Efficient Estimation in Non-linear Non-Gaussian State Space Models

Joshua Chan Rodney Strachan

Research School of Economics
Australian National University
14 May 2013

Motivation and Application

- Time Varying Parameter VARs have proven very insightful for macro-policy analysis

$$
\begin{array}{ll}
y_{t}=X_{t} \eta_{t}+\epsilon_{t}, & \epsilon_{t} \sim \mathrm{~N}\left(0, \Sigma^{-1}\right) \\
\eta_{t}=\eta_{t-1}+\zeta_{t}, & \zeta_{t} \sim \mathrm{~N}\left(0, \Omega^{-1}\right)
\end{array}
$$

- Since the (global) financial crisis (GFC), things have changed
- some important variables are now at, or near, their bounds
- e.g., short-term interest rates; $y_{1, t}>0$

US 3 month T-Bill Interest Rate

US 3 month T-Bill Interest Rate

Motivation (cont...)

- These bounds affect parameter estimation and imply non-linear models
- Another example we are working on
- bounds on exchange rates (Swiss franc); $y_{2, t} \leq \bar{e}$

The Features of The Models We Can Consider

- State space representations
- Non-linearity becomes relevant only in the last few years
- Large dimensions: e.g., VARs
- univariate non-linear methods not much use
- non-Gaussian, but 'Gaussian-like', errors

The Framework

- Measurement equation: $p\left(y_{t} \mid \eta_{t}, \theta\right)$, where
- y_{t} is an $n \times 1$ vector of observations
- η_{t} is an $m \times 1$ vector of latent states
- θ denotes the set of model parameters
- State equation: $p\left(\eta_{t} \mid \eta_{t-1}, \theta\right)$
- Note 1: $p\left(y_{t} \mid \eta_{t}, \theta\right)$ may depend on previous observations y_{t-1}, y_{t-2}, etc. and other covariates
- Note 2: it can be generalized to: $p\left(y_{t} \mid \eta_{t}, \eta_{t-1}, \ldots, \eta_{t-1}, \theta\right)$ or $p\left(\eta_{t} \mid \eta_{t-1}, \ldots, \eta_{t-1}, \theta\right)$

Estimation methods

Substantive progress for the linear Gaussian case:

- Kalman filter-based algorithms: Carter and Kohn (1994), Fruwirth-Schnatter (1994), de Jong and Shephard (1995) and Durbin and Koopman (2002)
- Precision-based algorithms: Chan and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011)

Non-linear Non-Gaussian case: a very active research area Non-linearity in many states is tricky and we present an approach for one important application

Non-linear Non-Gaussian case: Three Broad Approaches

Auxiliary mixture sampling:

- Use data augmentation and finite Gaussian mixtures to approximate non-Gaussian errors
- Applicable to various stochastic volatility models and state space models for Poisson counts
- Efficient and easy to implement when applicable
- Typically model-specific

Three Broad Approaches (cont.)

Particle filter:

- A Broad class of techniques that involves sequential importance sampling and bootstrap resampling
- In the state space setting, it is used to evaluate the integrated likelihood via sequential importance sampling and resampling
- Popular for estimating (non-linear) DSGE models (Rubio-Ramirez and Fernandez-Villaverde, 2005;
Fernandez-Villaverde and Rubio-Ramirez, 2007)
- Very general approach, but computationally demanding (computation time in days)

Three Broad Approaches (cont.)

Direct sampling via MH:

- Construct an approximation for the conditional density of the states, which is used to generate candidate draws for the MH step
- Common choice: Gaussian. e.g., Durbin and Koopman (1997), Shephard and Pitt (1997), Strickland, Forbes, and Martin (2006), etc.
- Difficulties:
- Obtaining the approximation and generating draws from it at every iteration of the MCMC cycle is not trivial;
- MH acceptance rate can be quite low: Gaussian approximation not sufficiently good
- Better approximation: HESSIAN method (McCausland, 2008).
- Highly efficient, but currently only applicable to univariate state models (i.e., $m=1$)

Main Goals

1. Describe a fast routine to construct a Gaussian approximation based on the precision-based method (as a by-product, also get a t approximation)
2. Discuss two more efficient sampling schemes for simulation of the states: ARMH and collapsed sampler
3. Application: TVP-VAR with stochastic volatility and a non-negativity restriction

Linear Gaussian Case

- For now, consider

$$
\begin{aligned}
& y_{t}=X_{t} \eta_{t}+\varepsilon_{t}, \\
& \eta_{t}=\Gamma_{t} \eta_{t-1}+\zeta_{t},
\end{aligned}
$$

for $t=1, \ldots, T$, with

$$
\binom{\varepsilon_{t}}{\zeta_{t}} \sim \mathrm{~N}\left(0,\left(\begin{array}{cc}
\Sigma_{t}^{-1} & 0 \\
0 & \Omega_{t}^{-1}
\end{array}\right)\right)
$$

- Σ_{t} and Ω_{t} are respectively the precision of ε_{t} and ζ_{t}
- Let $y=\left(y_{1}^{\prime}, \ldots, y_{T}^{\prime}\right)^{\prime}, \eta=\left(\eta_{1}^{\prime}, \ldots, \eta_{T}^{\prime}\right)^{\prime}$, and $\theta=\left\{\eta_{0},\left\{\Gamma_{t}\right\},\left\{\Sigma_{t}\right\},\left\{\Omega_{t}\right\}\right\}$

The Measurement Equation

Stacking the measurement equation over the T time periods:

$$
y=X \eta+\varepsilon, \quad \varepsilon \sim N\left(0, \Sigma^{-1}\right)
$$

where $\varepsilon=\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{T}^{\prime}\right)^{\prime}$,

$$
X=\left[\begin{array}{lll}
X_{1} & & \\
& \ddots & \\
& & X_{T}
\end{array}\right], \quad \Sigma^{-1}=\left[\begin{array}{ccc}
\Sigma_{1}^{-1} & & \\
& \ddots & \\
& & \Sigma_{T}^{-1}
\end{array}\right]
$$

- $\log p(y \mid \theta, \eta) \propto-\frac{1}{2} \log \left|\Sigma^{-1}\right|-\frac{1}{2}(y-X \eta)^{\prime} \Sigma(y-X \eta)$
- Note: Σ is a banded matrix

The State Equation

Stacking the state equation over the T time periods:

$$
\left(\begin{array}{ccccc}
I_{m} & & & & \\
-\Gamma_{2} & I_{m} & & & \\
& -\Gamma_{3} & I_{m} & & \\
& & \ddots & \ddots & \\
& & & -\Gamma_{T} & I_{m}
\end{array}\right)\left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\eta_{3} \\
\vdots \\
\eta_{T}
\end{array}\right)=\left(\begin{array}{c}
\Gamma_{1} \eta_{0} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
\zeta_{1} \\
\zeta_{2} \\
\zeta_{3} \\
\vdots \\
\zeta_{T}
\end{array}\right),
$$

i.e., $K \eta=\gamma+\zeta, \quad \zeta \sim \mathrm{N}\left(0, \Omega^{-1}\right)$

- Let $\eta^{0}=K^{-1} \gamma$. Since $|K|=1$, we have

$$
\left.\log p(\eta \mid \theta) \propto-\frac{1}{2} \log \left|\Omega^{-1}\right|-\frac{1}{2}\left(\eta-\eta^{0}\right)^{\prime} K^{\prime} \Omega K\left(\eta-\eta^{0}\right)\right)
$$

- Note $K^{\prime} \Omega K$ is a also a banded matrix

The Conditional Density for the States

- Therefore, the log conditional density $\ln p(\eta \mid y, \theta)$ is

$$
\begin{aligned}
& \propto \ln p(y \mid \theta, \eta)+\ln p(\eta \mid \theta) \\
& \propto-\frac{1}{2}\left[\eta^{\prime}\left(X^{\prime} \Sigma X+K^{\prime} \Omega K\right) \eta-2 \eta^{\prime}\left(X^{\prime} \Sigma y+K^{\prime} \Omega K \eta^{0}\right)\right]
\end{aligned}
$$

- In other words, $(\eta \mid y, \theta) \sim \mathrm{N}\left(\hat{\eta}, H^{-1}\right)$, where

$$
\begin{aligned}
H & =K^{\prime} \Omega K+X^{\prime} \Sigma X \\
\hat{\eta} & =H^{-1}\left(K^{\prime} \Omega K \eta^{0}+X^{\prime} \Sigma y\right)
\end{aligned}
$$

- Since $X^{\prime} \Sigma X$ is banded, it follows that H is also banded

What this process gives us ...

- At this point we have the mean, $\hat{\eta}$, and precision, H
- Note that the precision, H, is a banded and sparse matrix

Efficient State Simulation for the Linear Gaussian Case

1. Compute H and obtain its Cholesky decomposition C_{H} such that $H=C_{H}^{\prime} C_{H}$
2. Sample $u \sim \mathrm{~N}\left(0, I_{T m}\right)$, and solve $C_{H} x=u$ for x by back-substitution Then $x \sim \mathrm{~N}\left(0, H^{-1}\right)$
3. Solve

$$
C_{H}^{\prime} C_{H} \hat{\eta}=K^{\prime} \Omega K \eta^{0}+X^{\prime} \Sigma y
$$

for $\hat{\eta}$ by forward- and back-substitution.
4. Finally return $\eta=\hat{\eta}+x$, so that $\eta \sim \mathrm{N}\left(\hat{\eta}, H^{-1}\right)$

Key features:

- Can compute $\hat{\eta}$ and C_{H} fast
- Marginal cost of sampling from $\mathrm{N}\left(\hat{\eta}, H^{-1}\right)$ is low
- Built-in routines for sparse matrices in Matlab and Gauss
- Can also generate from $\mathrm{t}\left(\nu, \hat{\eta}, \mathrm{H}^{-1}\right)$

General State Space: Measurement Equation

Idea: approximate the \log-likelihood $\ln p(y \mid \eta, \theta)$ via a second-order Taylor expansion around $\tilde{\eta}=\left(\tilde{\eta}_{1}^{\prime}, \ldots, \tilde{\eta}_{T}^{\prime}\right)^{\prime}$:

$$
\begin{gathered}
\ln p(y \mid \eta, \theta) \approx \ln p(y \mid \tilde{\eta}, \theta)+(\eta-\tilde{\eta})^{\prime} f-\frac{1}{2}(\eta-\tilde{\eta})^{\prime} G(\eta-\tilde{\eta}) \\
\propto-\frac{1}{2}\left[\eta^{\prime} G \eta-2 \eta^{\prime}(f+G \tilde{\eta})\right] \\
f=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{T}
\end{array}\right], G=\left[\begin{array}{cccc}
G_{1} & 0 & \cdots & 0 \\
0 & G_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & G_{T}
\end{array}\right] \\
\left.f_{t} \equiv \frac{\partial}{\partial \eta_{t}} \ln p\left(y_{t} \mid \eta_{t}, \theta\right)\right|_{\eta_{t}=\tilde{\eta}_{t}}, G_{t} \equiv-\left.\frac{\partial^{2}}{\partial \eta_{t} \eta_{t}^{\prime}} \ln p\left(y_{t} \mid \eta_{t}, \theta\right)\right|_{\eta_{t}=\tilde{\eta}_{t}}
\end{gathered}
$$

The Gaussian Approximation

- State equation: linear Gaussian as before (for simplicity):

$$
\ln p(\eta \mid \theta) \propto \frac{1}{2} \ln |\Omega|-\frac{1}{2}\left(\eta-\eta^{0}\right)^{\prime} K^{\prime} \Omega K\left(\eta-\eta^{0}\right)
$$

- Combining this and the approximation for the measurement equation:

$$
\begin{aligned}
\ln p(\eta \mid y, \theta) & \propto \ln p(y \mid \eta, \theta)+\ln p(\eta \mid \theta) \\
& \approx-\frac{1}{2}\left[\eta^{\prime}\left(G+K^{\prime} \Omega K\right) \eta-2 \eta^{\prime}\left(f+G \tilde{\eta}+K^{\prime} \Omega K \eta^{0}\right)\right]
\end{aligned}
$$

- That is, the approximating distribution is Gaussian with precision $H \equiv G+K^{\prime} \Omega K$

What we need for the Gaussian approximation

- Expand the Taylor approximation at the mode $\hat{\eta}=\tilde{\eta}$
- This then gives us the precision matrix, H
- Note that, again, the precision, H, is a banded and sparse matrix
- This structure will give us the necessary computational speed

We Investigate Three Sampling Schemes

- Sampling Scheme 1 (S1): MH with a Gaussian Proposal
- Expand the Taylor approximation at the mode $\hat{\eta}$
- Generate candidates from $q(\eta \mid y, \theta)=\mathrm{N}\left(\hat{\eta}, H^{-1}\right)$ or $q(\eta \mid y, \theta)=t\left(\nu, \hat{\eta}, H^{-1}\right)$ for the MH step
- Sampling Scheme 2 (S2): ARMH with a Gaussian or t Proposal
- Sampling Scheme 3 (S3): Collapsed Sampling with Cross Entropy
- Used to draw $\theta \sim p(\theta \mid y)$ then draw $\eta \sim p(\eta \mid y, \theta)$

Sampling Scheme 1: MH with a Gaussian Proposal

- Expand the Taylor approximation at the mode $\hat{\eta}$
- The mode can be found by Newton-Raphson method: given the current location $\eta^{(s)}$, compute

$$
\begin{aligned}
\eta^{(s+1)} & =\eta^{(s)}+\left.H\left(\eta^{(s)}\right)^{-1} \frac{\partial}{\partial \eta} \log p(\eta \mid y, \theta)\right|_{\eta=\eta^{(s)}} \\
& =H\left(\eta^{(s)}\right)^{-1}\left(f\left(\eta^{(s)}\right)+G\left(\eta^{(s)}\right) \eta^{(s)}+K^{\prime 0}\right)
\end{aligned}
$$

- Continue until $\left\|\eta^{(s+1)}-\eta^{(s)}\right\|<\epsilon$, set $\hat{\eta}=\eta^{(s+1)}$
- Generate candidates from $\mathrm{N}\left(\hat{\eta}, H^{-1}\right)$ for the MH step

Accept-reject Sampling

- Target density: $p(\eta \mid y, \theta) \propto p(y \mid \eta, \theta) p(\eta \mid \theta)$; proposal density $q(\eta \mid y, \theta)$
- In the classic AR sampling, we need a constant c such that

$$
p(y \mid \eta, \theta) p(\eta \mid \theta) \leq c q(\eta \mid y, \theta)
$$

for all η in the support of $p(\eta \mid y, \theta)$

- Difficult to obtain c efficiently (especially when θ is revised at every iteration)

Accept-reject Metropolis-Hastings

- Combination of the classic accept-reject sampling with the MH algorithm
- The ARMH relaxes the domination condition. When it is not satisfied, use MH
- Let

$$
\mathcal{D}=\{\eta: p(y \mid \eta, \theta) p(\eta \mid \theta) \leq c q(\eta \mid y, \theta)\}
$$

and let \mathcal{D}^{c} denote its complement

Sampling Scheme 2: ARMH with a Gaussian Proposal

1. AR step: Generate a draw $\eta^{*} \sim q(\eta \mid y, \theta)$. Accept η^{*} with probability

$$
\alpha_{\mathrm{AR}}\left(\eta^{*} \mid y, \theta\right)=\min \left\{1, \frac{p\left(y \mid \eta^{*}, \theta\right) p\left(\eta^{*} \mid \theta\right)}{c q\left(\eta^{*} \mid y, \theta\right)}\right\} .
$$

Continue the process until a draw η^{*} is accepted
2. MH-step: Given the current draw η and the proposal η^{*}

- if $\eta \in \mathcal{D}$, set $\alpha_{\mathrm{MH}}\left(\eta, \eta^{*} \mid y, \theta\right)=1$;
- if $\eta \in \mathcal{D}^{c}$ and $\eta^{*} \in \mathcal{D}$, set

$$
\alpha_{\mathrm{MH}}\left(\eta, \eta^{*} \mid y, \theta\right)=\frac{c q(\eta \mid y, \theta)}{p(y \mid \eta, \theta) p(\eta \mid \theta)}
$$

- if $\eta \in \mathcal{D}^{c}$ and $\eta^{*} \in \mathcal{D}^{c}$, set

$$
\alpha_{\mathrm{MH}}\left(\eta, \eta^{*} \mid y, \theta\right)=\min \left\{1, \frac{p\left(y \mid \eta^{*}, \theta\right) p\left(\eta^{*} \mid \theta\right) q(\eta \mid y, \theta)}{p(y \mid \eta, \theta) p(\eta \mid \theta) q\left(\eta^{*} \mid y, \theta\right)}\right\}
$$

Return η^{*} with prob. $\alpha_{\mathrm{MH}}\left(\eta, \eta^{*} \mid y, \theta\right)$; otherwise return η

Another Way to Look at ARMH

- The AR step: a way to sample from

$$
q_{\mathrm{AR}}(\eta \mid y, \theta)=d^{-1} \alpha_{\mathrm{AR}}(\eta \mid y, \theta) q(\eta \mid y, \theta)
$$

- By adjusting the original proposal density $q(\eta \mid y, \theta)$ by the function $\alpha_{\mathrm{AR}}(\eta \mid y, \theta)$, a better approximation is achieved
- In fact, we have

$$
q_{\mathrm{AR}}(\eta \mid y, \theta)= \begin{cases}p(y \mid \eta, \theta) p(\eta \mid \theta) / c d, & \eta \in \mathcal{D} \\ q(\eta \mid y, \theta) / d, & \eta \in \mathcal{D}^{c}\end{cases}
$$

- Better approximation, but requires multiple draws in the AR step

Joint Sampling of (θ, η)

- Typically sample from $p(\eta \mid y, \theta)$ and $p(\theta \mid y, \eta)$ sequentially
- In some settings, η and θ might be highly correlated
- Hence, sample (θ, η) jointly by first drawing from $p(\theta \mid y)$ marginally of the states η followed by a draw from $p(\eta \mid y, \theta)$
- Need a mechanism to generate candidates for θ. Often use random walk

Sampling Scheme 3: Collapsed Sampling with CE

- We propose an independence chain MH sampler instead
- The proposal density for θ, denoted as $q(\theta \mid y)$, is obtained optimally: given a parametric family of densities \mathcal{P}, use the member in \mathcal{P} that is the closest to the marginal density $p(\theta \mid y)$ in the Kullback-Leibler divergence or the cross-entropy distance
- Generate $\theta^{*} \sim q(\theta \mid y)$, then evaluate the acceptance probability (that involves estimating the integrated likelihood via importance sampling)

Illustration: TVP-VAR with SV

- Write the $\operatorname{VAR}(I)$ in SUR form:

$$
y_{t}=x_{t} \beta_{t}+\epsilon_{t}, \quad \epsilon_{t} \sim \mathrm{~N}\left(0, \Sigma_{t}^{-1}\right)
$$

where $x_{t}=I_{n} \otimes\left[1, y_{t-1}^{\prime}, \ldots, y_{t-1}^{\prime}\right]$ and
$\beta_{t}=\operatorname{vec}\left(\left[\mu_{t}: A_{t 1}: \cdots: A_{t}\right]^{\prime}\right)$ is a $k \times 1$ vector of VAR coefficients'with $k=n^{2} I+n$

- Following Primiceri (2005), the time-varying precision matrix Σ_{t} is modeled as $\Sigma_{t}=L_{t}^{\prime} D_{t}^{-1} L_{t}$, where
$D_{t}=\operatorname{diag}\left(\mathrm{e}^{h_{t 1}}, \ldots, \mathrm{e}^{h_{t n}}\right)$ and

$$
L_{t}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
a_{t 21} & 1 & 0 & \cdots & 0 \\
a_{t 31} & a_{t 32} & 1 & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{t n 1} & a_{t n 2} & \cdots & a_{t n, n-1} & 1
\end{array}\right)
$$

State Equations

- Let $h_{t}=\left(h_{t 1}, \ldots, h_{t n}\right)^{\prime}$ and a_{t} be the free elements of L_{t}, i.e., $a_{t}=\left(a_{t 21}, a_{t 31}, a_{t 32}, \ldots, a_{t n, n-1}\right)^{\prime}$
- Random walks for all the states:

$$
\begin{aligned}
& \beta_{t}=\beta_{t-1}+\eta_{t}, \quad \eta_{t} \sim \mathrm{~N}\left(0, \Omega_{\beta}^{-1}\right), \\
& h_{t}=h_{t-1}+\xi_{t}, \quad \xi_{t} \sim \mathrm{~N}\left(0, \Omega_{h}^{-1}\right), \\
& a_{t}=a_{t-1}+\zeta_{t}, \quad \zeta_{t} \sim \mathrm{~N}\left(0, \Omega_{a}^{-1}\right),
\end{aligned}
$$

where $\Omega_{\beta}, \Omega_{h}$, and Ω_{a} are all diagonal matrices

Inequality Restriction

- For the application, we have $n=3$ variables: nominal interest rate (3-month Tbill), inflation rate (CPI) and GDP growth
- U.S. quarterly data from 1947 Q1 to 2011 Q2
- Impose the restriction that the nominal interest rate is always non-negative (a model for computing liquidity trap)
- Assume $y_{t 1} \geq 0$ is the nominal interest rate, and let $x_{t 1}$ be the first row of x_{t}
- The marginal distribution of $y_{t 1}$ is

$$
\left(y_{t 1} \mid \beta_{t}, \Sigma_{t}\right) \sim \mathrm{N}\left(x_{t 1} \beta_{t}, \mathrm{e}^{h_{t 1}}\right) \mathbf{1}\left(y_{t 1} \geq 0\right)
$$

Inequality Restriction (cont.)

- Hence,

$$
\mathbb{P}\left(y_{t 1} \geq 0 \mid \beta_{t}, \Sigma_{t}\right)=1-\Phi\left(-x_{t 1} \beta_{t} / \mathrm{e}^{\frac{1}{2} h_{t 1}}\right)=\Phi\left(x_{t 1} \beta_{t} \mathrm{e}^{-\frac{1}{2} h_{t 1}}\right)
$$

- The log-likelihood is $\ln p(y \mid \beta, \Sigma)=\sum_{t=1}^{T} \ln p\left(y_{t} \mid \beta_{t}, \Sigma_{t}\right)$, where

$$
\begin{aligned}
\ln p\left(y_{t} \mid \beta_{t}, a_{t}, h_{t}\right) & \propto-\frac{1}{2} \sum_{i=1}^{n} h_{t i}-\frac{1}{2}\left(y_{t}-x_{t} \beta_{t}\right)^{\prime} L_{t}^{\prime} D_{t}^{-1} L_{t}\left(y_{t}-x_{t} \beta_{t}\right) \\
& -\ln \Phi\left(x_{t 1} \beta_{t} \mathrm{e}^{-\frac{1}{2} h_{t 1}}\right)
\end{aligned}
$$

Acceptance Rate and Running Time

Table: Acceptance rate (in \%) and running time (in minutes; 50000 draws) of the three sampling schemes: MH (S1), ARMH (S2) and the collapsed sampler with CE (S3).

scheme	β	$h_{\cdot 1}$	$h_{\cdot 2}$	$\cdot 3$	Ω_{β}	Ω_{h}	Ω_{a}	time
S1	68	28	35	59	-	-	-	23
S2	95	71	79	97	-	-	-	27
S3	98	69	79	97	62	58	76	182

Inefficiency Factors

Estimation Results: volatilities and correlations

Figure: Evolution of the log-volatilities and correlations. Solid red line is the estimated posterior mean under the unrestricted model. The solid blue line is the estimated posterior mean under the restricted model with 5%-tile and 95%-tile, respectively.

Estimation Results: Impulse responses

Figure: Impulse response to a credit shock under the unrestricted model (red solid line) and the model with the inequality restrictions imposed (blue solid line).

Concluding Remarks and Future Research

- Building on recent developments in precision-based algorithms, we propose a practical approach to simulating the states in a more general state space model
- A general approach that is much less computationally demanding than PF

Future research:

- non-linear DSGE models - limitations to invertible states
- a state space model for bounded inflation rate (already done)
- time-varying-parameter MA models (already done)
- non-linear factor models (wrestling with this and about to give up)

