An extreme value approach for modeling Operational Risk losses depending on covariates

Marius Hofert

(joint work with Valérie Chavez-Demoulin, Paul Embrechts)

2014-03-20

The people involved

P. Embrechts

J. Naish

V. Chavez-Demoulin

- Database access granted by John Naish (Willis; naishj@willis.com)
- Example based on simulated losses: demo(game)

Operational Risk (introduced with Basel II (\leq BIS (2004)))

Definition (Operational risk)

Operational risk is defined as the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. This definition includes legal risk, but excludes strategic and reputational risk.

Examples (legal risk and strategic risk are difficult to measure)people:fraud (internal, external), "fat finger trades"systems:ATM, computer (hardware, software)external events:Kobe earthquake (1995-01-17), bankruptcy of Barings
bank (1995-02-26), 9/11, hurricane Katrina (mortgage
default due to lost houses; credit or an OpRisk event?)reputational risk:CDOs for UBS

Stylized facts

- data scarcity for companies internally and research (ORX, ORIC)
- loss frequencies vary over time (also: reporting bias)
- loss severities are heavy tailed, often infinite-mean
- losses can be assigned to different business lines (bl; typically 8) or event types (et; typically 7)

... and how we model them

- database of 1387 publicly reported events since 1980 (with 950 losses)
- Ioss frequency: non-homogeneous Poisson process
- loss severities: EVT–POT approach (GPD)
- ... depending on 10 bl as covariates (and time!)

Goal: Compute Value-at-Risk $\left(\mathrm{VaR}\right)$ and CIs depending on covariates

EVT based modeling approach

The classical POT approach

- losses $X_{t'_1}, \dots, X_{t'_{n'}} \stackrel{\text{iid}}{\sim} F$, $\bar{F} \in \mathrm{RV}_{-\frac{1}{\bar{\epsilon}}}^{\infty}$ $(\bar{F} = x^{-\frac{1}{\bar{\epsilon}}}L, \lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1)$
- X_{t_1}, \ldots, X_{t_n} exceedances over u (high enough)
- excesses $Y_{t_i} = X_{t_i} u > 0$, $i \in \{1, ..., n\}$

Theorem (Leadbetter (1991))

- The number of exceedances N_t approximately follows a Poisson process with intensity λ, that is, N_t ~ Poi(Λ(t)) with Λ(t) = λt.
 The excesses Y_{t1},..., Y_{tNt} over u approximately follow (independence)
 - dently of N_t) a $\underline{\text{GPD}}(\xi, \beta)$ for $\xi \in \mathbb{R}, \beta > 0$ with

$$G_{\xi,\beta}(x) = \begin{cases} 1 - (1 + \xi x/\beta)^{-1/\xi}, & \text{if } \xi \neq 0, \\ 1 - \exp(-x/\beta), & \text{if } \xi = 0. \end{cases}$$

If $\xi > 0$ (most OpRisk loss models), the approximate likelihood is

$$L(\lambda,\xi,\beta;\mathbf{Y}) = \frac{(\lambda T)^n}{n!} \exp(-\lambda T) \prod_{i=1}^n g_{\xi,\beta}(Y_{t_i}).$$

Therefore, the log-likelihood splits into the two parts

$$\ell(\lambda,\xi,\beta;\boldsymbol{Y}) = \ell(\lambda;\boldsymbol{Y}) + \ell(\xi,\beta;\boldsymbol{Y}),$$

where

$$\ell(\lambda; \mathbf{Y}) = -\lambda T + n \log(\lambda) + \log(T^n/n!),$$

$$\ell(\xi, \beta; \mathbf{Y}) = \sum_{i=1}^n \log g_{\xi,\beta}(Y_{t_i}).$$

 \Rightarrow Maximization can thus be carried out separately for 1) and 2).

A dynamic/smoothing POT approach

- Homogeneity assumptions on λ, ξ, β are often not realistic.
- Assume we have observed vectors $z_i = (t_i, x_i, y_{t_i})$, $i \in \{1, ..., n\}$ (exceedance time, covariate, excess over u)

The model

1) Number of exceedances: a non-homogeneous Poisson process with

$$\lambda = \lambda(x,t) = \exp(f_{\lambda}(x) + h_{\lambda}(t))$$

where $f_{\lambda}(x)$ is a constant for each covariate factor $x, h_{\lambda} : [0,T] \to \mathbb{R}$ a natural cubic spline. Rewriting leads to

$$\log \lambda = f_{\lambda}(x) + h_{\lambda}(t),$$

a generalized additive model (GAM) with logarithmic link function \Rightarrow Estimate f_{λ} and h_{λ} with mgcv::gam(..., family=poisson).

2) Excess distribution: Similarly, but for convergence it is crucial that ξ and β are orthogonal in the Fisher information metric ⇒ Replace β by ν = log((1 + ξ)β) (see Cox and Reid (1987)). The reparametrized log-likelihood is

$$\ell^{r}(\xi,\nu;\boldsymbol{Y}) = \ell\bigg(\xi,\frac{\exp(\nu)}{1+\xi};\boldsymbol{Y}\bigg).$$

Assume that ξ and ν are of the form

$$\xi = \xi(x, t) = f_{\xi}(x) + h_{\xi}(t),$$
$$\nu = \nu(x, t) = f_{\nu}(x) + h_{\nu}(t),$$

Simultaneously estimating ξ and ν is not possible with mgcv::gam.

• What we in fact have are vectors $\boldsymbol{\xi}$ and $\boldsymbol{\nu}$ in \mathbb{R}^n with *i*th components:

$$\xi_i = f_{\xi}(x_i) + h_{\xi}(t_i), \nu_i = f_{\nu}(x_i) + h_{\nu}(t_i).$$

 To obtain reasonably smooth functions h_ξ, h_ν, we use a penalized log-likelihood approach. The penalized loglikelihood is

$$\ell^{p}(f_{\xi}, h_{\xi}, f_{\nu}, h_{\nu}; \boldsymbol{z}_{\cdot}) = \ell^{r}(\boldsymbol{\xi}, \boldsymbol{\nu}; \boldsymbol{y}) - \gamma_{\xi} \int_{0}^{T} h_{\xi}''(t)^{2} dt - \gamma_{\nu} \int_{0}^{T} h_{\nu}''(t)^{2} dt$$

where $\gamma_{\xi}, \gamma_{\nu} \ge 0$ are smoothing parameters (larger \Rightarrow smoother curves).

Let 0 = s₀ < s₁ < · · · < s_m < s_{m+1} = T denote the (ordered) distinct values among {t₁, . . . , t_n}. For a natural cubic spline h,

$$\int_0^T h''(t)^2 \, dt = \boldsymbol{h}^\top K \boldsymbol{h}$$

where $h = (h(s_1), \ldots, h(s_m))$ and K is a symmetric $m \times m$ matrix of rank m - 2 only depending on the knots s_1, \ldots, s_m .

$$\Rightarrow \ell^{p}(f_{\xi}, h_{\xi}, f_{\nu}, h_{\nu}; \boldsymbol{z}_{\cdot}) = \ell^{r}(\boldsymbol{\xi}, \boldsymbol{\nu}; \boldsymbol{y}) - \gamma_{\xi} \boldsymbol{h}_{\xi}^{\top} K \boldsymbol{h}_{\xi} - \gamma_{\nu} \boldsymbol{h}_{\nu}^{\top} K \boldsymbol{h}_{\nu} \qquad \text{with} \\ \ell^{r}(\boldsymbol{\xi}, \boldsymbol{\nu}; \boldsymbol{y}) = \sum_{i=1}^{n} \ell \left(\xi_{i}, \frac{\exp(\nu_{i})}{1 + \xi_{i}}; y_{t_{i}} \right)$$

The backfitting algorithm for estimating (ξ, β)

Algorithm (Updater; gamGPDfitUp()) Let $\boldsymbol{\xi}^{(k)} = (\xi_1^{(k)}, \dots, \xi_n^{(k)})$ and $\boldsymbol{\nu}^{(k)} = (\nu_1^{(k)}, \dots, \nu_n^{(k)})$ be given.

- 1) Setup: Specify formulas xi.formula and nu.formula for gam() for fitting $\xi_i = f_{\xi}(x_i) + h_{\xi}(t_i)$ and $\nu_i = f_{\nu}(x_i) + h_{\nu}(t_i)$.
- 2) Update $\boldsymbol{\xi}^{(k)}$:

2.1) Newton step: Compute (componentwise)

$$m{\xi}^{\sf Newton} = m{\xi}^{(k)} - rac{\ell^r_{m{\xi}}(m{\xi}^{(k)},m{
u}^{(k)};m{y})}{\ell^r_{m{\xi}m{\xi}}(m{\xi}^{(k)},m{
u}^{(k)};m{y})}.$$

2.2) Fitting: Compute
$$\boldsymbol{\xi}^{(k+1)}$$
 via
fitted(gam($\boldsymbol{\xi}^{\text{Newton}}$ xi.formula,...,weights= $-\ell_{\xi\xi}^{r}$)).

3) Given $\boldsymbol{\xi}^{(k+1)}$, update $\boldsymbol{\nu}^{(k)}$:

3.1) Newton step: Compute (componentwise)

$$oldsymbol{
u}^{\mathsf{Newton}} = oldsymbol{
u}^{(k)} - rac{\ell_{
u}^r(oldsymbol{\xi}^{(k+1)},oldsymbol{
u}^{(k)};oldsymbol{y})}{\ell_{
u
u}^r(oldsymbol{\xi}^{(k+1)},oldsymbol{
u}^{(k)};oldsymbol{y})}.$$

3.2) Fitting: Compute $\nu^{(k+1)}$ via fitted(gam(ν^{Newton} nu.formula,...,weights= $-\ell_{\nu\nu}^r$)).

- gamGPDfit() iterates over this algorithm until convergence
- gamGPDboot() additionally computes (post-blackend) bootstrapped confidence intervals
- For more details, use demo(game)

Descriptive analysis of the loss data

- 1387 OpRisk events collected from public media since 1980 (for the loss severity, we use the 950 reported losses)
- For each event, the following information is given:
 - **used:** business line, event type, year of the event, (gross) loss in GBP (31.51% missing)
 - **unused:** reference number, organization affected, country of head office, country of event, type of insurance, net loss (97.55% missing), regulator involved, source (newspapers, databases, press releases, webpages), loss description

Not available is the company size.

- Most events happened in USA (44.34%), UK (26.03%), Japan (5.05%), Australia (2.31%), and India (2.02%); China?
- 63.95% were (partially) insured; insurance cover unclear.
- © 2014 Marius Hofert | TU Munich

Number of available losses and total available loss aggregated per year over time (left). For each business line (right).

- Increasing frequency probably due to reporting bias.
- Frequency depends on the business line.
- \Rightarrow Both features our model can take into account.
- © 2014 Marius Hofert | TU Munich

- ⇒ Losses are not identically distributed. We will take this into account by interpreting business lines and time as covariates.
- \Rightarrow Data pooling

 \Rightarrow Pooling is also suggested by the Basel matrix/vector:

IF	EF	EPWS	CPBP	DPA	BDSF	EDPM			
(2)	1	0	12	0	0	3)	AS	(18)	AS
12	3	4	55	0	0	6	AM	80	AM
60	54	4	77	1	0	11	СВ	207	СВ
12	4	0	23	0	0	2	CF	41	CF
13	2	2	32	0	0	4	I	53	Т
10	3	0	38	2	0	9	PS	62	PS
3	0	0	4	0	2	3	RBa	12	RBa
71	62	5	73	1	0	14	RBr	226	RBr
13	3	2	28	0	1	2	тs	49	тs
$\setminus 60$	2	20	107	0	3	10 /	UBL	1_{202} /	UBL

Note: This is aggregated since 1980!

Dynamic POT analysis

- **Goal:** Use all losses from 1980 to 2013 which exceed the threshold u of 11.02 M GBP (median) and compute the risk measure VaR_{0.999} including 95% bootstrapped confidence intervals.
- Graphical GoF test for the GPD model: If the model is correct,

$$R_i = -\log(1 - G_{\hat{\xi}_i, \hat{\beta}_i}(Y_{t_i})) \stackrel{\text{approx.}}{\sim} \operatorname{Exp}(1), \quad i \in \{1, \dots, n\}$$

 \Rightarrow check with a Q-Q plot \Rightarrow threshold choice

• Given $\hat{\lambda}$, $\hat{\xi}$, $\hat{\beta}$ (evaluated at x_i 's and t_i 's), an estimate of VaR_{α} is

$$\widehat{\mathrm{VaR}}_{\alpha} = u + \frac{\hat{\beta}}{\hat{\xi}} \left(\left(\frac{1-\alpha}{\hat{\lambda}} \right)^{-\hat{\xi}} - 1 \right)$$

 Confidence intervals can be constructed with the post-blackend bootstrap of Chavez-Demoulin and Davison (2005).

Loss frequency

- We fit the following models for λ using gam(..., family=poisson): $\log \lambda(x,t) = c_{\lambda}$ (constant/classical model) $\log \lambda(x,t) = f_{\lambda}(x)$ (bl as covariate) $\log \lambda(x,t) = f_{\lambda}(x) + c_{\lambda}t$ (bl and time [parametrically] as covariate) Likelihood-ratio tests \Rightarrow dependence on bl and time.
- We then compare $\log \lambda(x,t) = f_{\lambda}(x) + c_{\lambda}t$ with models of the form $\log \lambda(x,t) = f_{\lambda}(x) + h_{\lambda}^{(\mathrm{Df})}(t), \text{ Df} \in \{1,\ldots,8\}$ (non-parametric)

AIC \Rightarrow selected model: $\log \hat{\lambda}(x,t) = \hat{f}_{\lambda}(x) + \hat{h}_{\lambda}^{(3)}(t)$

 The selected model shows that considering a homogeneous Poisson process for the occurrence of losses (classical approach) is not adequate.

• Final model for λ :

$$\hat{\lambda}(x,t) = \exp(\hat{f}_{\lambda}(x) + \hat{h}_{\lambda}^{(3)}(t))$$

(depends on business line and time)

 95% confidence intervals (bootstrapped)

(C)

Loss severity

• We fit the following models for (ξ, ν) using gamGPDfit():

$$\begin{split} \xi(x,t) &= c_{\xi}, & \nu(x,t) = c_{\nu}, \\ \xi(x,t) &= f_{\xi}(x), & \nu(x,t) = c_{\nu}, \\ \xi(x,t) &= f_{\xi}(x) + c_{\xi}t, & \nu(x,t) = c_{\nu}, \\ \xi(x,t) &= f_{\xi}(x), & \nu(x,t) = f_{\nu}(x), \\ \xi(x,t) &= f_{\xi}(x), & \nu(x,t) = f_{\nu}(x) + c_{\nu}t, \\ \xi(x,t) &= f_{\xi}(x), & \nu(x,t) = f_{\nu}(x) + h_{\nu}(t), \\ \end{cases} \\ \Rightarrow \text{ selected model:} \quad \hat{\xi}(x,t) = \hat{f}_{\xi}(x), & \hat{\nu}(x,t) = \hat{f}_{\nu}(x) + \hat{c}_{\nu}t \end{split}$$

• Results about $\hat{\xi}(x,t) = \hat{\xi}(x)$ are similar to Moscadelli (2004) (right)

 \Rightarrow Hints at infinite-mean models (in 80% of the cases).

• Final model for β :

$$\hat{\beta}(x,t) = \frac{\exp(\hat{f}_{\nu}(x) + \hat{c}_{\nu}t)}{1 + \hat{\xi}(x)}$$

(depends on business line and time)

 95% confidence intervals (bootstrapped)

■ VaR_{0.999} estimates

(depending on time and business line)

 95% confidence intervals (bootstrapped)

... and the residuals are...

Exp(1) Q–Q plot

- Overall fine (asymptotically)
- Depends on the choice of the threshold u (bias-variance tradeoff)
- Higher u (e.g. 90%) not possible given the sample size

Thank you for your attention

