

Wirtschaftsuniversität Wien

May 24, 2013

The Ranking Lasso

Cristiano Varin Università Ca' Foscari, Venice

Based on joint works with: Guido Masarotto (Padova) Manuela Cattelan (Padova) & David Firth (Warwick)

References

Masarotto, G. and Varin, C. (2012). The Ranking Lasso and its Application to Sport Tournaments. *The Annals of Applied Statistics* **6** (4), 1949–1970.

Varin, C., Cattelan, M., and Firth, D. (2013?). Paired Comparison Modelling of Citation Exchange Among Statistics Journals. In preparation.

College Ice Hockey

NCAA Men's Division I 2009-2010

- 58 teams partitioned into six conferences
- Regular season: 1083 games
- Highly incomplete and unbalanced tournament design
 - 73.3% of the $\binom{58}{2}$ possible matches not played
 - 6.8% played just once
 - 10.5% played twice
 - ▶ 9.4% three or more times

Number of matches per team ranges from 31 to 43

- Six automatic bids (division winners) go to the conference tournament champions
- The remaining 10 teams are selected upon ranking under the NCAA's system of pairwise comparisons
- Data available through R package BradleyTerry2

Turner and Firth (2012)

Notation

- Tournament with k teams
- Match between team *i* and team *j* played n_{ij} times $(n_{ij} \ge 0)$
- Total number of matches $n = \sum_{i < j} n_{ij}$
- Y_{ijr} outcome of the rth match between team i and team j

$$Y_{ijr} = \begin{cases} +1, & \text{if team } i \text{ defeats team } j, \\ 0, & \text{if teams } i \text{ and } j \text{ tied}, \\ -1, & \text{if team } i \text{ is defeated by team } j \end{cases} (1 < i < j < k)$$

for
$$r = 1, ..., n_{ij}$$

Bradley-Terry with Ties and Home Advantage

Cumulative logit model with team abilities μ_1, \ldots, μ_n

$$h_{ijr} = egin{cases} +1, & ext{match played at home of team } i, \\ 0, & ext{match played at neutral field,} \\ -1, & ext{match played at home of team } j \end{cases}$$

Model identifiability:

- one constraint on ability vector $\sum_{i=1}^{n} \mu_i = 0$
- for every match played on a neutral field, the model must assure that $pr(Y_{ijr} = 1) = pr(Y_{jir} = -1)$, then $\delta_{(-1)} = -\delta_{(0)}$

Ranking Journals

Impact Factor?

Rank	Abbreviated Journal Title (linked to journal information)	ISSN	JCR Data j					
			Total Cites	Impact Factor	5-Year Impact Factor	Immediacy Index	Articles	Cited Half-life
1	J STAT SOFTW	1548-7660	1795	4.010	4.791	1.537	95	4.3
2	J R STAT SOC B	1369-7412	12345	3.645	5.281	0.793	29	>10.0
3	STAT SCI	0883-4237	3054	3.035	4.205	0.259	27	>10.0
4	ANN STAT	0090-5364	11722	3.030	3.700	0.423	104	>10.0
5	ECONOMETRICA	0012-9682	19659	2.976	4.700	0.688	48	>10.0
6	STAT METHODS MED RES	0962-2802	1835	2.443	2.988	0.500	36	>10.0
7	STATA J	1536-867X	1250	2.222	3.063	0.147	34	6.4
8	BIOSTATISTICS	1465-4644	2225	2.145	3.162	0.519	54	7.3
9	J R STAT SOC A STAT	0964-1998	1685	2.110	2.275	0.327	49	>10.0
10	PHARM STAT	1539-1604	422	2.067	2.160	0.463	67	4.1
11	J AM STAT ASSOC	0162-1459	21348	1.992	3.310	0.240	121	>10.0
12	J CHEMOMETR	0886-9383	2422	1.952	1.976	0.273	66	8.9
13	CHEMOMETR INTELL LAB	0169-7439	4494	1.920	2.295	0.350	137	9.9
14	BIOMETRIKA	0006-3444	13222	1.912	2.575	0.179	78	>10.0
15	STAT MED	0277-6715	13901	1.877	2.582	0.395	258	9.7
16	BIOMETRICS	0006-341X	14212	1.827	2.249	0.251	171	>10.0
17	ANN PROBAB	0091-1798	3517	1.789	1.669	0.183	71	>10.0
18	J BUS ECON STAT	0735-0015	2919	1.779	2.442	0.583	48	>10.0
19	FUZZY SET SYST	0165-0114	9886	1.759	1.988	0.199	171	>10.0
20	BAYESIAN ANAL	1931-6690	502	1.650	3.077	0.258	31	5.2

Stigler Model

Stigler (1994):

- Journal importance given by the ability to "export intellectual influence"
- The export of influence is measured by the citations received by the journal
- Bradley-Terry model

log-odds (journal *i* is cited by journal j) = $\mu_i - \mu_j$

where μ_i is the export score of journal *i*

• The larger the export score, the greater the propensity to export intellectual influence

Maximum Likelihood?

- Likelihood function of the Bradley-Terry simple...
- ... but is maximum likelihood estimation appropriate here?
- Shrinkage estimation outperforms maximum likelihood for simultaneous inference on a vector of mean effects
- The Bradley-Terry model is identified through pairwise differences $\mu_i \mu_j$
- Plan: fit Bradley-Terry model with penalty on each pairwise difference $\mu_i \mu_j$

The Ranking Lasso

• Lasso estimation of the Bradley-Terry model

$$\hat{oldsymbol{\mu}}_{oldsymbol{s}} = rg\max\,\ell(oldsymbol{\mu})\;\;$$
 subject to $\;\;\sum_{i < j}^k w_{ij} |\mu_i - \mu_j| \leq s$

where w_{ij} are pair-specific weights [likelihood for ice hockey data also contains the home effect and a cut point parameter: $\ell(\mu, \tau, \delta)$]

- Standard maximum likelihood for a sufficiently large value of the bound *s*
- Fitting penalized as *s* decreases to zero
- Ranking in groups: L1 penalty induces groups of team ability parameters estimated to the same value

Generalized Fused Lasso

- Fused lasso designed for problems where parameters have natural order Tibshirani et al. (2005)
- L1 penalty on pairwise differences of successive coefficients

$$\hat{oldsymbol{\mu}}_s = { ext{arg max}}\; \ell(oldsymbol{\mu}) \;\; ext{subject to} \;\; \sum_{i=1}^{k-1} w_i |\mu_i - \mu_{i+1}| \leq s$$

- Ranking lasso as generalized fused lasso with penalty on all possible pairs $\mu_i \mu_j$
- Lack of order in the ranking lasso implies <u>substantial</u> computational complications
- Difficulty from the one-to-many relationship between μ_i and penalized parameters θ_{ij} = μ_i − μ_j, i < j

Ranking lasso equivalent to the penalized minimization problem

$$\hat{\boldsymbol{\mu}}_{\lambda} = \arg\min\left\{-\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{k} w_{ij} |\mu_i - \mu_j|\right\}$$

Helpful to re-express as a constrained ordinary lasso problem

$$\begin{split} \left(\hat{\boldsymbol{\mu}}_{\lambda}, \hat{\boldsymbol{\theta}}_{\lambda} \right) = &\arg\min\left\{ -\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{k} w_{ij} |\boldsymbol{\theta}_{ij}| \right\} \\ &\text{subject to} \quad \boldsymbol{\theta}_{ij} = \mu_i - \mu_j, \quad 1 < i < j < k \end{split}$$

Lagragian Form of the Ranking Lasso

• Lagrangian form: minimize

$$-\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{k} w_{ij} |\theta_{ij}| + \sum_{i < j}^{k} u_{ij} \left(\theta_{ij} - \mu_i + \mu_j \right)$$

- Computation of Lagrangian multipliers *u_{ij}* is ill-posed problem
- Simpler solution: replace the Lagrangian term with

$$\frac{v}{2}\sum_{i< j}^k (\theta_{ij} - \mu_i + \mu_j)^2$$

- Quadratic penalty form converges to the solution of the ranking lasso as *v* diverges
- Numerical analysis literature discourages quadratic penalty, because of instabilities for large values of *v*

Augmented Lagrangian Method

- First developed in late 60's, then loss of attention in favor of sequential quadratic programming and interior point methods
- Recently, revived for total-variation denoising and compressed sensing Nocedal and Wright (2006)
- Augmented objective function

$$F_{\lambda,\nu}(\boldsymbol{\mu},\boldsymbol{\theta},\mathbf{u}) = -\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{\kappa} w_{ij} |\theta_{ij}| + \sum_{i < j}^{k} u_{ij} (\theta_{ij} - \mu_i + \mu_j) + \underbrace{\frac{\nu}{2} \sum_{i < j}^{k} (\theta_{ij} - \mu_i + \mu_j)^2}_{\text{Lagrangian term}}$$

Augmented Lagrangian method iterates through
(1) Given (**u**, v), minimize F_{λ,v}(μ, θ, **u**) with respect to (μ, θ)
(2) Given (μ, θ), update tuning coefficients **u** and v

Minimization Step

Cycle between

- Minimization with respect to μ given heta
 - Approximated by Bradley-Terry regression with ridge penalty

$$\hat{\boldsymbol{\mu}} = rg\min\left\{-\ell(\boldsymbol{\mu}) + rac{\mathbf{v}}{2}\sum_{i < j}^k (heta_{ij} - \mu_i + \mu_j)^2
ight\}$$

- Minimization with respect to heta given μ
 - Equivalent to ordinary lasso problem with an orthogonal design
 - Solution provided by soft-thresholder operator

$$\hat{ heta}_{ij} = ext{sign}(ilde{ heta}_{ij}) \left(| ilde{ heta}_{ij}| - rac{\lambda w_{ij}}{ extsf{v}}
ight)_+, \quad 1 < i < j < k$$

where
$$ilde{ heta}_{ij} = \hat{\mu}_i - \hat{\mu}_j - u_{ij}/v$$

Updating Lagrangian Multipliers

- The Augmented Lagrangian function provides a direct recursion for updating Lagrangian multipliers
- Rearranging terms, we have

$$F_{\lambda,\nu}(\boldsymbol{\mu},\boldsymbol{\theta},\mathbf{u}) = -\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{k} w_{ij}|\theta_{ij}| + \sum_{i < j}^{k} \underbrace{\left\{ u_{ij} + \frac{\mathbf{v}}{2} \left(\theta_{ij} - \mu_{i} + \mu_{j}\right)\right\}}_{\text{new } u_{ij}} (\theta_{ij} - \mu_{i} + \mu_{j})$$

• Thus, suggesting the recursion

$$\hat{u}_{ij}^{(\mathsf{new})} = \hat{u}_{ij}^{(\mathsf{old})} + rac{\mathsf{v}}{2}(\hat{ heta}_{ij} - \hat{\mu}_i + \hat{\mu}_j)$$

• Set $\hat{v} = \max{\{\hat{u}_{ij}^2\}}$

Adaptive Ranking Lasso

- Lasso can yield inconsistent estimation of the nonzero effects because the shrinkage produced by the *L*1 penalty is too severe
- Solutions:
 - substitute L1 penalty with another penalty that penalizes large effects less severely, e.g. SCAD
 Fan and Li (2001)
 - adaptive lasso: give more weight to terms of the L1 penalty as the size of the effect decreases
 Zou (2006)
- Adaptive ranking lasso

$$\hat{\boldsymbol{\mu}}_{\lambda} = {\sf arg\,min} \left\{ -\ell(\boldsymbol{\mu}) + \lambda \sum_{i < j}^{k} {\sf w}_{ij} \left| \mu_i - \mu_j \right|
ight\}$$

with weights inversely proportional to a consistent estimator of the ability difference

$$w_{ij} = |\hat{\mu}_i^{(\mathsf{mle})} - \hat{\mu}_j^{(\mathsf{mle})}|^{-1}$$

- Maximum likelihood estimates $\hat{\mu}_i^{(mle)}$ diverge when team *i* wins or loses all its matches
- Compute weights

$$w_{ij} = | ilde{\mu}_i - ilde{\mu}_j|^{-1}$$

with $\tilde{\mu}_i$ modified maximum likelihood estimator constructed so to guarantee finiteness, for example

▶ add *\epsilon*-ridge penalty

$$ilde{oldsymbol{\mu}} = rg\min\left\{ -\ell(oldsymbol{\mu}) + \epsilon \sum_{i < j} (\mu_i - \mu_j)^2
ight\}$$

for a small $\epsilon \approx 0.0001$

Firth's bias correction

Firth (1993)

$$ilde{oldsymbol{\mu}} = rg\min\left\{-\ell(oldsymbol{\mu}) - rac{1}{2}\log|oldsymbol{\mathsf{I}}(oldsymbol{\mu})|
ight\}$$

with $I(\mu)$ Fisher information [Jeffreys prior]

Selection of the Ranking Lasso Penalty

- Compute ranking lasso solution for a range of values of $\boldsymbol{\lambda}$
- Efficient implementation: increase (decrease) λ smoothly and use estimates at previous step as warm starts for the successive step
- Selection of λ through information criteria

$$\begin{aligned} \mathsf{AIC}(\lambda) &= -2\,\ell(\hat{\boldsymbol{\mu}}_{\lambda}) + 2\,\mathsf{enp}(\lambda) \\ \mathsf{BIC}(\lambda) &= -2\,\ell(\hat{\boldsymbol{\mu}}_{\lambda}) + \mathsf{log}(n)\,\mathsf{enp}(\lambda) \end{aligned}$$

with

- ► effective number of parameters (enp) estimated as the number of distinct groups formed with a certain λ
- $\hat{\mu}_{\lambda}$ hybrid adaptive ranking lasso estimate

Chen and Chen (2008)

Ranking Lasso Path

AIC: 7 groups BIC: 6 groups

Team Ability

Cross-validation exercise

- (1) training/validation: half of the matches randomly sampled
- (2) fit model by adaptive ranking lasso on training set
- (3) compute log-likelihood on the validation set

Boxplot of 100 cross-validated negative log-likelihoods

Ranking Journals

- Data from Thomson Reuters Journal Citation Reports edition 2011
- Statistics and Probability category: 106 journals in Statistics, Probability, Econometrics, Chemiometrics, ...
- Most journals within the category exchange very few citations
- Analysis using a selection of 51 journals in Statistics (no Probability, no Econometrics, no ...)
- Adaptive ranking lasso fit:
 - AIC identifies 16 groups
 - BIC identifies 14 groups

Ranking Lasso Path

Ranking Lasso Path

JRSS-B

Annals of Statistics

Biometrika

JASA

Biometrics

Top ten journals according to Stigler Model

			Lasso		
	Journal	MLE	AIC	BIC	
1	JRSS B	2.13	2.00	1.97	
2	Annals	1.38	1.27	1.24	
3	Biometrika	1.32	1.20	1.20	
4	JASA	1.28	1.20	1.20	
5	Biometrics	0.87	0.74	0.71	
6	Bernoulli	0.78	0.52	0.47	
7	JRSS A	0.76	0.52	0.47	
8	JCGS	0.72	0.52	0.47	
9	Scandinavian J	0.71	0.52	0.47	
10	Biostatistics	0.69	0.52	0.47	

Final Remarks

- Uncertainty quantification
 - Uncertainty quantification of adaptive lasso estimators can be performed via parametric bootstrap

Chatterjee and Lahiri (2011)

- By construction, adaptive ranking lasso estimators are biased, then sensible to adjust bootstrap confidence intervals for bias Efron (1987)
- Future extensions to deal with dynamic evolution of team/player/journal abilities during several seasons/years
- Augmented Lagrangian method does not scale enough for large ranking lasso applications
 - needs O(k²) pairwise difference parameters θ_{ij} for estimation of O(k) ability parameters
 - looks for more efficient alternatives for large scale problems

