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Simulation of Portfolio Risk Some Risk Measures

Some Risk Measures

Tail loss probability for given threshold level, τ :
Pr(Loss ≥ τ) = E [1 {Loss ≥ τ}]

VaR(α): Value-at-risk, 1− α quantile of the loss distribution.

Conditional excess: E [Loss|Loss ≥ τ ]

Conditional value-at-risk: CVaR(α): E [Loss|Loss ≥ VaR(α)]
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The Stock Portfolio Model

t-copula for modeling log-returns

For modeling dependence among log-returns the importance of
copulae is stressed (Frey and McNeil, 2001).
t-copula models have a good fit to the joint distribution of log
returns. (for example Mashal et al. 2003; Kole et al. 2007).

Return (T) =
D∑

d=1

wdecd G−1
d (Fν(Td ))

cd =

√
σ2

d
252

1
vard

T = (T1, . . . ,TD)′ =
LZ√
Y /ν
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The Stock Portfolio Model Our Objectives

Our Objectives

For a linear asset portfolio of moderate size (2 to 10 assets):
Efficient estimation of a single tail loss probability, Pr(Loss ≥ τ)

Efficient estimation of a single conditional excess
E [Loss|Loss ≥ τ ].

Efficient estimation of multiple tail loss probabilities or multiple
conditional excesses in a single simulation.
(Important to calculate VaR and CVaR.)
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The Stock Portfolio Model Monte Carlo Simulation

General Principles of Monte Carlo Simulation:

Estimation of an expectation: x = Ef [q (X )]

X ∈ RD and X has density f (.),
q : RD → R is the "simulation function",
Ef
[
q2 (X )

]
<∞.

x = Ef [q (X )] =

∫
x∈RD

q (x)f (x) dx

The naive estimator: x̂NV = N−1
∑N

n=1
q (X n)

Generate iid sample X 1, . . . ,X N from density f (.).

Central Limit Theorem:
x̂NV − x
σ/N

→ N (0,1).

Error bound: x̂NV ± Φ−1 (α/2)σ
/√

N.

To get more precise results: Variance Reduction Methods
Look for new simulation function q(.) with the same expectation and
smaller variance
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The Stock Portfolio Model Monte Carlo Simulation

Importance Sampling (IS)

IS is a frequently used method for rare event situations

Ef [q (X )] =

∫
x∈RD

q (x) f (x) dx

=

∫
x∈RD

q (x)
f (x)

fIS (x)
fIS (x) dx

=

∫
x∈RD

q (x) ρ (x) fIS (x) dx

= EfIS [q (X ) ρ (X )] .

Generate iid sample X 1, . . . ,X n from density fIS(.),

Evaluate x̂IS = N−1
∑n

i=1
q
(

X i
)
ρ
(

X i
)

.

Regularity conditions are necessary to prove that the estimate is
unbiased
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The Stock Portfolio Model Monte Carlo Simulation

Importance Sampling cont.

V [x̂IS] is minimal for f ∗IS (x) =
|q (x)| f (x)∫

x∈RD |q (x) | f (x) dx
That density is unknown for relevant applications.

In practice an IS density is typically taken from a parametric family
(often the same as f (.)). The parameters are selected such that
the IS density imitates |q (x) f (x)|.
The cross entropy method is a general approach to select the
parameters of the IS density.

Often the variance reduction reached with IS decreases fast with
the dimension of the problem.
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The Stock Portfolio Model Monte Carlo Simulation

IS Algo for Tailloss Probabilities

Sak, WH and Leydold (2010) use IS for the iid normal input Z and the
chi-square random variate Y .

Problem: Even for heuristic approach necessary to find a good
direction for Z . It depends on the threshold τ . Thus a numeric
optimization is required.
Disadvantage of IS: Selection of the IS density and its parameters
difficult.
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The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling

Let ξi , i = 1, . . . , I be a partition of RD into I strata,
Assume pi = Pr {X ∈ ξi} are known for i = 1, . . . , I.
Let Xi be the random vector that follows the conditional distribution
of X given X ∈ ξi .

x = Ef [q (X )] =
I∑

i=1

piEf [q (X ) |X ∈ ξi ] =
I∑

i=1

piEf [q (Xi)]

The stratified estimator: x̂STRS =
∑I

i=1
piN−1

i

∑Ni

n=1
q (X n

i )

Ni replications in stratum i , N =
∑I

i=1
Ni

Generate iid sample X 1
i , . . . ,X

Ni
i in each stratum.

How should we select Ni , the samplesize for each stratum?
standard stratification uses proportional allocation
possible generalisation to QMC

9/ 33



The Stock Portfolio Model Monte Carlo Simulation

Stratified Sampling with optimal allocation

Define allocation fractions πi = Ni/N

x̂STRS =
I∑

i=1

piN−1
i

Ni∑
n=1

q (X n
i ) = N−1

I∑
i=1

piπ
−1
i

πi N∑
n=1

q (X n
i )

Let σ2
i = V [q (X ) |X ∈ ξi ] = V [q (Xi)], then:

V [x̂STRS] = N−1
∑I

i=1
p2

i σ
2
i π
−1
i ≥ N−1

(∑I

i=1
piσi

)2

Optimal allocation fractions: π∗i =
piσi∑I

k=1 pkσk
, i = 1, . . . , I.

Use a pilot sample allocated proportional to pi ,
Estimate conditional standard deviations σ̂i ,
Calculate optimal allocation fractions π∗ = (π1, . . . , πI)

′,
Use optimal allocation in the main run.
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The Stock Portfolio Model Monte Carlo Simulation

Adaptive Optimal Allocation Algorithm

The Adaptive Optimal Allocation (AOA) algorithm terminates in K
iterations.
The total sample size N is divided between iterations with a
non-decreasing order (e.g., K = 3, 0.1N,0.4N,0.5N).
In the first iteration, the sample is allocated proportional to stratum
probabilities pi .

In each iteration, the conditional standard deviations, σi ,
i = 1, . . . , I, are estimated using all previous drawings.
The estimates σ̂i determines the allocation fractions for the next
iteration.

Étoré and Jourdain (2010) show that the stratified estimator of
AOA is unbiased and asymptotically normal.
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The Stock Portfolio Model Monte Carlo Simulation

IS vs Optimal Allocation Stratification (OAS)

OAS can be interpreted as IS using the product of the original
density and a step function as weight function.
Advantage of OAS is the simple formula for the optimal allocation
fractions.
High dimensional stratification not possible in practice. Thus (like
for IS) one (or two) main directions are used for most applications.
Disadvantage of OAS: Many strata (or an adaptive strata
structure) are necessary for rare event simulations.
Is it possible and sensble to combine IS and OAS to increase the
variance reduction?
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The Stock Portfolio Model Monte Carlo Simulation

Stratified Importance Sampling: Single Estimate Case

Stratified Importance Sampling (SIS): Applies OAS to an IS
algorithm.
Numerical results for IS of (Sak et al. 2010) and SIS for t-copula
model with generalized hyperbolic marginals (parameters
estimated from NYSE data)

P(R < t) ≈ 0.05 P(R < t) ≈ 0.001
IS SIS IS SIS

d VR TM ER VR TM ER VR TM ER VR TM ER
2 6.1 0.23 6.5 296.5 0.30 243.5 183.5 0.21 201.7 4741.2 0.28 4046.9
5 8.4 0.79 8.4 110.3 0.90 96.8 278.5 0.79 247.3 3495.7 0.91 2684.9

10 5.3 1.59 5.0 11.4 1.75 9.8 66.6 1.64 60.5 198.3 1.91 154.1

Variance reduction factors: VR (x̂) = V [x̂NV ]/V [x̂ ]
Efficiency ratios: ER (x̂) = VR (x̂) TM [x̂NV ]/TM [x̂ ]
TM exeuction time, N ≈ 100,000 for all simulations.
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The Stock Portfolio Model Monte Carlo Simulation

Why works combination of IS and OAS so well?

IS and OAS use the same direction and are very similar methods.

We demonstrate their synergy effects for a one-dimensional
example
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The Stock Portfolio Model Monte Carlo Simulation

simple example IS

y = Eφ [q (Z )], q (x) = {ex − 3.6}+ and Z ∼ N(0,1).

The original density φ (x),

the shifted IS density fIS (x) and
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The Stock Portfolio Model Monte Carlo Simulation

simple example with OAS

IS density corresponding to OAS with 100 and 500 strata.

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(c)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

16/ 33



The Stock Portfolio Model Monte Carlo Simulation

simple example with SIS

IS density corresponding to SIS with 10 and 25 strata.
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The Stock Portfolio Model Monte Carlo Simulation

simple example: Variance Reduction Factors

Table: Comparison of Naive, IS, OAS 1000, and SIS 100.
exact solution 0.2815896024 .

Estimate Variance VRF
Naive 0.27970 2.17E-05 1

IS 0.28192 3.77E-07 58
OAS 1000 0.28155 2.73E-09 7950
SIS 100 0.28159 8.53E-11 2.5e5
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The Stock Portfolio Model Monte Carlo Simulation

Advantages of combining IS and OAS

We have observed the following advantages when combining IS and
OAS for risk simulations:

IS helps that there are a smaller number of strata with return 0.
Thus a smaller number of stratification intervals still leads to
substantial variance reduction.
IS helps stratification to obtain better estimates for the variances
in the strata and thus better allocation fractions.

NEW IDEA
Stratification can help to estimate many tailloss probabilities for
different thresholds τj in a single simulation.
That is important when estimating VaR and CVaR.
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Stratification for Multiple Tail Loss Probabilities Optimization Model for Multiple Estimates

Multiple Estimates Case

Suppose we are interested in probability estimates for distinct
threshold values, τj , j = 1, . . . , J.
We estimate the j-th tail loss probability and its relative error with
the following formula:

x̂j =
I∑

i=1

pi x̂ij , RE
[
x̂j
]

=
Φ−1 (0.975)

x̂j
√

N

√√√√ I∑
i=1

p2
i σ̂

2
ij

πi

General questions
How should we define the "overall error" of our J estimation
problems?
How can we minimize that "overall error"?
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Stratification for Multiple Tail Loss Probabilities Optimization Model for Multiple Estimates

Definition of Overall Error

x̂ij = Prob(Loss > τj |X ∈ ξi)

x̂j = Prob(Loss > τj) =
∑I

i=1
pi x̂ij

ŝjk
i = Cov(x̂ij , x̂ik ), j , k = 1, . . . , J

For the vector x̂ the variance-covariance matrix Σ depends on the
allocation fractions:

Σjk (π) = N−1
I∑

i=1

π−1
i p2

i ŝjk
i .

We define an overall error function:

ω(π) = g(Σ(π)) .
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Stratification for Multiple Tail Loss Probabilities Optimization Model for Multiple Estimates

Relevant Overall Error functions

ωMSE (π) =
∑J

j=1
Σjj(π), the mean squared error of all estimates,

ωMSR(π) =
∑J

j=1
x̂−2

j Σjj (π), the mean squared relative error of

all estimates,
ωMAXE (π) = max{j : Σjj (π)}, the maximum of the squared errors
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mean squared relative error

Using the variances defined above we get:

ωMSR(π) =
J∑

j=1

x̂−2
j Σjj (π) = N−1

I∑
i=1

π−1
i p2

i

J∑
j=1

x̂−2
j ŝjj

i ,

We know from AOS that for a single estimate:

V
[
x̂j
]

= N−1
∑I

i=1
π−1

i p2
i σ

2
i ≥ N−1

(∑I

i=1
piσi

)2

.

It attains its lower bound for π∗i =
piσi∑I

k=1 pkσk
, i = 1, . . . , I.

We can see that ωMSR(π) has the same structure as V
[
x̂j
]
.

Replacing σ2
i by

J∑
j=1

x̂−2
j ŝjj

i we thus can minimize ωMSR(π).
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mean squared relative error, cont.

ωMSR(π) ≥ N−1

 I∑
i=1

pi

 J∑
j=1

x̂−2
j ŝjj

i

1/2


2

ωMSR(π) attains its lower bound selecting

π∗i = pi

 J∑
j=1

x̂−2
j ŝjj

i

1/2/
I∑

l=1

pl

 J∑
j=1

x̂−2
j ŝjj

i

1/2

, i = 1, . . . , I.

This idea and the closed form solution can be generalized to all ω(π)

that are linear functions of the sjk
i .

(Theorem requires non-negativity condition. Assuming positive
correlations is no problem for applications to simulation.)
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Maximal relative error: Optimization Model

New objective: Minimize the maximum relative error using the
decision variables π = (π1, . . . , πI)

′.
We denote âij = x̂−2

j p2
i σ̂

2
ij and add constraints which guarantee

that the πi are positive and sum to one.

min max

{
j :

I∑
i=1

âij

πi

}

s.t.
I∑

i=1

πi = 1,

πi > 0, i = 1, . . . , I.

⇒

min ω

s.t. ω −
I∑

i=1

âij

πi
≥ 0, j = 1, . . . , J,

I∑
i=1

πi = 1,

πi > 0, i = 1, . . . , I.
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Stratification for Multiple Tail Loss Probabilities The Allocation Heuristic

The Allocation Heuristic

For the previous optimization model, we have developed a
heuristic which searches for a suboptimal solution in the convex
hull of the respective optimal solutions πj , j = 1, . . . , J.

min ω

s.t . ω −
I∑

i=1

âij

πi
≥ 0, j = 1, . . . , J,

πi −
J∑

j=1

λjπ
j
i = 0, i = 1, . . . , I,

J∑
j=1

λj = 1,

λj ≥ 0, j = 1, . . . , J.

The heuristic method terminates with an average 2 percent
sub-optimality for our simulation instances.
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Numerical Results

Numerical Results

We consider D = 5 stocks under the t-copula model with
Generalized Hyperbolic marginals and J = 10 equidistant
threshold values.
For IS we use a mixture of two densities.
For SIS, we simply used a single IS density selected for the
threshold τ∗ = 0.75τmax + 0.25τmin.
The parameters of the distributions were estimated from NYSE
data.
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Numerical Results

Numerical Results cont.

Following table shows the percentage relative errors and the
variance reduction factors obtained under NV, IS and SIS. The
execution times are 0.75, 0.95 and 1.25 seconds respectively.

NV IS SIS
τ Pr (r(T) ≤ τ) RE RE VR RE VR
0.895 0.0010 ±19.89% ±2.65% 56.3 ±0.77% 667.2
0.909 0.0014 ±16.67% ±2.37% 49.5 ±0.70% 567.1
0.917 0.0020 ±14.13% ±2.12% 44.4 ±0.69% 419.4
0.924 0.0028 ±12.09% ±1.89% 40.9 ±0.68% 316.1
0.932 0.0040 ±9.89% ±1.77% 31.2 ±0.66% 224.5
0.939 0.0060 ±7.96% ±1.72% 21.4 ±0.69% 133.1
0.947 0.0094 ±6.46% ±1.82% 12.6 ±0.66% 95.8
0.954 0.0154 ±4.91% ±2.14% 5.3 ±0.65% 57.1
0.962 0.0267 ±3.75% ±2.26% 2.8 ±0.64% 34.3
0.973 0.0500 ±2.69% ±9.23% 0.1 ±0.69% 15.2
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Numerical Results

Estimating Conditional Excess

Simulating the conditional excess: E [Loss|Loss ≥ τ ] requires a
ratio estimate; this makes variance reduction more difficult.
Literature: "Use the same IS density as for tail-loss probabilities."
The variance of the ratio estimate:
V [x̂1/x̂2] ≈ x̂2

1 x̂−4
2 Σ22 (π)− 2x̂1x̂−3

2 Σ12 (π) + x̂−2
2 Σ11 (π) = ω (π) .

To reach optimal allocation for stratification we can use the
theorem above to minimize the variance of a ratio estimate.

For Conditional Excess we obtained stratification and stratified IS
algorithms with optimal allocation for:

a single threshold
for several thresholds minimizing the mean squared relative error.
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Conclusions & Future Work

Conclusions

For practically relevant examples SIS (combination of IS and
stratification) increases the efficiency of tail loss probability
estimates under the t-copula model.
Compared to the methods in the literature, the variance of the
estimates are substantially reduced without a significant increase
in the execution time.
The SIS method allows the efficient estimation of tail loss
probabilities for multiple threshold values in a single simulation.
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Conclusions

The mean square (relative) error of all estimates can be minimized
using the variance estimates of a pilot run and a simple closed
form formula for the allocation fractions.
To minimize the maximal squared (relative) error of all estimates
we have developed a fast and simple heuristic to find close to
optimal allocation fractions.
The idea to obtain optimal variance reduction for several estimates
in a single simulation using optimal allocation stratification (OAS)
can be used for all simulation problems for which OAS leads good
variance reduction.
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Questions?

THANK YOU !
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