)− b(p,a)V (t ,p)

}
= 0

terminal condition V (T ,p) = 1

Generator Lag(p) = 1
2 tr
[
β>(p)β(p)D2g

]
+ α>(p,a)∇g

+λ
∫
Z{g(p + γ(p, z))− g(p)}f (z,p)dz

Plugging in the optimal strategy

π∗ = π∗(t ,p) =
1

(1− θ)
(σσ>)−1

{
Mp +

1
V (t ,p)

σβ(p)∇pV (t ,p)
}

yields a nonlinear partial integro-differential equation (PIDE)

Normalization of p: reduction to d − 1 ”spatial” variables

For d = 2 states: only one ”spatial” variable, ellipticity condition is satisfied

Solve PIDE numerically using an explicit finite difference scheme.
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Computation of the Optimal Strategy (cont.)

38 / 44



Monetary Value of Expert Opinions

We want to quantify the value of the extra information.

Investor R C

Information (observations) only returns returns + expert opinions

Initial capital xR
0 xC

0 = 1

Opt. terminal wealth X R
T X C

T

How much initial capital needs R to obtain the same expected utility as C?

E [U(X R
T )] = E [U(X C

T )]

(xR
0 )θ

θ
V R(0,p) =

(xC
0 )θ

θ
V C(0,p) (xC

0 = 1)

xR
0 =

(
V C(0,p)

V R(0,p)

) 1
θ

Difference xR
0 − xC

0 measures information gain of investor C.
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Monetary Value of Expert Opinions (cont.)

Expert opinions Zk ∼ N (µ(YTk ), Γ) with ”confidence” Γ = s2 arrive with intensity λ

Limit case λ −→∞ full information on the drift

state of Markov chain is observable

see RIEDER & BÄUERLE (2004)
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Diffusion Approximations

For intensity λ→∞ and expert’s variance Γ which is
bounded ⇒ full information (LLN)

increasing (properly scaled) ⇒ ? (CLT)

d = 2 states of the drift µ1 and µ2

conditional distributions of Zn: truncated Gaussian N (µj , Γ), j = 1,2
expert’s variance Γ = cλ grows linearly with intensity λ
truncate to ”κ–sigma–interval” [m − κ

√
cλ,m + κ

√
cλ]

Updated HMM filter p = (p1,p2)> = (ν,1− ν)>, ν = νλ satisfies

dνλt = α(νλt )dt + νλt (1− νλt )
µ1 − µ2

σ
dW̃ R

t +
∫
Z γ

λ
I (νλt−, z) Ĩ(dt × dz)

↓ λ→∞

dξt = α(ξt )dt + ξt (1− ξt )
µ1 − µ2

σ
dW̃ R

t + ξt(1 − ξt)
µ1 − µ2

σJ
dW̃ J

t︸ ︷︷ ︸
(∗)

(∗) corresponds to observation of a Markov-modulated Brownian motion

dJt = µ(Yt )dt + σJ dW J
t where σJ = c + o(κ) for κ→∞

continuous-time expert DAVIS & LLEO (2013b)
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Diffusion Approximations: Example

Compare value functions Vλ(0, ν) and optimal strategies πλ(0, ν)

at time t = 0 with corresponding values for the limiting case λ =∞
for Γ = cλ, c = 0.05
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Conclusion

Portfolio optimization under partial information on the drift

Investor observes stock prices and expert opinions

Closed-form solutions for log-utility and LGM

For HMM and power utility:
non-linear dynamic programming equation with a jump part

Computation of the optimal strategy
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