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Parametric survival models such as the Weibull or log-normal

Do not allow unobserved heterogeneity between
observations,

Do not produce robust inference under the presence of
outliers.
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Mixtures of life distributions

Definition
The distribution of Ti is defined as a mixture of life distributions,
if and only if its density function is given by

f (ti|ψ, θ) ≡
∫
L

f ∗(ti|ψ,Λi = λi) dPΛi(λi|θ),

where f ∗(·|ψ,Λi = λi) is the density of a lifetime distribution and
PΛi(·|θ) is a distribution function on L possibly depending on a
parameter θ ∈ Θ.
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Unobserved heterogeneity is incorporated via λi (frailty),

The influence of outlying observations is attenuated,

Flexible distributions are generated on the basis of
well-known distributions,

The intuition behind the underlying model is preserved.
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Rate Mixtures of Weibull distributions

Definition
A random variable Ti has distribution in the family of Rate
Mixtures of Weibull distributions (RMW) iff

f (ti|α, γ, θ) =

∫
L

γαλi e−αλit
γ
i tγ−1

i dPΛi(λi|θ), ti > 0, α, γ > 0, θ ∈ Θ,

(1)
with PΛi(·|θ) defined on L ⊆ (0,∞) (possibly discrete). Denote
Ti ∼ RMWP(α, γ, θ). Alternatively, (1) can be expressed as the
hierarchical representation

Ti|α, γ,Λi = λi ∼Weibull
(
αλi, γ

)
, Λi|θ ∼ PΛi(·|θ). (2)
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Rate Mixtures of Weibull distributions

Relates to existing literature, where usually γ = 1 and
mixing distribution is gamma (Lomax distribution)
Case γ = 1: Rate Mixtures of Exponentials
Ti ∼ RMEP(α, θ)
RMW and RME linked by simple power transformation
If Ti ∼ RMEP(α, θ) then T1/γ

i ∼ RMWP(α, γ, θ).
For γ ≤ 1: decreasing hazard rate for any P
For γ > 1: hazard rate can be non-monotone
Identifiability precludes separate unknown scale
parameters in P
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Some distributions in the RME family

Table : Some distributions included in the RME family. Kp(·) is the
modified Bessel function

Mixing density E(Λi|θ) f (ti|α, θ) S(ti|α, θ) h(ti|α, θ)

Exponential(1) 1 α(αti + 1)−2 (αti + 1)−1 α(αti + 1)−1

Gamma(θ, θ) 1 α([α/θ] ti + 1)−(θ+1), θ > 2 α([α/θ] ti + 1)−1

Inv-Gamma(θ, 1) 1
θ−1 2αK−(θ−1)(2

√
αti)(αti)(θ−1)/2, θ > 1 2K−θ(2

√
αti)(αti)θ/2

√
α
ti

K−(θ−1)(2
√
αti)

K−θ(2
√
αti)

Inv-
Gaussian(θ, 1)

θ α e1/θ
[

1
θ2 + 2αti

]−1/2
e−

[
1
θ2 +2αti

]1/2

e1/θ e−
[

1
θ2 +2αti

]1/2

α
[

1
θ2 + 2αti

]−1/2

Log-Normal(0, θ) eθ/2 α
√

2πθ

∫
∞

0 e−αλiti e−
(log(λi))2

2θ dλi No closed form No closed form
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Some examples of RMW
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Figure : Some RMW models (α = 1). The mixing distribution is
Gamma(θ, θ) (Exponential(1) for θ = 1). The solid line is the
Weibull(1, γ) density and hazard function.
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Coefficient of variation

Corollary

If all the required moments exist, the coefficient of variation (cv)
of the survival distributions in (1) is

cv(γ, θ) =

√√√√√√√√√√√√√√ Γ
(
1 + 2/γ

)
Γ2 (

1 + 1/γ
) varΛi(Λ

−1/γ
i |θ)

E2
Λi

(Λ−1/γ
i |θ)︸            ︷︷            ︸

(cv∗(γ,θ))2

+

[
Γ
(
1 + 2/γ

)
− Γ2 (

1 + 1/γ
)]

Γ2 (
1 + 1/γ

)︸                             ︷︷                             ︸
(cvW(γ))2

.

(3)

Simplifies to
√

2
varΛi (Λ

−1
i |θ)

E2
Λi

(Λ−1
i |θ)

+ 1 when γ = 1.

We restrict the range of (γ, θ) such that cv is finite (not required
when θ does not appear).
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Coefficient of variation inflation

cv of the Weibull cvW(γ) is a lower bound for cv(γ, θ)
cv(γ, θ) = cvW(γ) iff Λi = λ0 with probability 1.
Evidence of unobserved heterogeneity:

Rcv(γ, θ) =
cv(γ, θ)
cvW(γ)

, (4)

i.e. the cv inflation that the mixture induces (w.r.t. Weibull
with the same γ).
If γ→ 0, cvW(γ) and, thus, cv(γ, θ) become unbounded.
Then Rcv(γ, θ) behaves as

√
[cv∗(γ, θ)]2 + 1.
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Regression Model

Weibull regression model can equivalently be written in terms
of Accelerated Failure Times (AFT) and Proportional Hazard
(PH) specifications
AFT-RMW (covariates affect the time scale through α):

Ti ∼ RMWP(αi, γ, θ), αi = e−γx′iβ, i = 1, . . . ,n, (5)

or
log(Ti) = x′iβ + log(ΛiT0), (6)

where Λi ∼ dPΛi(θ) and T0 ∼Weibull(1, γ).

AFT-RMW is itself an AFT model
eβj can be interpreted as the proportional change of the
median survival time after a unit change in covariate j
PH-RMW model is not PH model, and interpretation of
coefficients is less clear
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Bayesian inference for the AFT-RMW model
Prior

First consider RME (γ = 1)
Jeffreys and independence Jeffreys priors have structure

π(β, θ) ∝ π(θ), (7)

but they are complicated to derive and π(θ) need not be proper
(no comparison through BF).
Approach:

Keep structure in (7), but use a proper π(θ)
Match priors through common proper prior for cv, say
π∗(cv)
Using (3), derive the functional relationship between cv and
θ: Table does this for some RME distributions
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Relationship between cv and θ for RME

Table : Relationship between cv and θ for some distributions in the
RME family.

Mixing density Range of cv cv(θ)
∣∣∣ dcv(θ)

dθ

∣∣∣
Gamma(θ, θ) (1,∞)

√
θ
θ−2 θ−1/2(θ − 2)−3/2

Inverse-Gamma(θ, 1) (1,
√

3)
√

θ+2
θ θ−3/2(θ + 2)−1/2

Inverse-Gaussian(θ, 1) (1,
√

5)
√

5θ2+4θ+1
θ2+2θ+1

3θ+1
(5θ2+4θ+1)1/2(θ+1)2

Log-Normal(0, θ) (1,∞)
√

2 eθ − 1 eθ(2 eθ − 1)−1/2
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Bayesian inference for the AFT-RMW model
Prior

For RMW we choose

π(β, γ, θ) ∝ π(γ, θ) ≡ π(θ|γ)π(γ), (8)

where π(θ|γ) and π(γ) are proper

Define π(θ|γ) as before through π∗(cv), given γ
Choose a proper π(γ)
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Bayesian inference for the AFT-RMW model
Posterior

Improper prior: need to check propriety of posterior
Some observations may be censored

Adding censored observations can not destroy posterior
existence, so consider only non-censored ones for sufficient
conditions:

Theorem

Let T1, . . . ,Tn be the survival times of n independent individuals
distributed as in (5). Define X = (x1 · · · xn)′. Suppose n ≥ k,
r(X) = k (full rank) and that the prior is proportional to π(γ, θ),
which is proper for (γ, θ) . If ti , 0 for all i = 1, . . . ,n, the
posterior distribution of (β, γ, θ) is proper.
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Bayesian inference for the AFT-RMW model
Model Comparison

We compare models on basis of:
Bayes factors
DIC
Conditional Predictive Ordinate (CPO): for observation i,

CPOi = f (ti|t−i), t−i = (t1, . . . , ti−1, ti+1, . . . , tn),

where f (·|t−i) is the predictive density given t−i.
PsML =

∏n
i=1 CPOi
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Bayesian inference for the AFT-RMW model
Outliers

Outliers: extreme λi

Effect of outliers on posterior of β is attenuated by mixing
Identification of outliers through mixing variables: compare
H0 : Λi = λref with H1 : Λi , λref (with all other Λj, j , i free)
BF can be computed by generalized Savage-Dickey
density ratio

BF(i)
01 = π(λi|t, c)E

(
1

dP(λi|θ)

) ∣∣∣∣∣
λi=λref

(computationally intensive, but simplifies to SD density
ratio when no θ). Choice of λref ?
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Bayesian inference for the AFT-RMW model
Outliers

Use λref = E(Λi|θ), replacing θ by its posterior median

Mixing through scale parameter, so censoring very informative
for mixing parameters. So for censored observations we use
correction factor:

λc
ref = Ri(β, γ, θ)λo

ref , with Ri(β, γ, θ) =
E(Λi|ti, ci = 0, β, γ, θ)
E(Λi|ti, ci = 1, β, γ, θ)

.
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Application to cerebral palsy data

dataset
1,549 children affected by cerebral palsy, born 1966-1984 in
Mersey region. Record survival times in years. Covariates:
amount of severe impairments, birth weight. Only 242 recorded
deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model.
Inference on β (see graph) is similar for most mixture
distributions, but different from Weibull in β1 (effect of no
impairment)
Inference on γ clearly suggests γ > 1 (non-monotone hazard
rate). Larger γ for mixture models (Weibull underestimates γ to
accommodate data variability)
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Posterior results for cerebral palsy data
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Figure : 95% HPD intervals and posterior medians. Model (5) and (8)
with Gamma prior for γ and Trunc-Exp or Pareto prior for cv. From left
to right: Gamma(4,1), Gamma(1,1) and Gamma(0.01,0.01) prior for
γ. Values of E(cv) in top panel. β0: intercept, β1: no impairments.
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Model comparison for cerebral palsy data
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Figure : Cerebral palsy dataset. Model comparison in terms of BF
and PsML. Unfilled and filled characters denote a truncated
exponential and Pareto prior for cv. Upper panels use E(cv) = 1.5.
Lower panels use E(cv) = 5
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Outlier detection for cerebral palsy data
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Figure : Cerebral palsy dataset using the exponential mixing
distribution. BF in favour of the hypothesis λi , λref , with λo

ref = 1 and
λc

ref = 1/2

No individual outliers, but strong support for mixing.
Corroborated by inference on Rcv (posterior median around 2).
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Conclusions

1 propose mixtures of life distributions (rate mixtures of
Weibulls) to deal with unobserved heterogeneity and
outliers

2 Obtain flexible classes in shape and tails
3 Covariates through AFT specification: retains AFT and β

interpretable
4 Prior based on structure of Jeffreys prior, but allows

meaningful BFs
5 Derive simple conditions for posterior existence
6 Outlier detection based on mixing parameters
7 Data support mixing; in particular exponential mixing

distribution (easy to elicit and to implement, as no θ)
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