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Operational Risk (introduced with Basel II (≤ BIS (2004)))

Definition (Operational risk)

Operational risk is defined as the risk of loss resulting from inade-

quate or failed internal processes, people and systems or from external

events. This definition includes legal risk, but excludes strategic and

reputational risk.

Examples (legal risk and strategic risk are difficult to measure)

people: fraud (internal, external), “fat finger trades”

systems: ATM, computer (hardware, software)

external events: Kobe earthquake (1995-01-17), bankruptcy of Barings

bank (1995-02-26), 9/11, hurricane Katrina (mortgage

default due to lost houses; credit or an OpRisk event?)

reputational risk: CDOs for UBS
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Stylized facts

data scarcity for companies internally and research (ORX, ORIC)

loss frequencies vary over time (also: reporting bias)

loss severities are heavy tailed, often infinite-mean

losses can be assigned to different business lines (bl; typically 8) or

event types (et; typically 7)

. . . and how we model them

database of 1387 publicly reported events since 1980 (with 950 losses)

loss frequency: non-homogeneous Poisson process

loss severities: EVT–POT approach (GPD)

. . . depending on 10 bl as covariates (and time!)

Goal: Compute Value-at-Risk (VaR) and CIs depending on covariates
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EVT based modeling approach

The classical POT approach
losses Xt′1

, . . . , Xt′
n′

iid∼ F , F̄ ∈ RV∞− 1
ξ

(F̄ = x
− 1
ξL, lim

x→∞
L(tx)
L(x) = 1)

Xt1 , . . . , Xtn exceedances over u (high enough)

excesses Yti = Xti − u > 0, i ∈ {1, . . . , n}

Theorem (Leadbetter (1991))

1) The number of exceedances Nt approximately follows a Poisson

process with intensity λ, that is, Nt ∼ Poi(Λ(t)) with Λ(t) = λt.
2) The excesses Yt1 , . . . , YtNt over u approximately follow (indepen-

dently of Nt) a GPD(ξ, β) for ξ ∈ R, β > 0 with

Gξ,β(x) =

1−
(
1 + ξx/β

)−1/ξ
, if ξ 6= 0,

1− exp(−x/β), if ξ = 0.
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If ξ > 0 (most OpRisk loss models), the approximate likelihood is

L(λ, ξ, β;Y ) = (λT )n

n! exp(−λT )
n∏
i=1

gξ,β(Yti).

Therefore, the log-likelihood splits into the two parts

`(λ, ξ, β;Y ) = `(λ;Y ) + `(ξ, β;Y ),

where

`(λ;Y ) = −λT + n log(λ) + log(Tn/n!),

`(ξ, β;Y ) =
n∑
i=1

log gξ,β(Yti).

⇒ Maximization can thus be carried out separately for 1) and 2).
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A dynamic/smoothing POT approach

Homogeneity assumptions on λ, ξ, β are often not realistic.

Assume we have observed vectors zi = (ti, xi, yti), i ∈ {1, . . . , n}
(exceedance time, covariate, excess over u)

The model

1) Number of exceedances: a non-homogeneous Poisson process with

λ = λ(x, t) = exp(fλ(x) + hλ(t))

where fλ(x) is a constant for each covariate factor x, hλ : [0, T ]→ R
a natural cubic spline. Rewriting leads to

log λ = fλ(x) + hλ(t),

a generalized additive model (GAM) with logarithmic link function

⇒ Estimate fλ and hλ with mgcv::gam(..., family=poisson).
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2) Excess distribution: Similarly, but for convergence it is crucial that ξ

and β are orthogonal in the Fisher information metric

⇒ Replace β by ν = log((1 + ξ)β) (see Cox and Reid (1987)).

The reparametrized log-likelihood is

`r(ξ, ν;Y ) = `

(
ξ,

exp(ν)
1 + ξ

;Y
)
.

Assume that ξ and ν are of the form

ξ = ξ(x, t) = fξ(x) + hξ(t),

ν = ν(x, t) = fν(x) + hν(t),

Simultaneously estimating ξ and ν is not possible with mgcv::gam.

What we in fact have are vectors ξ and ν in Rn with ith components:

ξi = fξ(xi) + hξ(ti),
νi = fν(xi) + hν(ti).
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To obtain reasonably smooth functions hξ, hν , we use a penalized

log-likelihood approach. The penalized loglikelihood is

`p(fξ, hξ, fν , hν ; z·) = `r(ξ,ν;y)− γξ
∫ T

0
h′′ξ (t)2 dt− γν

∫ T

0
h′′ν(t)2 dt

where γξ, γν ≥ 0 are smoothing parameters (larger⇒ smoother curves).

Let 0 = s0 < s1 < · · · < sm < sm+1 = T denote the (ordered) distinct

values among {t1, . . . , tn}. For a natural cubic spline h,∫ T

0
h′′(t)2 dt = h>Kh

where h = (h(s1), . . . , h(sm)) and K is a symmetric m×m matrix of

rank m− 2 only depending on the knots s1, . . . , sm.

⇒ `p(fξ, hξ, fν , hν ; z·) = `r(ξ,ν;y)−γξh>ξ Khξ−γνh>ν Khν with

`r(ξ,ν;y) =
n∑
i=1

`

(
ξi,

exp(νi)
1 + ξi

; yti
)
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The backfitting algorithm for estimating (ξ, β)
Algorithm (Updater; gamGPDfitUp())

Let ξ(k) = (ξ(k)
1 , . . . , ξ

(k)
n ) and ν(k) = (ν(k)

1 , . . . , ν
(k)
n ) be given.

1) Setup: Specify formulas xi.formula and nu.formula for gam()

for fitting ξi = fξ(xi) + hξ(ti) and νi = fν(xi) + hν(ti).

2) Update ξ(k):

2.1) Newton step: Compute (componentwise)

ξNewton = ξ(k) −
`rξ(ξ(k),ν(k);y)
`rξξ(ξ(k),ν(k);y)

.

2.2) Fitting: Compute ξ(k+1) via

fitted(gam(ξNewton~xi.formula,. . . ,weights=−`rξξ)).
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3) Given ξ(k+1), update ν(k):

3.1) Newton step: Compute (componentwise)

νNewton = ν(k) − `rν(ξ(k+1),ν(k);y)
`rνν(ξ(k+1),ν(k);y)

.

3.2) Fitting: Compute ν(k+1) via

fitted(gam(νNewton~nu.formula,. . . ,weights=−`rνν)).

gamGPDfit() iterates over this algorithm until convergence

gamGPDboot() additionally computes (post-blackend) bootstrapped

confidence intervals

For more details, use demo(game)
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Descriptive analysis of the loss data

1387 OpRisk events collected from public media since 1980

(for the loss severity, we use the 950 reported losses)

For each event, the following information is given:

used: business line, event type, year of the event, (gross) loss in

GBP (31.51% missing)

unused: reference number, organization affected, country of head of-

fice, country of event, type of insurance, net loss (97.55%

missing), regulator involved, source (newspapers, databases,

press releases, webpages), loss description

Not available is the company size.

Most events happened in USA (44.34%), UK (26.03%), Japan (5.05%),

Australia (2.31%), and India (2.02%); China?

63.95% were (partially) insured; insurance cover unclear.
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Number of available losses and total available loss aggregated per year

over time (left). For each business line (right).
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Increasing frequency probably due to reporting bias.

Frequency depends on the business line.

⇒ Both features our model can take into account.
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⇒ Losses are not identically distributed.

We will take this into account by in-

terpreting business lines and time as

covariates.

⇒ Data pooling
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⇒ Pooling is also suggested by the Basel matrix/vector:

IF EF EPWS CPBP DPA BDSF EDPM



2 1 0 12 0 0 3 AS

12 3 4 55 0 0 6 AM

60 54 4 77 1 0 11 CB

12 4 0 23 0 0 2 CF

13 2 2 32 0 0 4 I

10 3 0 38 2 0 9 PS

3 0 0 4 0 2 3 RBa

71 62 5 73 1 0 14 RBr

13 3 2 28 0 1 2 TS

60 2 20 107 0 3 10 UBL





18 AS

80 AM

207 CB

41 CF

53 I

62 PS

12 RBa

226 RBr

49 TS

202 UBL

Note: This is aggregated since 1980!
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Dynamic POT analysis
Goal: Use all losses from 1980 to 2013 which exceed the threshold u

of 11.02 M GBP (median) and compute the risk measure VaR0.999
including 95% bootstrapped confidence intervals.

Graphical GoF test for the GPD model: If the model is correct,

Ri = − log(1−Gξ̂i,β̂i(Yti))
approx.∼ Exp(1), i ∈ {1, . . . , n}

⇒ check with a Q-Q plot ⇒ threshold choice

Given λ̂, ξ̂, β̂ (evaluated at xi’s and ti’s), an estimate of VaRα is

V̂aRα = u+ β̂

ξ̂

((1− α
λ̂

)−ξ̂
− 1

)
Confidence intervals can be constructed with the post-blackend boot-

strap of Chavez-Demoulin and Davison (2005).
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Loss frequency

We fit the following models for λ using gam(..., family=poisson):

log λ(x, t) = cλ (constant/classical model)

log λ(x, t) = fλ(x) (bl as covariate)

log λ(x, t) = fλ(x) + cλt (bl and time [parametrically] as covariate)

Likelihood-ratio tests ⇒ dependence on bl and time.

We then compare log λ(x, t) = fλ(x) + cλt with models of the form

log λ(x, t) = fλ(x) + h
(Df)
λ (t), Df ∈ {1, . . . , 8} (non-parametric)

AIC ⇒ selected model: log λ̂(x, t) = f̂λ(x) + ĥ
(3)
λ (t)

The selected model shows that considering a homogeneous Poisson

process for the occurrence of losses (classical approach) is not adequate.
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Loss severity

We fit the following models for (ξ, ν) using gamGPDfit():

ξ(x, t) = cξ, ν(x, t) = cν ,

ξ(x, t) = fξ(x), ν(x, t) = cν ,

ξ(x, t) = fξ(x) + cξt, ν(x, t) = cν ,

ξ(x, t) = fξ(x), ν(x, t) = fν(x),
ξ(x, t) = fξ(x), ν(x, t) = fν(x) + cνt,

ξ(x, t) = fξ(x), ν(x, t) = fν(x) + hν(t),

⇒ selected model: ξ̂(x, t) = f̂ξ(x), ν̂(x, t) = f̂ν(x) + ĉνt
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Results about ξ̂(x, t) = ξ̂(x) are similar to Moscadelli (2004) (right)
−
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⇒ Hints at infinite-mean models (in 80% of the cases).
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. . . and the residuals are. . .
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Thank you for your attention


