Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach

Catalina Vallejos Mark F.J. Steel

Department of Statistics, University of Warwick

Wirtschaftsuniversität Wien, May 14, 2014

CRISM

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Motiva	tion				

Parametric survival models such as the Weibull or log-normal

- Do not allow unobserved heterogeneity between observations,
- Do not produce robust inference under the presence of outliers.

CRISM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Motiva	tion				

Parametric survival models such as the Weibull or log-normal

- Do not allow unobserved heterogeneity between observations,
- Do not produce robust inference under the presence of outliers.

CRISM

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

N 41 - 1	6.116	all an all and a second			
Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

Mixtures of life distributions

Definition

The distribution of T_i is defined as a mixture of life distributions, if and only if its density function is given by

$$f(t_i|\psi,\theta) \equiv \int_{\mathcal{L}} f^*(t_i|\psi,\Lambda_i=\lambda_i) \, dP_{\Lambda_i}(\lambda_i|\theta),$$

where $f^*(\cdot|\psi, \Lambda_i = \lambda_i)$ is the density of a lifetime distribution and $P_{\Lambda_i}(\cdot|\theta)$ is a distribution function on \mathcal{L} possibly depending on a parameter $\theta \in \Theta$.

CRISM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Mixture	es of life	e distributions			

• Unobserved heterogeneity is incorporated via λ_i (frailty),

The influence of outlying observations is attenuated,

• Flexible distributions are generated on the basis of well-known distributions,

• The intuition behind the underlying model is preserved.

CRISM

э.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Mixture	es of life	e distributions			

- **Unobserved heterogeneity** is incorporated via λ_i (frailty),
- The influence of outlying observations is attenuated,
- Flexible distributions are generated on the basis of well-known distributions,
- The intuition behind the underlying model is preserved.

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Mixture	es of life	distributions			

- **Unobserved heterogeneity** is incorporated via λ_i (frailty),
- The influence of outlying observations is attenuated,
- Flexible distributions are generated on the basis of well-known distributions,
- The intuition behind the underlying model is preserved.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Mixture	es of life	e distributions			

- **Unobserved heterogeneity** is incorporated via λ_i (frailty),
- The influence of outlying observations is attenuated,
- Flexible distributions are generated on the basis of well-known distributions,
- The intuition behind the underlying model is preserved.

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

Definition

A random variable T_i has distribution in the family of Rate Mixtures of Weibull distributions (RMW) iff

$$f(t_i|\alpha,\gamma,\theta) = \int_{\mathcal{L}} \gamma \alpha \lambda_i e^{-\alpha \lambda_i t_i^{\gamma}} t_i^{\gamma-1} dP_{\Lambda_i}(\lambda_i|\theta), \quad t_i > 0, \alpha, \gamma > 0, \theta \in \Theta,$$
(1)

with $P_{\Lambda_i}(\cdot|\theta)$ defined on $\mathcal{L} \subseteq (0, \infty)$ (possibly discrete). Denote $T_i \sim \mathsf{RMW}_P(\alpha, \gamma, \theta)$. Alternatively, (1) can be expressed as the hierarchical representation

$$T_i|\alpha,\gamma,\Lambda_i=\lambda_i\sim \mathsf{Weibull}\left(\alpha\lambda_i,\gamma\right),\qquad \Lambda_i|\theta\sim P_{\Lambda_i}(\cdot|\theta).$$
 (2)

CRISM

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If *T_i* ~ RME_P(α, θ) then *T_i^{1/γ}* ~ RMW_P(α, γ, θ).

CRISM

・ロット (雪) (日) (日) (日)

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For $\gamma > 1$: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in *P*

	A	of Marile all all at	21 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If *T_i* ~ RME_P(α, θ) then *T_i^{1/γ}* ~ RMW_P(α, γ, θ).

CRISM

・ロト・日本・日本・日本・日本

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For $\gamma > 1$: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in *P*

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Rate M	lixtures	of Weibull dist	ributions		

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If $T_i \sim \text{RME}_P(\alpha, \theta)$ then $T_i^{1/\gamma} \sim \text{RMW}_P(\alpha, \gamma, \theta)$.

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For γ > 1: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in *P*

-					
Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If $T_i \sim \text{RME}_P(\alpha, \theta)$ then $T_i^{1/\gamma} \sim \text{RMW}_P(\alpha, \gamma, \theta)$.

CRISM

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For γ > 1: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in *P*

-					
Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If $T_i \sim \text{RME}_P(\alpha, \theta)$ then $T_i^{1/\gamma} \sim \text{RMW}_P(\alpha, \gamma, \theta)$.

CRISM

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For $\gamma > 1$: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in *P*

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

- Relates to existing literature, where usually $\gamma = 1$ and mixing distribution is gamma (Lomax distribution)
- Case γ = 1: Rate Mixtures of Exponentials *T_i* ~ RME_P(α, θ)
- RMW and RME linked by simple power transformation If $T_i \sim \text{RME}_P(\alpha, \theta)$ then $T_i^{1/\gamma} \sim \text{RMW}_P(\alpha, \gamma, \theta)$.

CRISM

- For $\gamma \leq 1$: decreasing hazard rate for any *P*
- For $\gamma > 1$: hazard rate can be non-monotone
- Identifiability precludes separate unknown scale parameters in P

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

Some distributions in the RME family

Table : Some distributions included in the RME family. $K_p(\cdot)$ is the modified Bessel function

Mixing density	$E(\Lambda_i \theta)$	$f(t_i \alpha,\theta)$	$S(t_i \alpha, \theta)$
Exponential(1)	1	$\alpha(\alpha t_i + 1)^{-2}$	$(\alpha t_i + 1)^{-1}$
$Gamma(\theta, \theta)$	1	$\alpha([\alpha/\theta] t_i + 1)^{-(\theta+1)}, \theta > 2$	$\alpha([\alpha/\theta] t_i + 1)^{-1}$
Inv-Gamma(θ , 1)	$\frac{1}{\theta - 1}$	$2\alpha K_{-(\theta-1)}(2\sqrt{\alpha t_i})(\alpha t_i)^{(\theta-1)/2}, \theta > 1$	$2K_{-\theta}(2\sqrt{\alpha t_i})(\alpha t_i)^{\theta/2}$
Inv- Gaussian(θ , 1)	θ	$\alpha e^{1/\theta} \left[\frac{1}{\theta^2} + 2\alpha t_i \right]^{-1/2} e^{-\left[\frac{1}{\theta^2} + 2\alpha t_i \right]^{1/2}}$	$e^{1/\theta} e^{-\left[\frac{1}{\theta^2}+2\alpha t_i\right]^{1/2}}$
Log-Normal($0, \theta$)	$e^{\theta/2}$	$\frac{\alpha}{\sqrt{2\pi\theta}}\int_0^\infty e^{-\alpha\lambda_i t_i} e^{-\frac{(\log(\lambda_i))^2}{2\theta}} d\lambda_i$	No closed form
			CRISM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions

Some examples of RMW

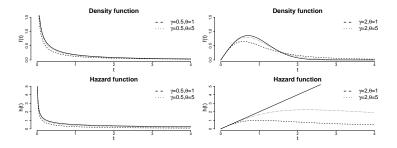


Figure : Some RMW models ($\alpha = 1$). The mixing distribution is Gamma(θ, θ) (Exponential(1) for $\theta = 1$). The solid line is the Weibull(1, γ) density and hazard function.

CRISM

Introduc	ction Motivatio	Mixtures of Life Distr ●○○	ibutions Bayesian	n Inference	Application	Conclusions
Co	efficient o	of variation				
	Corollary					
		uired moments val distributions		fficient of	f variation	(cv)
	$cv(\gamma, \theta) =$	$\frac{\Gamma\left(1+2/\gamma\right)}{\Gamma^{2}\left(1+1/\gamma\right)} \frac{va}{E}$	$\frac{r_{\Lambda_i}(\Lambda_i^{-1/\gamma} \theta)}{{}^2_{\Lambda_i}(\Lambda_i^{-1/\gamma} \theta)} +$	$\frac{\left[\Gamma\left(1+2\right)\right]}{I}$	$\Gamma^2(1+1/\gamma) - \Gamma^2(1+1/\gamma)$	$\left(\frac{1+1/\gamma}{1-\gamma}\right)$.
	1		$(cv^*(\gamma,\theta))^2$		$(cv^W(\gamma))^2$	
						(3)
	Simplifies to	$\int \sqrt{2 \frac{\operatorname{Var}_{\Lambda_i}(\Lambda_i^{-1} \theta)}{E_{\Lambda_i}^2(\Lambda_i^{-1} \theta)}}$	+ 1 when γ =	1.		

We restrict the range of (γ, θ) such that cv is finite (not required when θ does not appear).

Introduction	Motivation	Mixtures of Life Distributions ○●○	Bayesian Inference	Application	Conclusions
O a a ffi					

Coefficient of variation inflation

• cv of the Weibull $cv^{W}(\gamma)$ is a lower bound for $cv(\gamma, \theta)$

- $cv(\gamma, \theta) = cv^{W}(\gamma)$ iff $\Lambda_i = \lambda_0$ with probability 1.
- Evidence of unobserved heterogeneity:

$$R_{cv}(\gamma,\theta) = \frac{cv(\gamma,\theta)}{cv^{W}(\gamma)},$$
(4)

CRISM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

i.e. the cv inflation that the mixture induces (w.r.t. Weibull with the same γ).

Introduction	Motivation	Mixtures of Life Distributions ○●○	Bayesian Inference	Application	Conclusions
Coeffic	piont of	variation inflatio	n		

- cv of the Weibull $cv^{W}(\gamma)$ is a lower bound for $cv(\gamma, \theta)$
- $cv(\gamma, \theta) = cv^{W}(\gamma)$ iff $\Lambda_i = \lambda_0$ with probability 1.
- Evidence of unobserved heterogeneity:

$$R_{cv}(\gamma,\theta) = \frac{cv(\gamma,\theta)}{cv^{W}(\gamma)},$$
(4)

(日) (日) (日) (日) (日) (日) (日)

i.e. the cv inflation that the mixture induces (w.r.t. Weibull with the same γ).

Introduction	Motivation	Mixtures of Life Distributions ○●○	Bayesian Inference	Application	Conclusions
Coeffic	piont of	variation inflatio	n		

- cv of the Weibull $cv^{W}(\gamma)$ is a lower bound for $cv(\gamma, \theta)$
- $cv(\gamma, \theta) = cv^{W}(\gamma)$ iff $\Lambda_i = \lambda_0$ with probability 1.
- Evidence of unobserved heterogeneity:

$$R_{cv}(\gamma,\theta) = \frac{cv(\gamma,\theta)}{cv^{W}(\gamma)},$$
(4)

i.e. the cv inflation that the mixture induces (w.r.t. Weibull with the same γ).

Introduction	Motivation	Mixtures of Life Distributions ○●○	Bayesian Inference	Application	Conclusions
Cooffic	piont of	variation inflatio	n		

- cv of the Weibull $cv^{W}(\gamma)$ is a lower bound for $cv(\gamma, \theta)$
- $cv(\gamma, \theta) = cv^{W}(\gamma)$ iff $\Lambda_i = \lambda_0$ with probability 1.
- Evidence of unobserved heterogeneity:

$$R_{cv}(\gamma,\theta) = \frac{cv(\gamma,\theta)}{cv^{W}(\gamma)},$$
(4)

i.e. the cv inflation that the mixture induces (w.r.t. Weibull with the same γ).

Introduction	Motivation	Mixtures of Life Distributions ○○●	Bayesian Inference	Application	Conclusions
Regres	sion M	odel			

Weibull regression model can equivalently be written in terms of Accelerated Failure Times (AFT) and Proportional Hazard (PH) specifications

AFT-RMW (covariates affect the time scale through α):

$$T_i \sim RMW_P(\alpha_i, \gamma, \theta), \quad \alpha_i = e^{-\gamma x'_i \beta}, \quad i = 1, \dots, n,$$
 (5)

or

$$\log(T_i) = x_i'\beta + \log(\Lambda_i T_0),$$
(6)

where $\Lambda_i \sim dP_{\Lambda_i}(\theta)$ and $T_0 \sim \text{Weibull}(1, \gamma)$.

- AFT-RMW is itself an AFT model
- *d* can be interpreted as the proportional change of the median survival time after a unit change in covariate *j*
- CRISM

Introduction	Motivation	Mixtures of Life Distributions ○○●	Bayesian Inference	Application	Conclusions	
Degraceion Model						

Regression Model

Weibull regression model can equivalently be written in terms of Accelerated Failure Times (AFT) and Proportional Hazard (PH) specifications

AFT-RMW (covariates affect the time scale through α):

$$T_i \sim RMW_P(\alpha_i, \gamma, \theta), \quad \alpha_i = e^{-\gamma x'_i \beta}, \quad i = 1, \dots, n,$$
 (5)

or

$$\log(T_i) = x_i'\beta + \log(\Lambda_i T_0),$$
(6)

where $\Lambda_i \sim dP_{\Lambda_i}(\theta)$ and $T_0 \sim \text{Weibull}(1, \gamma)$.

- eth can be interpreted as the proportional change of the median survival time after a unit change in covariate j
- CRISM

Introduction	Motivation	Mixtures of Life Distributions ○○●	Bayesian Inference	Application	Conclusions
Regres	ssion M	odel			

Weibull regression model can equivalently be written in terms of Accelerated Failure Times (AFT) and Proportional Hazard (PH) specifications

AFT-RMW (covariates affect the time scale through α):

$$T_i \sim RMW_P(\alpha_i, \gamma, \theta), \quad \alpha_i = e^{-\gamma x_i' \beta}, \quad i = 1, \dots, n,$$
 (5)

or

$$\log(T_i) = x_i'\beta + \log(\Lambda_i T_0),$$
(6)

CRISM

where $\Lambda_i \sim dP_{\Lambda_i}(\theta)$ and $T_0 \sim \text{Weibull}(1, \gamma)$.

AFT-RMW is itself an AFT model

Introduction	Motivation	Mixtures of Life Distributions ○○●	Bayesian Inference	Application	Conclusions		
Degreesien Medel							

Regression Model

Weibull regression model can equivalently be written in terms of Accelerated Failure Times (AFT) and Proportional Hazard (PH) specifications

AFT-RMW (covariates affect the time scale through α):

$$T_i \sim RMW_P(\alpha_i, \gamma, \theta), \quad \alpha_i = e^{-\gamma x_i' \beta}, \quad i = 1, \dots, n,$$
 (5)

or

$$\log(T_i) = x_i'\beta + \log(\Lambda_i T_0), \tag{6}$$

where $\Lambda_i \sim dP_{\Lambda_i}(\theta)$ and $T_0 \sim \text{Weibull}(1, \gamma)$.

- AFT-RMW is itself an AFT model
- e^{β_j} can be interpreted as the proportional change of the median survival time after a unit change in covariate i

CRISM

Introduction	Motivation	Mixtures of Life Distributions ○○●	Bayesian Inference	Application	Conclusions		
Degreesien Medel							

Regression Model

Weibull regression model can equivalently be written in terms of Accelerated Failure Times (AFT) and Proportional Hazard (PH) specifications

AFT-RMW (covariates affect the time scale through α):

$$T_i \sim RMW_P(\alpha_i, \gamma, \theta), \quad \alpha_i = e^{-\gamma x_i' \beta}, \quad i = 1, \dots, n,$$
 (5)

or

$$\log(T_i) = x_i'\beta + \log(\Lambda_i T_0), \tag{6}$$

where $\Lambda_i \sim dP_{\Lambda_i}(\theta)$ and $T_0 \sim \text{Weibull}(1, \gamma)$.

- AFT-RMW is itself an AFT model
- e^{β_j} can be interpreted as the proportional change of the median survival time after a unit change in covariate i
- PH-RMW model is not PH model, and interpretation of coefficients is less clear

CRISM

First consider RME (γ = 1) Jeffreys and independence Jeffreys priors have structure

 $\pi(\beta, \theta) \propto \pi(\theta),$

(7)

э

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

but they are complicated to derive and $\pi(\theta)$ need not be proper (no comparison through BF).

- Keep structure in (7), but use a proper $\pi(\theta)$
- Match priors through common proper prior for co, say x¹(co)
- CRISM

First consider RME ($\gamma = 1$) Jeffreys and independence Jeffreys priors have structure

 $\pi(\beta,\theta) \propto \pi(\theta),$ (7)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

but they are complicated to derive and $\pi(\theta)$ need not be proper (no comparison through BF).

- Keep structure in (7), but use a proper $\pi(\theta)$
- Match priors through common proper prior for *cv*, say π*(*cv*)
- CRISM

First consider RME ($\gamma = 1$) Jeffreys and independence Jeffreys priors have structure

 $\pi(\beta,\theta) \propto \pi(\theta),$ (7)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

but they are complicated to derive and $\pi(\theta)$ need not be proper (no comparison through BF).

- Keep structure in (7), but use a proper $\pi(\theta)$
- Match priors through common proper prior for cv, say $\pi^*(cv)$
- Using (3), derive the functional relationship between *cv* and *θ*: Table does this for some RME distributions

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions Bayesian inference for the AFT-RMW model Prior

First consider RME ($\gamma = 1$) Jeffreys and independence Jeffreys priors have structure

 $\pi(\beta,\theta) \propto \pi(\theta),$ (7)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

but they are complicated to derive and $\pi(\theta)$ need not be proper (no comparison through BF).

- Keep structure in (7), but use a proper $\pi(\theta)$
- Match priors through common proper prior for cv, say $\pi^*(cv)$
- Using (3), derive the functional relationship between *cv* and *θ*: Table does this for some RME distributions

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions
Bayesian inference for the AFT-RMW model
Prior

First consider RME ($\gamma = 1$) Jeffreys and independence Jeffreys priors have structure

 $\pi(\beta,\theta) \propto \pi(\theta),$ (7)

but they are complicated to derive and $\pi(\theta)$ need not be proper (no comparison through BF).

Approach:

- Keep structure in (7), but use a proper $\pi(\theta)$
- Match priors through common proper prior for cv, say $\pi^*(cv)$
- Using (3), derive the functional relationship between *cv* and *θ*: Table does this for some RME distributions

CRISM

Bayesian Inference

Application Conclusions

Relationship between cv and θ for RME

Table : Relationship between cv and θ for some distributions in the RME family.

Mixing density	Range of cv	$cv(\theta)$	$\left \frac{dcv(\theta)}{d\theta} \right $
$Gamma(\theta, \theta)$	(1,∞)	$\sqrt{rac{ heta}{ heta-2}}$	$\theta^{-1/2}(\theta-2)^{-3/2}$
Inverse-Gamma(θ , 1)	(1, $\sqrt{3}$)	$\sqrt{\frac{\theta+2}{\theta}}$	$\theta^{-3/2}(\theta+2)^{-1/2}$
Inverse-Gaussian(θ , 1)	$(1, \sqrt{5})$	$\sqrt{rac{5\theta^2+4\theta+1}{\theta^2+2\theta+1}}$	$\frac{3\theta+1}{(5\theta^2+4\theta+1)^{1/2}(\theta+1)^2}$
Log-Normal($0, \theta$)	(1,∞)	$\sqrt{2 e^{\theta} - 1}$	$e^{\theta}(2e^{\theta}-1)^{-1/2}$

CRISM

э.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions Bayesian inference for the AFT-RMW model Prior

For RMW we choose

$$\pi(\beta, \gamma, \theta) \propto \pi(\gamma, \theta) \equiv \pi(\theta|\gamma)\pi(\gamma), \tag{8}$$

where $\pi(\theta|\gamma)$ and $\pi(\gamma)$ are proper

Define π(θ|γ) as before through π*(co), given γ Choose a proper π(γ)

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions

For RMW we choose

$$\pi(\beta,\gamma,\theta) \propto \pi(\gamma,\theta) \equiv \pi(\theta|\gamma)\pi(\gamma), \tag{8}$$

where $\pi(\theta|\gamma)$ and $\pi(\gamma)$ are proper

Define π(θ|γ) as before through π*(cv), given γ Choose a proper π(γ)

CRISM

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions

For RMW we choose

$$\pi(\beta,\gamma,\theta) \propto \pi(\gamma,\theta) \equiv \pi(\theta|\gamma)\pi(\gamma), \tag{8}$$

CRISM

= 900

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

where $\pi(\theta|\gamma)$ and $\pi(\gamma)$ are proper

- Define $\pi(\theta|\gamma)$ as before through $\pi^*(cv)$, given γ
- Choose a proper $\pi(\gamma)$

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions Bayesian inference for the AFT-RMW model

• Improper prior: need to check propriety of posterior

• Some observations may be censored

Posterior

Adding censored observations can not destroy posterior existence, so consider only non-censored ones for sufficient conditions:

Let $T_1, ..., T_n$ be the survival times of n independent individuals distributed as in (5). Define $X = (x_1 \cdots x_n)^*$. Suppose $n \ge k$, r(X) = k (full rank) and that the prior is proportional to $n(y, \theta)$, which is proper for $(y, \theta) :$ If $t_i \ne 0$ for all i = 1, ..., n, the posterior distribution of (β, γ, θ) is proper.

CRISM

・ロット (雪) (日) (日)

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions

- Improper prior: need to check propriety of posterior
- Some observations may be censored

Adding censored observations can not destroy posterior existence, so consider only non-censored ones for sufficient conditions:

Let $T_1, ..., T_n$ be the survival times of n independent individuals distributed as in (5). Define $X = (x_1 \cdots x_n)^*$. Suppose $n \ge k$, r(X) = k (full rank) and that the prior is proportional to $n(y, \theta)$, which is proper for $(y, \theta) :$ If $t_i \ne 0$ for all i = 1, ..., n, the posterior distribution of (β, γ, θ) is proper.

CRISM

・ロット (雪) (日) (日)

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions Bayesian inference for the AFT-RMW model Posterior

- Improper prior: need to check propriety of posterior
- Some observations may be censored

Adding censored observations can not destroy posterior existence, so consider only non-censored ones for sufficient conditions:

Theorem

Let T_1, \ldots, T_n be the survival times of n independent individuals distributed as in (5). Define $X = (x_1 \cdots x_n)^r$. Suppose $n \ge k$, r(X) = k (full rank) and that the prior is proportional to $\pi(\gamma, \theta)$, which is proper for (γ, θ) . If $t_i \ne 0$ for all $i = 1, \ldots, n$, the posterior distribution of (β, γ, θ) is proper.

CRISM

・ロット (雪) ・ (日) ・ (日)

- Improper prior: need to check propriety of posterior
- Some observations may be censored

Adding censored observations can not destroy posterior existence, so consider only non-censored ones for sufficient conditions:

Let T_1, \ldots, T_n be the survival times of n independent individuals distributed as in (5). Define $X = (x_1 \cdots x_n)^t$. Suppose $n \ge k$, r(X) = k (full rank) and that the prior is proportional to $\pi(\gamma, \theta)$, which is proper for (γ, θ) . If $t_i \neq 0$ for all $i = 1, \ldots, n$, the posterior distribution of (β, γ, θ) is proper.

CRISM

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

- Improper prior: need to check propriety of posterior
- Some observations may be censored

Adding censored observations can not destroy posterior existence, so consider only non-censored ones for sufficient conditions:

Theorem

Let T_1, \ldots, T_n be the survival times of n independent individuals distributed as in (5). Define $X = (x_1 \cdots x_n)'$. Suppose $n \ge k$, r(X) = k (full rank) and that the prior is proportional to $\pi(\gamma, \theta)$, which is proper for (γ, θ) . If $t_i \ne 0$ for all $i = 1, \ldots, n$, the posterior distribution of (β, γ, θ) is proper.

CRISM

Introduction Motivation

Mixtures of Life Distributions

Bayesian Inference

Application Conclusions

CRISM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bayesian inference for the AFT-RMW model Model Comparison

We compare models on basis of:

- Bayes factors
- DIC

• Conditional Predictive Ordinate (CPO): for observation *i*,

 $\mathsf{CPO}_i = f(t_i | t_{-i}), \qquad t_{-i} = (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n),$

where $f(\cdot|t_{-i})$ is the predictive density given t_{-i} . $\mathsf{PSML} = \prod_{i=1}^{n} \mathsf{CPO}_{i}$ Introduction Motivation Mixtures of

Mixtures of Life Distributions

Bayesian Inference

Application Cor

Conclusions

CRISM

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Bayesian inference for the AFT-RMW model Model Comparison

We compare models on basis of:

- Bayes factors
- DIC

• Conditional Predictive Ordinate (CPO): for observation *i*,

$$\mathsf{CPO}_i = f(t_i | t_{-i}), \qquad t_{-i} = (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n),$$

where $f(\cdot|t_{-i})$ is the predictive density given t_{-i} .

• $\mathsf{PsML} = \prod_{i=1}^{n} \mathsf{CPO}_{i}$

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application

We compare models on basis of:

- Bayes factors
- DIC

Model Comparison

• Conditional Predictive Ordinate (CPO): for observation *i*,

$$\mathsf{CPO}_i = f(t_i|t_{-i}), \qquad t_{-i} = (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n),$$

Conclusions

CRISM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $f(\cdot|t_{-i})$ is the predictive density given t_{-i} . PSML = $\prod_{i=1}^{n} \text{CPO}_i$ Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application

We compare models on basis of:

- Bayes factors
- DIC

Model Comparison

• Conditional Predictive Ordinate (CPO): for observation *i*,

$$\mathsf{CPO}_i = f(t_i|t_{-i}), \qquad t_{-i} = (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n),$$

Conclusions

CRISM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $f(\cdot|t_{-i})$ is the predictive density given t_{-i} .

• PsML = $\prod_{i=1}^{n} CPO_i$

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions

Bayesian inference for the AFT-RMW model Outliers

• Outliers: extreme λ_i

- Effect of outliers on posterior of β is attenuated by mixing
- Identification of outliers through mixing variables: compare *H*₀ : Λ_i = λ_{ref} with *H*₁ : Λ_i ≠ λ_{ref} (with all other Λ_j, j ≠ i free) BF can be computed by generalized Savage-Dickey density ratio

$$BF_{01}^{(i)} = \pi(\lambda_i | t, c) E\left(\frac{1}{dP(\lambda_i | \theta)}\right) \Big|_{\lambda_i = \lambda_{ref}}$$

CRISM

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

(computationally intensive, but simplifies to SD density ratio when no θ). Choice of λ_{ref} ?

Bayesian inference for the AFT-RMW model Outliers

- Outliers: extreme λ_i
- Effect of outliers on posterior of β is attenuated by mixing
- Identification of outliers through mixing variables: compare H₀: Λ_i = λ_{ref} with H₁: Λ_i ≠ λ_{ref} (with all other Λ_j, j ≠ i free) BF can be computed by generalized Savage-Dickey density ratio

$$BF_{01}^{(i)} = \pi(\lambda_i | t, c) E\left(\frac{1}{dP(\lambda_i | \theta)}\right) \Big|_{\lambda_i = \lambda_{ref}}$$

CRISM

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

(computationally intensive, but simplifies to SD density ratio when no θ). Choice of λ_{ref} ?

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions
Bayesian inference for the AFT-RMW model
Outliers

- Outliers: extreme λ_i
- Effect of outliers on posterior of β is attenuated by mixing
- Identification of outliers through mixing variables: compare *H*₀ : Λ_i = λ_{ref} with *H*₁ : Λ_i ≠ λ_{ref} (with all other Λ_j, j ≠ i free) BF can be computed by generalized Savage-Dickey density ratio

$$BF_{01}^{(i)} = \pi(\lambda_i | t, c) E\left(\frac{1}{dP(\lambda_i | \theta)}\right) \Big|_{\lambda_i = \lambda_{ref}}$$

CRISM

(日) (日) (日) (日) (日) (日) (日)

(computationally intensive, but simplifies to SD density ratio when no θ). Choice of λ_{ref} ?

Introduction Motivation Mixtures of Life Distributions Bayesian Inference Application Conclusions

Use $\lambda_{ref} = E(\Lambda_i | \theta)$, replacing θ by its posterior median

Mixing through scale parameter, so censoring very informative for mixing parameters. So for censored observations we use correction factor:

$$\lambda_{ref}^{c} = R_{i}(\beta, \gamma, \theta) \lambda_{ref}^{o}, \text{ with } R_{i}(\beta, \gamma, \theta) = \frac{E(\Lambda_{i}|t_{i}, c_{i} = 0, \beta, \gamma, \theta)}{E(\Lambda_{i}|t_{i}, c_{i} = 1, \beta, \gamma, \theta)}.$$

CRISM

э.

ヘロト ヘ戸 ト ヘヨト ヘヨト

Use $\lambda_{ref} = E(\Lambda_i | \theta)$, replacing θ by its posterior median

Mixing through scale parameter, so censoring very informative for mixing parameters. So for censored observations we use correction factor:

$$\lambda_{ref}^{c} = R_{i}(\beta, \gamma, \theta) \lambda_{ref}^{o}, \text{ with } R_{i}(\beta, \gamma, \theta) = \frac{E(\Lambda_{i}|t_{i}, c_{i} = 0, \beta, \gamma, \theta)}{E(\Lambda_{i}|t_{i}, c_{i} = 1, \beta, \gamma, \theta)}.$$

CRISM

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Motivation

Mixtures of Life Distributions

Bayesian Inference

Application Conclusions

CRISM

ъ

・ ロ ト ・ 雪 ト ・ 目 ト ・

Application to cerebral palsy data

dataset

1,549 children affected by cerebral palsy, born 1966-1984 in Mersey region. Record survival times in years. Covariates: amount of severe impairments, birth weight. Only 242 recorded deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model. Inference on β (see graph) is similar for most mixture distributions, but different from Weibull in β_1 (effect of no impairment) Inference on γ clearly suggests $\gamma > 1$ (non-monotone hazard rate). Larger γ for mixture models (Weibull underestimates γ to accommodate data variability)

Mixtures of Life Distributions

Bayesian Inference

Application Conclusions

CRISM

ъ

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Application to cerebral palsy data

dataset

1,549 children affected by cerebral palsy, born 1966-1984 in Mersey region. Record survival times in years. Covariates: amount of severe impairments, birth weight. Only 242 recorded deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model. Inference on β (see graph) is similar for most mixture distributions, but different from Weibull in β_1 (effect of no impairment) Inference on γ clearly suggests $\gamma > 1$ (non-monotone hazard rate). Larger γ for mixture models (Weibull underestimates γ to accommodate data variability)

Motivation

Mixtures of Life Distributions

Bayesian Inference

Application Co

Conclusions

CRISM

Application to cerebral palsy data

dataset

1,549 children affected by cerebral palsy, born 1966-1984 in Mersey region. Record survival times in years. Covariates: amount of severe impairments, birth weight. Only 242 recorded deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model. Inference on β (see graph) is similar for most mixture distributions, but different from Weibull in β_1 (effect of no impairment) Inference on γ clearly suggests $\gamma > 1$ (non-monotone hazard rate). Larger γ for mixture models (Weibull underestimates γ to accommodate data variability)

Bayesian Inference

Application Conclusions

CRISM

(日) (日) (日) (日) (日) (日) (日)

Application to cerebral palsy data

dataset

1,549 children affected by cerebral palsy, born 1966-1984 in Mersey region. Record survival times in years. Covariates: amount of severe impairments, birth weight. Only 242 recorded deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model. Inference on β (see graph) is similar for most mixture distributions, but different from Weibull in β_1 (effect of no impairment)

Inference on γ clearly suggests $\gamma > 1$ (non-monotone hazard rate). Larger γ for mixture models (Weibull underestimates γ to accommodate data variability)

Bayesian Inference

Application Conclusions

CRISM

(日) (日) (日) (日) (日) (日) (日)

Application to cerebral palsy data

dataset

1,549 children affected by cerebral palsy, born 1966-1984 in Mersey region. Record survival times in years. Covariates: amount of severe impairments, birth weight. Only 242 recorded deaths, so 84.4% is right censored.

Analysed with AFT-RMW model as well as a Weibull model. Inference on β (see graph) is similar for most mixture distributions, but different from Weibull in β_1 (effect of no impairment)

Inference on γ clearly suggests $\gamma > 1$ (non-monotone hazard rate). Larger γ for mixture models (Weibull underestimates γ to accommodate data variability)

Motivation

Mixtures of Life Distributions

Bayesian Inference

Application Conclusions

Posterior results for cerebral palsy data

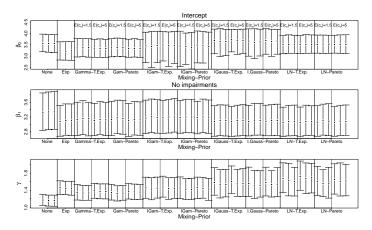


Figure : 95% HPD intervals and posterior medians. Model (5) and (8) with Gamma prior for γ and Trunc-Exp or Pareto prior for cv. From left to right: Gamma(4,1), Gamma(1,1) and Gamma(0.01,0.01) prior for γ . Values of E(cv) in top panel. β_0 : intercept, β_1 : no impairments.

Introduction Motivation

Mixtures of Life Distributions

Bayesian Inference

Application Conclusions

Model comparison for cerebral palsy data

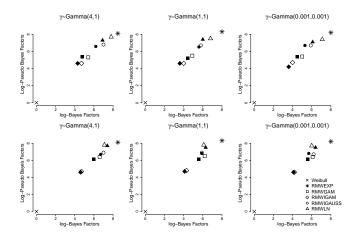


Figure : Cerebral palsy dataset. Model comparison in terms of BF and PsML. Unfilled and filled characters denote a truncated exponential and Pareto prior for cv. Upper panels use E(cv) = 1.5. Lower panels use E(cv) = 5

CRISM

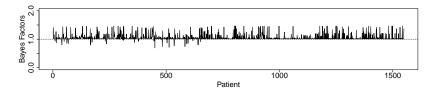


Figure : Cerebral palsy dataset using the exponential mixing distribution. BF in favour of the hypothesis $\lambda_i \neq \lambda_{ref}$, with $\lambda_{ref}^o = 1$ and $\lambda_{ref}^c = 1/2$

No individual outliers, but strong support for mixing. Corroborated by inference on R_{cv} (posterior median around 2).

CRISM

・ロット (雪) (日) (日)

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Ovariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Derive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

э

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Ovariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Derive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

3

・ ロ ト ・ 雪 ト ・ 目 ト ・

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Covariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Oerive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

3

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Covariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Oerive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Ovariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Oerive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

(日) (日) (日) (日) (日) (日) (日)

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Ovariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Oerive simple conditions for posterior existence
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

(日) (日) (日) (日) (日) (日) (日)

Introduction	Motivation	Mixtures of Life Distributions	Bayesian Inference	Application	Conclusions
Conclu	isions				

- propose mixtures of life distributions (rate mixtures of Weibulls) to deal with unobserved heterogeneity and outliers
- Obtain flexible classes in shape and tails
- Ovariates through AFT specification: retains AFT and β interpretable
- Prior based on structure of Jeffreys prior, but allows meaningful BFs
- Our provide the second state of the second
- Outlier detection based on mixing parameters
- Data support mixing; in particular exponential mixing distribution (easy to elicit and to implement, as no θ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・