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Background

Bayes theorem and priors

Posterior ∝ Prior × Likelihood

To be honest, Bayesian statistics, has an (practical) “issue” with priors:

Do not really know what to do priors in practise

Hope/assume that data will dominate the prior, so that any
“reasonable choice” will do fine

Objective/reference priors are hard to compute and often not
available, but we may not want to use them in any case

Hierarchical models make it all more difficult

There are exceptions, so it is not uniformly bad!
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Background

What is a prior?

Wikipedia:

In Bayesian statistical inference, a prior probability distribution,
often called simply the prior, of an uncertain quantity p is the
probability distribution that would express one’s uncertainty
about p before the ”data” is taken into account.
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Background

How do I chose my prior?

How? Use probability-densities to express your uncertainty.

But how? Use probability-densities to express your uncertainty.

Please just tell me what to do? Use probability-densities to express
your uncertainty.
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Background

Yes, it is needed...

There are a lot of good reasons for why “we” need to move forward with
the “prior”-issue:

(standard arguments goes here)

Marginal likelihood (easy in R-INLA)

Prevent overfitting
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Background

Our background: R-INLA (www.r-inla.org)

Building models adding up model components

η = Xβ + f1(...;θ1) + f2(...;θ2) + · · ·

Also likelihoods have hyper-parameters

We (as developers) can leave the responsibility to the user and require
ALL priors to be specified by the user

Does not solve the fundamental problem, nor does it make the world
a better place to be

Would be nice and important to come up with “good” default priors
(up to a notion of scale) for most parameters
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The scaling problem for intrinsic model components

Sometimes, we are to be blamed!

Intrinsic Gaussian model (components)

Popular in applications

Often have a precision matrix of form

Q = τR

where τ is the precision parameter

R has not full rank but an interesting null-space
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The scaling problem for intrinsic model components

Examples of intrinsic models

Models for splines (rw1, rw2)

Thin-plate splines (dimension > 1, rw2d)

The “CAR” model/Besag-model for area/regional models (besag)

and others...

Problem:

The “problem” is that these models are unscaled and change with
locations/dimension/graph.

Setting prior for the precision parameter τ is a mess...
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The scaling problem for intrinsic model components

Example2

rw1-model
x ′(t) = noise(t)

Null-space
1

rw2-model
x ′′(t) = noise(t)

Null-space
1, t
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The scaling problem for intrinsic model components

Example (dimension)

> inla.rw(5)

5 x 5 sparse Matrix of class "dgTMatrix"

[1,] 1 -1 . . .

[2,] -1 2 -1 . .

[3,] . -1 2 -1 .

[4,] . . -1 2 -1

[5,] . . . -1 1

> mean(diag(inla.ginv(inla.rw(5, sparse=FALSE), rankdef=1)))

[1] 0.8

> mean(diag(inla.ginv(inla.rw(50, sparse=FALSE), rankdef=1)))

[1] 8.33

> mean(diag(inla.ginv(inla.rw(500, sparse=FALSE), rankdef=1)))

[1] 83.333
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The scaling problem for intrinsic model components

Example (order)

> mean(diag(inla.ginv(inla.rw(100, order = 1, sparse=FALSE),

rankdef=1)))

[1] 16.665

> mean(diag(inla.ginv(inla.rw(100, order = 2, sparse=FALSE),

rankdef=2)))

[1] 2381.19
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The scaling problem for intrinsic model components

Example: Smoothing

Data
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The scaling problem for intrinsic model components

Example: Smoothing

Unscaled (fixed
precision)
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The scaling problem for intrinsic model components

Example: Smoothing

Scaled (same fixed
precision)
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The scaling problem for intrinsic model components

How to scale?

Scale so that σ2
∗
= 1, where (f.ex)

σ2
∗
= exp

(

mean
(

log
(

diag
(

R
−
))))

If we know the null-space of R we can compute diag(R−) using
sparse matrix algebra.

In R-INLA

f(..., scale.model=TRUE) ## case-spesific

inla.setOption(scale.model.default = TRUE) ## global
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The scaling problem for intrinsic model components

Choosing prior parameters

Assume
τ ∼ Gamma(a, b)

where E(τ) = a/b.

Can say something about the scale of the effect (family dependent):
with

σ =
√

1/τ

Can answer a question like

Prob(σ > U) = α

Need one more criteria/question...
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Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 16 / 60



The scaling problem for intrinsic model components

Choosing prior parameters

Assume
τ ∼ Gamma(a, b)

where E(τ) = a/b.

Can say something about the scale of the effect (family dependent):
with

σ =
√

1/τ

Can answer a question like

Prob(σ > U) = α

Need one more criteria/question...
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PC priors Background

But we want more...

Summary so far

Must standardise model components

Can have an opinion of the scale of the effect

Big questions:

Can we ‘say’ something about the prior density itself?

How to approach the issue of possible overfitting?
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PC priors Background

Not all parameters are easy to interpret

Martyn Plummer (the author of JAGS):1

However, nobody can express an informative prior in terms of the
precision, ...

Would be nice to think about priors without having to care about the
parameterisation (invariance)

1http://martynplummer.wordpress.com/2012/09/02/stan/
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PC priors New concept!

Penalised complexity priors (PC priors)

A new approach

Based on a few principles

Parameterisation invariant+++
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PC priors Principles

Principle I: Occam’s razor

Prefer simplicity over complexity

Many model components are nested within a simpler model

x ∼ N (0, τ I ) is nested within τ = ∞
Student-t is nested within the Gaussian
Spline models are nested within its null-space: linear effect or constant
effect
AR(1) is nested within ρ = 0 (no dependence in time) or ρ = 1 (no
changes in time).
and so on
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PC priors Principles

Principle I: Occam’s razor

Consider the case where the more flexible model

π(x |ξ), ξ ≥ 0

is nested within a base model π(x |ξ = 0).

The prior for ξ ≥ 0 should penalise the complexity introduced by ξ

The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting if, loosly,

πξ(ξ = 0) = 0
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complexity (the mode should be at the base model)

A prior will cause overfitting if, loosly,

πξ(ξ = 0) = 0

Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 21 / 60



PC priors Principles

Principle I: Occam’s razor

Consider the case where the more flexible model

π(x |ξ), ξ ≥ 0

is nested within a base model π(x |ξ = 0).

The prior for ξ ≥ 0 should penalise the complexity introduced by ξ

The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting if, loosly,

πξ(ξ = 0) = 0
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PC priors Principles

Principle II: Measure of complexity

Use Kullback-Leibler discrepancy to measure the increased complexity
introduced by ξ > 0,

KLD(f ‖g) =
∫

f (x) log

(

f (x)

g(x)

)

dx

for flexible model f and base model g .

Gives a measure of the information lost when the base model is used to
approximate the more flexible models
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PC priors Principles

Principle III: Constant rate penalisation

Define
d(ξ) =

√

2 KLD(ξ)

as the (uni-directional) “distance” from flexible-model to the base model.
Need the square-root to get the dimension right (meter not meter2)

Constant rate penalisation:

π(d) = λ exp (−λd) , λ > 0

with mode at d = 0

Invariance: OK
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PC priors Principles

Principle IV: User-defined scaling

The rate λ is determined from knowledge of the scale or some
interpretable transformation Q(ξ) of ξ:

Pr(Q(ξ) > U) = α
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PC priors Examples

Example I

Base model N (0, 1)

Flexible model N (µ, 1), µ > 0.

KLD is µ2/2 and d(µ) = µ.

PC prior:
π(µ) = λ exp(−λµ)

Can determine λ from a question like

Prob(µ > u) = α
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PC priors Examples

Example II

Base model: Binomial(size = 1, prob = 1/2)

Flexible model: Binomial(size = 1, prob = p)

This gives

d(p) =
√

2p log(2p) + 2(1− p) log(2(1− p))

and the PC prior:

π(p) = λ exp (−λd(p)) 1

d(p)
log

(

p

1− p

)
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PC priors Examples
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PC priors Limiting case

Small λξ > 0: Tilted Jeffreys’ prior

For small λξ > 0, we have that

π(ξ) = I (ξ)1/2 exp (−λm(ξ)) + higher order terms

where I (ξ) is the Fisher information and

m(ξ) =

∫ ξ

0

√

I (s)ds

is the distance defined by the metric tensor I (ξ) on the Riemannian
manifold.
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PC priors The student-t case

Example: Student-t with unit variance

Degrees of freedom (dof) parameter ν > 2.

This is a difficult case: It is hard to intuitively construct any
reasonable prior for ν at all.

It is hard to even think of dof.
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PC priors The student-t case

A useful but negative result

Result Let πν(ν) be a prior for ν > 2 where E (ν) <∞, then πd(0) = 0
and the prior overfits

Priors with finite expectation defines the flexible model to be different
from the base model!!!

Why? A finite expectation bounds the tail behaviour as ν → ∞
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PC priors The student-t case

The exp-prior with mean 5, 10, 20, converted to a prior for
the distance
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PC priors The student-t case

The uniform prior with upper= 20, 50, 100, converted to a
prior for the distance
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PC priors The student-t case
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PC priors The student-t case

Experience with the PC prior

Robust wrt prior settings and true value of ν

Excellent learning properties!

Behave like we want it to do!
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PC priors The precision of a Gaussian

The precision of a Gaussian

PC prior for the precision κ when κ = ∞ defines the base model

“random effects”/iid-model

The smoothing parameter in spline models

etc...

Result Let πκ(ν) be a prior for κ > 0 where E (κ) <∞, then πd(0) = 0
and the prior overfits.
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PC priors The precision of a Gaussian

The precision case (II)

Analytic result in this case (type-2 Gumbel)

π(κ) =
θ

2
κ−3/2 exp

(

−θ/√κ
)

, E(κ) = ∞,

Prob(σ > u) = α gives

θ = − ln(α)

u

Alternative interpretation

π(σ) = λ exp(−λσ)
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PC priors The precision of a Gaussian

Comparison with a similar Gamma-prior
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PC priors The precision of a Gaussian

Comparison with a similar Gamma-prior
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Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 38 / 60



PC priors The precision of a Gaussian

Experience

As for ν in the Student-t
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PC priors The precision of a Gaussian

Student-t case revisited

PC prior for the dof ν

PC prior for precision κ

This is OK as the parameters are almost orthogonal
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PC priors Correlation: AR(1)

The AR(1) case

xt = ρxt−1 + ǫt

Parameterise using

Lag-1 correlation ρ

Marginal precision

Base model:

ρ = 0 which is no dependence in time

ρ = 1 which is no change in time
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PC priors Correlation: AR(1)

Base model ρ = 0
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PC priors Correlation: AR(1)

Base model ρ = 0
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PC priors Correlation: AR(1)

Base model ρ = 0
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PC priors Correlation: AR(1)

Base model ρ = 1
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PC priors Correlation: AR(1)

Cox proportional hazard model with time dependent frailty

Hazard for individual i

hi (t, z) = hbaseline(t) exp
(

z
T

i β + u(t, i)
)

Frailty
u(t, i) ∼ AR(1)(t)

and replicated in i
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PC priors Correlation: AR(1)

Prior details...

Baseline hazard: RW1(κ) with PC prior on κ (stdev ≈ 0.15).

Time dependent frailty: AR(1) model with

PC prior on marginal precision (stdev ≈ 0.3).
PC prior for ρ. Base model ρ = 1 and Prob(ρ > 1/2) = 0.75
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PC priors Correlation: AR(1)

Results: survival::cgd

Data are from a placebo controlled trial of gamma interferon in
chronic granulotomous disease (CGD).

Uses the complete data on time to first serious infection
observed through end of study for each patient, which includes
the initial serious infections observed through the 7/15/89
interim analysis data cutoff, plus the residual data on occurrence
of initial serious infections between the interim analysis cutoff
and the final blinded study visit for each patient.
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PC priors Correlation: AR(1)

R-code (I)

formula <- inla.surv(time, status) ~ 1 +

treat + inherit2 + age + height + weight +

propylac + sex + region +

f(baseline.hazard.idx, model = "ar1", replicate = id,

hyper = list(

prec = list(

prior = "pc.prec",

param = c(u.frailty, a.frailty)),

rho = list(

prior = "pc.rho1",

param = c(upper.rho, alpha.rho))))

Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 47 / 60



PC priors Correlation: AR(1)

R-code (II)

result <- inla(formula,

family = "coxph",

data = cgd,

control.hazard = list(

model = "rw1",

n.intervals = 25,

scale.model = TRUE,

hyper = list(

prec = list(

prior = "pc.prec",

param = c(u.bh, a.bh)))))
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PC priors Correlation: AR(1)

Results

Lag-one correlation:

Log posterior
(solid)

Log prior (dashed)
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PC priors Correlation: AR(1)

Results

Log baseline hazard:

Mean (solid)
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PC priors Correlation: AR(1)

Results

Posterior for precision

for the log baseline

hazard
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PC priors Correlation: AR(1)

Summary of results

No sign of any time-dependent baseline hazard. This is somewhat contrary
to a previous study
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PC priors Disease mapping

Disease mapping: The BYM-model

Data yi ∼ Poisson(Eiexp(ηi ))

Log-relative risk ηi = ui + vi

Structured/spatial component u

Unstructured component v

Precisions κu and κv

Common to use independent
Gamma-priors

Confusion about priors in this
case: spatial model is not scaled

 

−0.63

−0.37

−0.1

0.17

0.44

0.71

0.98
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Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 51 / 60



PC priors Disease mapping

Disease mapping: The BYM-model

Data yi ∼ Poisson(Eiexp(ηi ))

Log-relative risk ηi = ui + vi

Structured/spatial component u

Unstructured component v

Precisions κu and κv

Common to use independent
Gamma-priors

Confusion about priors in this
case: spatial model is not scaled

 

−0.63

−0.37

−0.1

0.17

0.44

0.71

0.98
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PC priors Disease mapping

Disease mapping (II)

Base model = 0 → iid → dependence = more flexible model

Rewrite the model as

η =
1
√
τ

(

√

1− γv∗ +
√
γu∗

)

where ·∗ is a unit-variance standardised model.

Marginal precisions τ .

γ gives it interpretation: independence (γ = 0), maximal dependence
(γ = 1)

(almost) orthogonal parameters, use the PC priors for τ and γ
separately.
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PC priors Disease mapping

Sardinia-example
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PC priors Disease mapping

Sardinia-example
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PC priors Disease mapping

Germany-example
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PC priors Disease mapping

Germany-example
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PC priors Disease mapping

Germany-example
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PC priors Disease mapping

Germany-example
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PC priors The multivariate case

Multivariate cases

The general multivariate case is harder, due to the

many(-parameters) −→ one(-distance)

problem

With some (serious) skills, we can work out the PC prior for

General covariance matrix (base model Σ0)
General correlation matrix (base model I + linear transform)
Toeplitz correlation matrix (AR(p), base model I )
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PC priors The multivariate case

Prior marginal for a 3× 3 correlation matrix
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PC priors The multivariate case

AR(4) model

xt = ψ1xt−1 + ψ2xt−2 + ψ3xt−3 + ψ4xt−4 + ǫt
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PC priors The multivariate case

Samples from the PC prior for the AR(4) model

ψ1
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PC priors The multivariate case

PC prior marginal for ψ1 in an AR(4) model
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PC priors Discussion

Discussion: PC priors

The new principled constructive approach to construct priors seems
very promising, we are all very excited!

Easy and very natural interpretation + a well defined shrinkage.

We can chose the degree of “informativeness”.

Finally, I know what I’m doing wrt priors!!!

Exciting extentions will grow out this (not discussed)

Not all cases are easy...

A lot of work to integrate this into R-INLA

I belive this approach has a great future
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Håvard Rue (hrue@math.ntnu.no) PC priors March 27, 2014 60 / 60



PC priors Discussion

Discussion: PC priors

The new principled constructive approach to construct priors seems
very promising, we are all very excited!

Easy and very natural interpretation + a well defined shrinkage.

We can chose the degree of “informativeness”.

Finally, I know what I’m doing wrt priors!!!

Exciting extentions will grow out this (not discussed)

Not all cases are easy...

A lot of work to integrate this into R-INLA

I belive this approach has a great future
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