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CREDITS AND CAVEATS

I Joint work with

I Matias Quiroz, Stockholm University and Sveriges Riksbank

I Robert Kohn, University of New South Wales, Sydney

I Work in progress! Results are preliminary.
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BACKGROUND AND MOTIVATION

I MCMC - main tool for Bayesian computations for decades.

I Painfully slow on large datasets, especially when the likelihood is
costly to evaluate.

I How big is Big Data? Depends on model complexity.

I Approximate methods abound, all with drawbacks.

I Variational Bayes (VB) [bad approx of posterior spread etc]
I Approximate Bayesian Computation (ABC) [summary statistics?]
I Integrated Nested Laplace Approximation (INLA) [applicable?]

I Sequential Monte Carlo (SMC)

I But wait! Can we speed up MCMC?

I Focus: Generic MCMC for problems with

I Tall data - many observations
I Models with time-consuming likelihood evaluations per subject

(numerical solution to partial di� eq, game theory etc)
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR

I Aim: the posterior density

p(θ|y) ∝ p(y |θ)p(θ)

I The full likelihood p(y |θ) is very costly to evaluate.

I Unbiased estimator p̂(y |θ, u) of the likelihood is available∫
p̂(y |θ, u)p(u)du = p(y |θ)

I u ∼ p(u) are auxilliary variables used to compute p̂(y |θ, u).
I Examples:

I Importance sampling: u are the particles
I Here: u are indicators for the subset of observations
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR

I The joint density

π̃(θ, u|y) = p̂(y |θ, u)p(θ)p(u)
p(y)

has the correct marginal density p(θ|y).

I Metropolis-Hastings at iteration j + 1:

I propose θ∗ ∼ q(θ∗|θj ).
I propose u∗ ∼ p(u)
I accept the (u∗, θ∗)-pair with probability

min

[
1,

p̂(y |θ∗, u∗)p(θ∗)
p̂(y |θj , uj )p(θj )

q(θj |θ∗)
q(θ∗|θj )

]
I This MH chain has p(θ|y) as its invariant distribution, irrespective of

the variance of p̂(y |θ, u) [Andrieu and Robert, AnnStat2009]

I Punchline: It's OK to replace the likelihood with an unbiased estimate.
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ESTIMATING THE LIKELIHOOD BY SUBSAMPLING
I De�ne:

I L(θ) = p(y |θ) = ∏n
k=1 p(yk |θ). Likelihood.

I `(θ) = ln L(θ). Log-likelihood.
I `k (θ) = ln p(yk |θ). Log-likelihood contribution of ith observation.

I Unbiased estimation of the log-likelihood using simple random
sampling (SRS) of size m:

l̂(θ) =
n

m
∑

k∈S(u)
`k(θ)

where S(u) is the set of m sampled observations, and u = (u1, ..., un)
is vector of binary selection indicators.

I Note: same subsampling idea applies also to many non-iid models.
Longitudinal data. Time-series with Markov behavior.

I An unbiased estimator of the likelihood can be obtain by

bias-correcting exp
(

ˆ̀(θ)
)
.

MATTIAS VILLANI (STATISTICS, LIU) SPEEDING UP MCMC 6 / 31



ESTIMATING THE LIKELIHOOD BY SUBSAMPLING
I De�ne:

I L(θ) = p(y |θ) = ∏n
k=1 p(yk |θ). Likelihood.

I `(θ) = ln L(θ). Log-likelihood.
I `k (θ) = ln p(yk |θ). Log-likelihood contribution of ith observation.

I Unbiased estimation of the log-likelihood using simple random
sampling (SRS) of size m:

l̂(θ) =
n

m
∑

k∈S(u)
`k(θ)

where S(u) is the set of m sampled observations, and u = (u1, ..., un)
is vector of binary selection indicators.

I Note: same subsampling idea applies also to many non-iid models.
Longitudinal data. Time-series with Markov behavior.

I An unbiased estimator of the likelihood can be obtain by

bias-correcting exp
(

ˆ̀(θ)
)
.

MATTIAS VILLANI (STATISTICS, LIU) SPEEDING UP MCMC 6 / 31



BIAS-CORRECTION

I Let z denote the error in the log-likelihood estimate:

ˆ̀(θ) = `(θ) + z

I Now, since

E exp
[

ˆ̀(θ)
]
= exp [`(θ)] · E [exp (z)] ,

an unbiased estimator of the likelihood is obtained by

L̃(θ) ≡
exp

[
ˆ̀(θ)

]
E [exp (z)]

I Assuming that z ∼ N(0, σ2
z ) [CLT + big data setting]

L̃(θ) ≡
exp

[
ˆ̀(θ)

]
exp (σ2

z /2)

I Other methods: Jackknife, generalized Poisson estimators etc
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SIMPLE RANDOM SAMPLING IS NO GOOD

I Simple random sampling (SRS) gives a HUGE variance of the
log-likelihood estimator

I ... so MH convergence is extremely slow ( = doesn't work, gets stuck).

I SRS: Pr(uk = 1) = πk = m/n is the same for all observations.

I Need more e�cient sampling of data subsets!

I Main idea here: πk should be large when |`k(θ)| is large.
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SRS IS FAR FROM THE OPTIMAL σZ ≈ 1
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πPS SAMPLING + HORVITZ-THOMPSON ESTIMATOR

I πPS-sampling: πi ∝ |`i (θ)|. Sampling without replacement.

I Horvitz-Thompson's estimator of the log-likelihood

ˆ̀HT (θ) = ∑
k∈S

`k(θ)

πk

= ∑
k∈F

`k(θ)

πk

uk

I Asymptotic normality of z holds (Rosén, 1972).

I Unbiased estimate of the variance is

V̂ [ ˆ̀HT (θ)] = ∑
k∈S

∑
l∈S

(1− πkπl

πkl

)
`k(θ)

πk

`l (θ)

πl

, (1)

where πkl = P(uk = 1, ul = 1).

I πPS is time-consuming [computing πkl , sampling, estimating σ2

Z ].
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PPS SAMPLING + HANSEN-HURWITZ ESTIMATOR

I PPS sampling is like πPS, but with replacement. Much faster!

I Hansen-Hurwitz estimator of the log-likelihood

ˆ̀HH(θ) =
1

m

m

∑
i=1

`ui
(θ)

pui

.

V̂ [ ˆ̀HH(θ)] =
1

m(m− 1)

m

∑
i=1

(
`ui

(θ)

pui

− ˆ̀HH(θ)
)2

I Asymptotic normality of z holds (Rosén, 1972).

I The pi need to be good proxies of |`i (θ)|.
I Any surrogate/approximate model can be used.

I What if no surrogate model is available? Need an general method
for approximating `i (θ).
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PPS HAS ROUGHLY THE SAME VARIANCE AS πPS
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APPROXIMATING li(θ) - GAUSSIAN PROCESS

I Wanted: approximation of the log-likelihood contribution:

d → `(θ; d)

for any data point d = (y , x) and parameter vector θ.

I Given θ, assume a noise-free Gaussian Process (GP) prior over
d -space:

`(θ; d) ∼ GP
[
0, k(d , d ′)

]
I Compute `(θ; d) for all d ∈ V , a small �xed subset of the data.

I Update the GP prior using `V (θ) = {`(θ; d)}d∈V to a GP posterior.
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LEARNING A NOISE-FREE GAUSSIAN PROCESS
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APPROXIMATING `i(θ) - GAUSSIAN PROCESS, CONT.

I Use the GP to predict `(θ; d) for all d ∈ V c

ˆ̀
V c (θ) = K (dV c , dV )K (dV , dV )

−1`V (θ),

where K (dV , dV ) is the covariance matrix for the data points in V .

I The kernel hyperparameters are chosen to minimize the prediction
errors on all d ∈ V c for some θ = θ̂ (e.g. posterior mode). Before
MCMC.

I Important: K (dV c , dV ) and K (dV , dV )
−1 are computed once,

before the MCMC.

I In each MCMC iteration ˆ̀
V c (θ) is obtained by two matrix-vector

multiplications. Fast!
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APPROXIMATING `i(θ) - THIN-PLATE SURFACES

I For large datasets, GPs can be computationally demanding.

I Approximate GPs for large data exist, and likely to improve over time.

I Alt. approach for large data: regularized thin-plate spline surfaces.

I The knot locations are chosen by kmeans + boundary

I Shrinkage λ (or Λ) chosen to minimize the prediction errors for all
d ∈ V c .

I Predicting any d ∈ V c

ˆ̀
V c (θ) = WV c (W ′

VWV + λI )−1W ′
V `V (θ),

where W V and WV c are basis-expansion matrices in d -space.
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ADAPTIVE SAMPLING FRACTION

I Variance of ˆ̀(θ) (σ2

Z ) should be close to unity for optimal
e�ciency/computing time trade-o� (Doucet, Pitt and Kohn, 2012).

I Sampling fraction f = m/n can be chosen adaptively in each MCMC
draw.

I If σ2
z > 1, increase sampling fraction to f = m∗/n, where m∗ is a

guess of the sample size needed to reach some σ2

Z = vmax .

I For PPS we have a good guess by backing out m from the variance
formula

m∗ =
1

vmax (m− 1)

m

∑
i=1

(
`ui

(θ)

pui

− ˆ̀HH(θ)
)2
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ADAPTIVE SAMPLING FRACTION, CONT.
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ADAPTIVE SAMPLING FRACTION, CONT.
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FIRM BANKRUPTCY AND EXCESS CASH HOLDING

I Bivariate probit with endogenity

y ∗1 = β10 + β11 · x1 + β12 · x2 + α · y2 + ε1

y ∗2 = β20 + β21 · x1 + β22 · x3 + β23 · x4 + ε2

y1 = I (y ∗1 > 0)

y2 = I (y ∗2 > 0)

where ε1 and ε2 are standard Gaussian with correlation ρ.

I Variables:

I y1 = Bankrupt, y2 = Excess cash
I x1 = Pro�t, x2 = leverage, x3 = �xed assets, x4 = �rm size.

I Cash has many troublesome outliers⇒ Better with binary Excess cash.

I Time-consuming likelihood (bivariate normal integral).

I Special case of a Gaussian copula model.

MATTIAS VILLANI (STATISTICS, LIU) SPEEDING UP MCMC 23 / 31



FIRM BANKRUPTCY DATA

I Dataset used has half a million observations.

I Observations within the �rm are assumed independent conditional on
time-varying covariates.

I Extension to random e�ects is possible.

I 5% of data is used for �tting thin-plate approximation.

I 8% of data sampled by PPS on average.

I 10,000 post burn-in draws.
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COMPARING THE EFFECTIVE DRAWS PER MINUTE
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INEFFICIENCY FACTOR
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SCALING OF THE RANDOM WALK PROPOSAL
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TARGETING DIFFERENT σ2
Z - IMH
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MARGINAL POSTERIORS
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POSTERIOR SUMMARY

Posterior mean 2.5% 97.5%

Parameters in y
∗
1

β11 (Intercept) -2.543 -2.570 -2.517

β12 (Earnings) -0.138 -0.148 -0.127

β13 (Leverage) 0.304 0.292 0.316

α (Excess cash) -0.083 -0.151 -0.015

Parameters in y
∗
2

β21 (Intercept) -0.017 -0.020 -0.013

β22 (Earnings) -0.531 -0.535 -0.527

β23 (Tangible) 0.230 0.226 0.234

β24 (Size) -0.263 -0.267 -0.259

ρ (Correlation) -0.195 -0.235 -0.155
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CONCLUSIONS

I We have proposed a general framework for Pseudo-MCMC based on
e�cient data subsampling.

I Bias-corrected log-likelihood estimator from PPS sampling combined
with the Hansen-Hurwitz estimator.

I Gaussian Process or Regularized thin-plate spline surface for
computing e�cient PPS-weights.

I More e�cient draws per minute in a bivariate probit application to
�nancial data. Biggest gain for weaker proposals.

I Future work:

I more examples
I improved PPS-weights, especially for problems with many covariates.
I other sampling schemes
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