Resampling methods for randomly censored survival data

Markus Pauly

Lehrstuhl für Mathematische Statistik und Wahrscheinlichkeitstheorie Mathematisches Institut Heinrich-Heine-Universität Düsseldorf

Wien, 5 June 2014

Thanks to

- J. Beyersmann (Ulm)
- M. Brendel (Boehringer Ingelheim, Biberach)
- D. Dobler (Düsseldorf)
- A. Janssen (Düsseldorf)
- C.-D. Mayer (BioSS, Aberdeen)
- S. di Termini (Freiburg)

Outline

2 Classical tests

4 Simulations and Data Analysis

- Typcial study in medicine: 30-40 patients
- \rightarrow Sample sizes are only sufficient if efficiently analyzed!
 - Problems in practice
 - Incompleteness of observations;
 - e.g. right-censored data
 - Observed are 2-types of data
 - Complete observations, so called "survival times"
 - Incomplete observations; last observed survival time or drop out of study for other reasons

Censoring

Source: Janssen

- Typcial study in medicine: 30-40 patients
- \rightarrow Sample sizes are only sufficient if efficiently analyzed!
 - Problems in practice
 - Incompleteness of observations;
 - e.g. right-censored data
 - Observed are 2-types of data
 - Complete observations, so called "survival times"
 - Incomplete observations; last observed survival time or drop out of study for other reasons
 - Example ("kidney data"): Infection times in two groups of dialysis patients

Different catheterization procedures: percutaneous and surgical placements

Figure 1. Technical considerations (see Text for details). (A) The lip of a 6-inch, 14-gauge anglicoatheter is dulled (insert), and the catheter is used to enter the perifloneal carify. (B) The perifoneaccepic guide, precanvalued with a 7 French variation catheter (altor), is advanced over a flexible guidewrise. (C) Perifoneaccepic visualization of the perifloneal cavity.

Source: Klein/Moeschberger

Markus Pauly (HHU Düsseldorf)

Infection times of dialysis patients

TABLE 1.2

Times to infection (in months) of kidney dialysis patients with different catheterization procedures

Surgically Placed Catheter

Infection Times: 1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5, 26.5 Censored Observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7 5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5

Percutaneous Placed Catheter

- $T \ge 0$ survival time
- S(t) = P(T > t) survival function with ν -density f
- $\Lambda(t) = \int_0^t f(t)/S(t-)d\nu(t)$ cumulative hazard function
- $\lambda = f/S$ hazard rate
- Interpretation (for smooth f)

 $P(T \in (t, t + \epsilon] | T \ge t) \approx \epsilon \lambda(t).$

- Random Censoring by C ~ G;
- C and T independent
- We only observe $X := \min(T, C)$ and $\Delta = \mathbf{1}\{T \leq C\}$
- Estimator for *S* in this case:
- \Rightarrow Kaplan-Meier estimator \hat{S}
 - Estimator for Λ:
- \Rightarrow Nelson-Aalen estimator $\hat{\Lambda}$

"Easiest" case:

- Let $(T_i)_i$ be i.i.d. discrete r.v.s; indep. from $(C_i)_i$ (also i.i.d.)
- Define (e.g. failure rates in actuarial sciences)¹

$$r(t) = P(T_1 = t | T_1 \ge t) = \frac{P(T_1 = t)}{P(T_1 \ge t)}$$

• Theorem:

$$\Lambda(t) = \Lambda_{\mathcal{T}}(t) = \sum_{0 \le s \le t} r(s) \text{ and } S(t) = S_{\mathcal{T}}(t) = \prod_{0 \le s \le t} (1 - r(s))$$

Kaplan-Meier and Nelson-Aalen estimators by plug-in:

$$\hat{r}(s) = rac{ ext{number of failures at time } s}{ ext{number under risk at } s-}$$

 $^{1}r(t) = 0$ for $P(T_{1} \ge t) = 0$

4-4

In counting process notation:

Define counting processes

$$N(t) = \sum_{i=1}^{n} \mathbf{1}\{X_i \le t, \Delta_i = 1\}, \ Y(t) = \sum_{i=1}^{n} \mathbf{1}\{X_i \ge t\}$$

•
$$\Delta N(t) = N(t) - N(t-)$$

Nelson-Aalen and Kaplan-Meier are given by

$$\hat{\Lambda}(t) = \sum_{0 \le s \le t} \frac{\Delta N(s)}{Y(s)} \text{ and } \hat{S}(t) = \prod_{0 \le s \le t} \left(1 - \frac{\Delta N(S)}{Y(s)}\right)$$

- Uncensored case: $1 \hat{S} = e.d.f.$
- Properties (under reg): Consistent and asymptotic Gaussian

Plots of Kaplan Meier estimators for the two sample kidney data

solid line = percutaneous

Markus Pauly (HHU Düsseldorf)

- Here: Randomly right censored data
- Patients that survive without infection are censored
- Standard model: Cox proportional hazard model²

 $^{2}\lambda_{\vartheta}(t) = e^{\vartheta}\lambda_{0}(t)$

Markus Pauly (HHU Düsseldorf)

Questions:

- Procedures significant different?
- Is one survival time (or hazard rate) stochastic greater?

Answer of classical log-rank test (for proportional hazards)

- p-value > 0.05
- Reason: time depending hazard ratios!
- Log rank test has problems detecting them!

Classical two sample problem

- Observe independent random variables X_i := min(T_i, C_i) and Δ_i = 1{T_i ≤ C_i} for 1 ≤ i ≤ n within two groups
 T_i^{*i.i.d.*} F₁, 1 ≤ i ≤ n₁, T_{n1+i}^{*i.i.d.*} F₂, 1 ≤ i ≤ n₂, (continuous)
 C_i^{*i.i.d.*} = G₁, 1 ≤ i ≤ n₁, C_{n1+i}^{*i.i.d.*} G₂, 1 ≤ i ≤ n₂. (continuous)
- Null hypothesis

$$H_0: \{T_1, \ldots, T_n \text{ i.i.d.}\} = \{F_1 = F_2\} = \{\Lambda_1 = \Lambda_2\}$$

against 2-sided or 1-sided alternatives

$$H_1^0:\{\Lambda_1\neq\Lambda_2\},\quad H_1^1:\{\lambda_1\gtrsim\lambda_2\},\ H_1^2:\{\Lambda_1\gtrsim\Lambda_2\}.$$

• Unknown nuisance param: G_1, G_2 and under the null $\mathcal{L}(T_1)$

Class of weighted logrank test statistics

- $w_n(t) := \tilde{w}(\hat{F}_n(t-)), \ \hat{F}_n$ Kaplan Meier estimator of the pooled sample
- $\tilde{w}: [0,1] \rightarrow \mathbb{R}$ weight function
- Test statistics (ABGK 1993) are $\frac{T_n(w_n)}{\sigma(w_n)}$ or $\frac{T_n(w_n)}{\sigma(w_n)} \mathbf{1}\{T_n(w_n) > 0\}$ with

$$T_n(w_n) = \sqrt{\frac{n}{n_1 n_2}} \int_0^\infty w_n(s) \frac{Y_1(s) Y_2(s)}{Y(s)} \left\{ d\hat{\lambda}_{1n}(s) - d\hat{\lambda}_{2n}(s) \right\}$$

- $\sigma^2(w_n)$ adequate variance estimator³
 - $\tilde{w} = 1$ for classical logrank statistic
 - $\tilde{w}(u) = 1 u$ for Prentice-Wilcoxon statistic

³Gill (1980):
$$\sigma^2(w_n) = \frac{n}{n_1 n_2} \int_0^\infty w_n^2 \frac{Y_1 Y_2}{Y} d\hat{\Lambda}_n$$

Remarks

- Intuitively: \tilde{w} determines power behaviour
- Example: Prentice-Wilcoxon with decreasing $\tilde{w}(u) = 1 u$
- \Rightarrow More weight on early times!
- \Rightarrow Should have good power against early hazard differences!
 - In comparison: Classical logrank: Equal weight on all time points!
 - Now: ARE comparison via reparametrization!

Local parametrization (scores)

Classical approach:

- classical likelihood based approach
- parametric path ϑ → P_ϑ in a nonparametric model P of distributions
- score functions $rac{d}{dartheta}\lograc{dP_{artheta}}{d\mu}=g(artheta)$
- ⇒ score test

Local parametrization (hazards)

- approach based on hazards:
- $F = 1 S \leftrightarrow \Lambda$ cumulative hazard function
- Now: hazard rates $\lambda(u) = \frac{f(u)}{S(u)}$ rather than densities f(u)
- parameters: relative risk = hazard rate ratio
- represented by $\gamma : [0, 1] \rightarrow \mathbb{R}$ under ass

$$\lim_{\vartheta\to 0}\frac{1}{\vartheta}(\frac{d\Lambda_{\vartheta}}{d\Lambda_0}-1)=\gamma\circ F_0.$$

• Rem: Holds for $(\vartheta \ll 1)$

$$\Lambda_artheta(t):=\int_0^t (1+artheta\gamma\circ {\pmb F})d\Lambda_0, \quad \Lambda_0 ext{ baseline hazard}.$$

Examples of semiparametric models

- Consider model given by $\gamma \circ F_0$
- Recall $w_n(t) := \tilde{w}(\widehat{F}_n(t-)), \ \tilde{w} : [0,1] \to \mathbb{R}$ weight function
- Janssen (1991) and Neuhaus (2000): ARE of T_n(w_n) 1{T_n(w_n) > 0} for local alternatives⁴ in direction of γ ∘ F₀ given by

$$\mathsf{ARE} = \frac{\langle \tilde{\boldsymbol{w}}, \gamma \rangle_{\mu}^{2}}{\|\tilde{\boldsymbol{w}}\|_{\mu}^{2} \|\gamma\|_{\mu}^{2}} = \cos^{2}(\beta)$$

- $\langle \tilde{w}, \gamma \rangle_{\mu} = \int_{0}^{1} \tilde{w} \gamma d\mu$, β angle between \tilde{w} and γ
- μ measure on \mathbb{R}_+ depending on G_i, F_0 and $\lim_n \frac{n_1}{n}$
- \Rightarrow Bad ARE for some directions $\gamma!$

 $^{4}\mathcal{L}(T_{1},\ldots,T_{n})=\bigotimes_{i}P_{c_{n}}$

Markus Pauly (HHU Düsseldorf)

On the ARE

• ARE (ψ): asymptotic relative efficiency of a test ψ

$$\mathsf{ARE}(\psi) ~\approx~ rac{N_{opt}}{N(\psi)}$$
 (in the limit)

- $N(\psi) = No.$ of needed obs. for ψ to achieve a given power
- N_{opt} = Minimum no. of needed obs.
- Pitman's interpretation: 100(1 ARE)% of observations are wasted by using ψ
- \Rightarrow Use of the full data information only for ARE = 1!

- Example: ARE(ψ)=¹/₂ ⇒ twice as many obs. are necessary for ψ
- Clearly: Optimal procedures depend on the model
- which is in general unknown!
- Idea: "Estimate" the model! (locally)

Closer look to weighted logrank statistics

• Consider emp. subspace $V = \{\beta w_n : \beta \in \mathbb{R}\}$ and cone $V_1^+ = \{\beta w_n : \beta \in [0, \infty)\}$, generated by w_n .

Lemma (Brendel et al., 2014)

We have

$$\frac{T_n(w_n)}{\sigma(w_n)} = \left\| \Pi_{V_1}(\hat{\gamma}_n) \right\|_{\hat{\mu}_n}; \frac{T_n(w_n)}{\sigma(w_n)} \mathbf{1} \{ T_n(w_n) > \mathbf{0} \} = \left\| \Pi_{V_1^+}(\hat{\gamma}_n) \right\|_{\hat{\mu}_n},$$

where

μ̂_n ≈ emp. estimator of μ, γ̂_n = emp. estimator of γ ∘ F₀ (locally ^a)
 Π_{V₁⁽⁺⁾} = L₂(μ̂_n)-projection into V₁⁽⁺⁾

^{*a*}all estimates depend on NA (and Y); e.g. $\hat{\gamma}_n \approx \sqrt{\frac{n_1 n_2}{n}} (d\hat{\Lambda}_1 - d\hat{\Lambda}_2)/d\hat{\Lambda}_n$

Interpretation

- $\hat{\gamma}_n$ estimates the $\gamma \circ F_0$ -model (locally)
- Logrank stat measures distance of its projection into space/cone generated by w_n
- Idea: Use larger spaces/cones to cover larger classes of alternatives!

Projection approach

• Idea: Scientist chooses "relevant" weights⁵

$$w_{in}(\cdot) := \tilde{w}_i(\widehat{F}_n(\cdot-)) \quad 1 \leq i \leq r,$$

- e.g. to discover differences of the relative risk for
 - proportional hazards (constant over time)
 - early survival times
 - central survival times
 - late survival times.
- These generate larger linear space/cone:

$$V := \left\{ \sum_{i=1}^r eta_i \; w_{in}, \; eta_i \in \mathbb{R},
ight\} \; ext{and} \; V^+ := \left\{ \sum_{i=1}^r eta_i \; w_{in}, \; eta_i \ge 0,
ight\}$$

 ${}^{5}\widehat{F}_{n}$ Kaplan Meier estimator of the pooled sample

Projection statistics

As in the one-dimensional case consider test statistics

$$S_{n0} := \| \Pi_V(\hat{\gamma}_n) \|_{\hat{\mu}_n}^2$$
 and $S_{n1} := \| \Pi_{V^+}(\hat{\gamma}_n) \|_{\hat{\mu}_n}^2$

Theorem (Brendel et al., 2014)

Under regularity conditions we have convergence in distribution under the null

$$\|\Pi_V(\hat{\gamma}_n)\|_{\hat{\mu}_n}^2 \stackrel{d}{\longrightarrow} \chi^2_{\operatorname{rank}(\Sigma)} \text{ and } \|\Pi_{V^+}(\hat{\gamma}_n)\|_{\hat{\mu}_n}^2 \stackrel{d}{\longrightarrow} F_{\Sigma}$$

where F_{Σ} is continuous and $\Sigma = (\langle \tilde{w}_i, \tilde{w}_j \rangle_{\mu})_{i,j \leq r}$.

Projection-type tests

- Estimate Σ consistently by $\widehat{\Sigma}$
- Results in tests

$$\phi_{0n} = \mathbf{1}\{\|\Pi_{V}(\hat{\gamma}_{n})\|_{\hat{\mu}_{n}}^{2} - \chi_{\text{rank}(\widehat{\Sigma}), 1-\alpha}^{2} > 0\},\$$

$$\phi_{1n} = \mathbf{1}\{\|\Pi_{V^{+}}(\hat{\gamma}_{n})\|_{\hat{\mu}_{n}}^{2} - F_{\widehat{\Sigma}}^{-1}(1-\alpha) > 0\},\$$

Theorem (Brendel et al., 2014)

Both tests are

- asymptotical level α (even for $G_1 \neq G_2$) and
- consistent for fixed alternatives if at least one of their associated weighted logrank tests is consistent.

⇒ Posses broader power functions!

Projection-type permutation tests

- Further modification: Use permutation version of the tests!
- Advantage: Finitely exact under $\{F_1 = F_2, G_1 = G_2\}$.

• For
$$c_{n0} = \chi^2_{\operatorname{rank}(\widehat{\Sigma}), 1-\alpha}$$
 and $c_{n1} = F_{\widehat{\Sigma}}^{-1}(1-\alpha)$:

$$\phi_{nk}^* := \mathbf{1} \{ S_{nk} - c_{nk} > c_{nk}^* \} + k_n^* \mathbf{1} \{ S_{nk} - c_{nk} = c_{nk}^* \} \quad k = 0, 1,$$

with

- $c_{nk}^* = \text{cond} (1 \alpha)$ -quantile of the perm dist of $S_{nk} c_{nk}$
- Role of $\tilde{S}_{nk} = S_{nk} c_{nk}(\hat{\Sigma})$: Studentized-type statistics!

Properties

Theorem (Brendel et al., 2014)

The permutation tests are asymptotically equivalent to their corresponding projection tests, i.e.

$$\lim_{n\to\infty} E_{H_0}(|\phi_{0,n}-\phi_{0,n}^*|)=0,$$

$$\lim_{n\to\infty} E_{H_0}(|\phi_{1,n}-\phi_{1,n}^*|)=0.$$

- Implies same power for contigouos alternatives!
- More math. details (as asymptotic admissability) in Brendel, Janssen, Mayer & Pauly (2014, SJS).

Set-up

1-2

- Group I: $T_1, ..., T_{n_1}$ i.i.d. $F_0(x) = (1 \exp(-x))\mathbf{1}_{(0,\infty)}(x)$
- For group II: 3 different scenarios; given by directions $\gamma_i = \tilde{w}_i$

$$\tilde{w}_1(u) = 1, \quad \tilde{w}_2(u) = 1 - 2u, \quad \tilde{w}_3(u) = u(1-u), \quad 0 \le u \le 1,$$

corresponding to proportional, crossing and central hazards
Group II: *T_{n1+1},..., T_n* i.i.d. with

$$\Lambda_{\vartheta,i}(t) = \int_0^t 1 + \vartheta \tilde{w}_i(F_0(x)) dx$$

Set-up

• Censoring: $C_i \overset{u.i.v.}{\sim} Exp(0.2)$ in both groups.

Simulated power of

- 2-sided weighted logrank test in $T_n(\tilde{w}_i)$ (optimal for direction \tilde{w}_i)
- Projection test $\phi_{0,n}$ (covering all 3 directions.)

for

- $n_1 = n_2 = 50$, $\alpha = 5\%$ and different values of ϑ
- Realizations of *F*_{ϑ,i} by von Neuman's "Acceptance-Rejection"-procedure

Results for proportional hazards

Proportional Hazards

Results for crossing hazards

Crossing Hazards

theta

Resultats for central hazards

Central Hazards

Analysis of the data example

Analysis of the data example

Choose from class of weights $\tilde{w}_{r,g}(x) = x^r(1-x)^g$, $0 \le x \le 1$

Fleming/Harrington (1991)

Markus Pauly (HHU Düsseldorf)

Results

Kidney Data

test with weight	<i>p</i> -value
(r,g) = (1,5)	0.0203
(r,g) = (2,4)	0.0089
(r,g) = (4,2)	0.0012
(r,g) = (5,1)	0.0084
(r,g) = (0,0)	0.0549
(logrank test)	
projection test $\phi_{1,n}^*$	0.02

One more example: Survival times of patients with tongue cancer Differences:

- Group 1: euploide cells
- Group 2: aneuploide cells (i.e. cells with abnormal number of chromosomes)

Question: Can aneuploide cells be used as a prognostic parameter for survival time?

Source: Klein/Moeschberger

Markus Pauly (HHU Düsseldorf)

Results

Tongue Data

Je
414
031
610
548
526
9

Competing Risks Model (easiest case)

- Often: More than one event of interest!
- $(X_t)_{t\geq 0}$ càdlàg, $X_t: \Omega \to \{0, 1, 2\}.$
- 0 = initial state, $P(X_0 = 0) = 1$,
- 1 and 2 absorbing states (competing events).

•
$$\overline{T} = \inf\{t > 0 \mid X_t \neq 0\}$$
 (event time)

$$\Rightarrow X_{\overline{T}} \in \{1,2\}$$
 (event)

Regulated by cause-specific hazard intensities $\alpha_i(t)$

$$\alpha_j(t) = \alpha_{0j}(t) = \lim_{\Delta \searrow 0} \frac{P(\overline{T} \in [t, t + \Delta), X_{\overline{T}} = j \mid \overline{T} \ge t)}{\Delta}, \ j = 1, 2.$$

Cumulative Incidence Functions

Aim: Statistical inference for CIFs

$$F_j(t) = P(\overline{T} \leq t, X_{\overline{T}} = j) = \int_0^t P(\overline{T} > u) \alpha_j(u) du, j = 1, 2,$$

- Study with $1 \le i \le n$ independent patients,
- $(X_t^{(i)})_{t\geq 0}$ independently right-censored and left-truncated⁶
- Counting processes

•
$$Y(t) = \sum_{i=1}^{n} Y_i(t) =$$
 No. under risk at $t-$

- $N_j(t) = \sum_{i=1}^n N_{j,i}(t)$ = Observed *j*-events in [0, *t*]
- Aalen-Johansen estimator for the CIFs:

$$\widehat{F}_j(t) = \int_0^t \frac{\widehat{P}(\overline{T} > u) dN_j(u)}{Y(u)}, j = 1, 2.$$

Remark:

$$M_{j,i}(s) = N_{j,i}(s) - \int_0^s Y_i(u)\alpha_j(u) \, du$$

are local L2-martingales!

⁶can be relaxed as explained in Andersen et al. (1993, Chapter III); only multiplicative intensity model needed

Markus Pauly (HHU Düsseldorf)

Martingale Representation

Let $t < \tau$. Under

$$\sup_{u\in[0,t]}|Y(u)/n-y(u)|\stackrel{p}{\longrightarrow} 0$$

with $\inf_{u} y(u) > 0$, it follows

$$W_{n}(t) = n^{1/2} \{\widehat{F}_{1}(t) - F_{1}(t)\}$$

= $n^{1/2} \sum_{i=1}^{n} \left\{ \int_{0}^{t} \frac{S_{2}(u) dM_{1,i}(u)}{Y(u)} + \int_{0}^{t} \frac{F_{1}(u) dM_{2,i}(u)}{Y(u)} -F_{1}(t) \int_{0}^{t} \frac{d(M_{1,i} + M_{2,i})(u)}{Y(u)} \right\} + o_{P}(1)$

for $t < \tau$, where $S_2 = 1 - F_2$, see Andersen et al. (1993).

• Consequence: $W_n \xrightarrow{\mathcal{D}} U$ on D[0, t] by Rebolledo

- Problems
 - Covariance function ζ of the Gaussian process U unknown
 - and lacks independent increments
- Solution: Apply 'Resampling version' of *W_n*
- \Rightarrow 1. Possibility: Wild Bootstrap:
 - Concrete: $G_{j,i}$, $1 \le i \le n$, $1 \le j \le 2$, i.i.d. and $\perp \perp$ data with $(\mu, \sigma^2) = (0, 1)$. Approx $\mathcal{L}(W_n)$ by cond dist of

$$\begin{aligned} \widehat{W}_{n}(t) &= n^{1/2} \sum_{i=1}^{n} \bigg\{ \int_{0}^{t} \frac{\widehat{S}_{2}(u) G_{1,i} dN_{1,i}(u)}{Y(u)} + \int_{0}^{t} \frac{\widehat{F}_{1}(u) G_{2,i} dN_{2,i}(u)}{Y(u)} \\ &- \widehat{F}_{1}(t) \int_{0}^{t} \frac{G_{1,i} dN_{1,i}(u) + G_{2,i} dN_{2,i}(u)}{Y(u)} \bigg\}. \end{aligned}$$

• Lin's resampling technique as special case for $G_{j,i} \stackrel{i.i.d.}{\sim} N(0,1)$

CCLT for \widehat{W}_n

Theorem (Beyersmann et al., 2013)

We have cond conv on D[0, t] given data

 $\widehat{W}_n \xrightarrow{\mathcal{D}} U$ in probability

- Results in various inference proc based on W_n and crit. values from \widehat{W}_n as
 - simultaneous CBs for F_i , see e.g. Beyersmann et al. (2013)
 - or differences of CIFs from 2 ind groups
 - tests for

in the 2-sample case, see Bajrounaite and Klein (2007, 2008) and later...

• Q: Can we also apply other resampling techniques, e.g. the classical or even weighted bootstrap?

Answers

- A1: Application of Efron's or even the weighted bootstrap depends on the inference problem!
- ⇒ Ex1: Testing for ordered CIFs in unpaired 2-sample problem works via studentization! (details in Dobler and Pauly, 2013)
- ⇒ Ex2: Testing for equality does not work in general! Reason: "Centering" and "too" complicated limit distribution (e.g., weighted χ^2).
 - A2: Yes, e.g. the Weird Bootstrap or the more general, data-dependent Wild Bootstrap (DDWB) Details:...

Rewrite

$$\begin{split} \widehat{W}_{n}(t) &= n^{1/2} \sum_{i=1}^{n} \left\{ G_{1,i} \int_{0}^{t} \frac{\widehat{S}_{2}(u) dN_{1,i}(u)}{Y(u)} + G_{2,i} \int_{0}^{t} \frac{\widehat{F}_{1}(u) dN_{2,i}(u)}{Y(u)} \right. \\ &\left. - \widehat{F}_{1}(t) \int_{0}^{t} G_{1,i} \frac{dN_{1,i}(u)}{Y(u)} + G_{2,i} \frac{dN_{2,i}(u)}{Y(u)} \right\} \\ &= \sqrt{2n} \sum_{i=1}^{2n} G_{2n,i} Z_{2n,i}(t). \end{split}$$

for i.i.d. $(G_{2n,i})_i$ with $(\mu, \sigma^2) = (0, 1)$.

DDWB-weights D_{2n,i} conditionally independent given Z

• DDWB vers of AJE:
$$\widehat{W}_n^D = \sqrt{2n} \sum_{i=1}^{2n} D_{2n,i} Z_{2n,i}$$
.

Theorem (Dobler and Pauly)

If the weights satisfy a cond Lindeberg ass (and some regularity conditions), then we have cond conv on D[0, t]

$$\widehat{W}_n^D \stackrel{\mathcal{D}}{\longrightarrow} U$$
 in probability.

Examples

- Lin's Resampling technique and
- the (independent) Wild Bootstrap.
- The Weird Bootstrap of Andersen et al. (1993) corresponds to independent weights (D_{2n,i})_{i≤2n} = ((D_{i,j})_{j=1,2})_{i≤n} with⁷

$$D_{i,j} = \Big(B\big(Y(\tilde{T}_i), J(\tilde{T}_i) / Y(\tilde{T}_i) \big) - 1 \Big).$$

⇒ Close in spirit to Wild Bootstrap with Poisson weights
 ● ...

 $^{7}\tilde{T}_{i} = \inf\{s \leq t : N_{i}(s) > 0\} \land t$, where $N_{i} = N_{1,i} + N_{2,i}$

Applications: 2-sample tests for CIFs

- 2 independent groups k = 1, 2, each with competing risks j = 1, 2.
- Null hypotheses ⁸: $H_{\leq}: \{F_1^{(1)} \leq_{st} F_1^{(2)}\}$ or $H_{=}: \{F_1^{(1)} = F_1^{(2)}\}$
- Typical test statistic: Functional of

$$W_{n_1n_2}(t) = \sqrt{\frac{n_1n_2}{n}} \{\widehat{F}_1^{(1)}(t) - \widehat{F}_1^{(2)}(t)\}$$

• Special case: $T_{1,n} = \int_{I} W_{n_1 n_2}(t) dt$ or $T_{2,n} = \int_{I} W_{n_1 n_2}^2(t) dt$

⁸on interval $I \subset [0, \tau)$

Markus Pauly (HHU Düsseldorf)

Applications: 2-sample tests for ordered CIFs

We have

$$\mathcal{T}_{1,n} = \int_I W_{n_1 n_2}(t) dt \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{T}_1 \sim \mathcal{N}(0, \sigma_{\zeta}^2), \, \sigma_{\zeta}^2 \, \mathrm{unknown^9}$$

- Solution: Direct resampling with DDWB or
- Resampling of a studentized version with

$$T_{1,stud} := T_{1,n}/V_{1,n} \stackrel{\mathcal{D}}{\longrightarrow} T_1/\sigma_{\zeta} \sim N(0,1)$$

 For the general weighted bootstrap (and also for the DDWB) it can be shown that

$$\widehat{T}^*_{1,\text{stud}} := \widehat{T}^*_{1,n} / \widehat{V}^*_{1,n} \overset{\mathcal{D}}{\longrightarrow} \textit{N}(0,1) \quad \text{ in probability.}$$

⇒ Gives plenty of consistent resampling tests for H_{\leq} . Example: Bootstrap or permutation test

 ${}^{9}\sigma_{\zeta}^{2}=\int_{I}\int_{I}\zeta(\boldsymbol{s},t)d\boldsymbol{s}dt$

Markus Pauly (HHU Düsseldorf)

Applications: 2-sample tests for equality of CIFs

We have

$$T_{2,n} = \int_{I} W_{n_1 n_2}^2(t) dt \stackrel{\mathcal{D}}{\longrightarrow} \sum_{j=1}^{\infty} \lambda_j Z_j^2$$

with $Z_j \stackrel{i.i.d.}{\sim} N(0, 1)$, λ_j unknown

• Solution: Direct resampling with DDWB works due to Theorem 4.

- Additional possibilities/extensions:
 - ► DDWB of standardized test statistic
 - $T_{2,n}^{stan} = (T_{2,n} \widehat{E}(T_{2,n})) / \widehat{SD}(T_{2,n}) \text{ works as well!}$
 - Other approximation techniques also!

 \Rightarrow Gives plenty of consistent tests for $H_{=}$.

Remarks and Outlook

- Done: Weighted Bootstrap and DDWB for the AJE in CR
- $\Rightarrow\,$ Generalizing the wild bootstrap and Lin's resampling technique
 - In addition:
 - Comparison of the different testing procedures (For $H_{\leq} \sqrt{)}$
 - DDWB for more complex Multi-State models (theory $\sqrt{)}$

▶ ...

Literature

Andersen, P.K., Borgan, O., Gill, R.D. & Keiding, N. (1993). *Statistical Models Based on Counting Processes*. Springer, New York.

Behnen, K. & Neuhaus, G. (1989). *Rank Tests with Estimated Scores and Their Application*. B.G. Teubner, Stuttgart.

Beyersmann, J., Di Termini, S. & Pauly, M. (2013). Weak convergence of the wild bootstrap for the Aalen-Johansen estimator of the cumulative incidence function of a competing risk. *Scand. J. Stat.* **40**, 387 - 402.

Brendel, M. & Janssen, A. & Mayer, C.-D. & Pauly, M. (2014). Weighted logrank permutation tests for randomly right censored life science data. *Scand. J. Stat.*, Early View.

Dobler, D. & Pauly, M. (2013). How to Bootstrap Aalen-Johansen Processes for Competing Risks? Handicaps, Solutions and Limitations. Submitted.

Ehm, W., Mammen, E. & Mueller, D.W. (1995). Power robustification of approximately linear tests. *J.A.S.A.* **90** 1025-1033.

Fleming, T.R. & Harrington, D.P. (1991). *Counting Processes and Survival Analysis*. Wiley, New York.

Literature

Janssen, A. & Mayer, C.-D. (2001). Conditional studentized survival tests for randomly censored models. *Scand.J.Stat.* **28**, 283-293.

Klein, J.P. & Moeschberger, M.L. (2003). *Survival analysis: Techniques for censored and truncated data.* Springer, New York.

Neuhaus, G. (1993). Conditional rank tests for the two-sample problem under random censorship. *Ann.Stat.* **21**, 1760-1779.

Neuhaus, G. (2000). A method of constructing rank tests in Survival Analysis. *J.Stat.Plan.Inf.* **91**, 481-497.

Pauly, M. (2011). Weighted resampling of martingale difference arrays with applications, *Electronic Journal of Statistics*, **5**, 41–52.

Strasser, H. and Weber, C. (1999). *The asymptotic theory of permutation statistics. Math. Methods Stat.* **8**, No. 2, 220-250.

Thank you for your attention!