Efficient Estimation in Non-linear Non-Gaussian State Space Models

Joshua Chan Rodney Strachan

Research School of Economics Australian National University

14 May 2013

Motivation and Application

 Time Varying Parameter VARs have proven very insightful for macro-policy analysis

$$y_t = X_t \eta_t + \epsilon_t, \quad \epsilon_t \sim \mathsf{N}(0, \Sigma^{-1})$$

$$\eta_t = \eta_{t-1} + \zeta_t, \quad \zeta_t \sim \mathsf{N}(0, \Omega^{-1})$$

- ▶ Since the (global) financial crisis (GFC), things have changed
- some important variables are now at, or near, their bounds

• e.g., short-term interest rates; $y_{1,t} > 0$

US 3 month T-Bill Interest Rate

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

US 3 month T-Bill Interest Rate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation (cont...)

- These bounds affect parameter estimation and imply non-linear models
- Another example we are working on
 - ▶ bounds on exchange rates (Swiss franc); $y_{2,t} \leq \overline{e}$

The Features of The Models We Can Consider

- State space representations
- Non-linearity becomes relevant only in the last few years

- Large dimensions: e.g., VARs
 - univariate non-linear methods not much use
- non-Gaussian, but 'Gaussian-like', errors

The Framework

- Measurement equation: $p(y_t | \eta_t, \theta)$, where
 - y_t is an $n \times 1$ vector of observations
 - η_t is an m imes 1 vector of latent states
 - θ denotes the set of model parameters
- State equation: $p(\eta_t | \eta_{t-1}, \theta)$
- Note 1: p(y_t | η_t, θ) may depend on previous observations y_{t-1}, y_{t-2}, etc. and other covariates
- ▶ Note 2: it can be generalized to: $p(y_t | \eta_t, \eta_{t-1}, ..., \eta_{t-l}, \theta)$ or $p(\eta_t | \eta_{t-1}, ..., \eta_{t-l}, \theta)$

Estimation methods

Substantive progress for the linear Gaussian case:

- Kalman filter-based algorithms: Carter and Kohn (1994), Fruwirth-Schnatter (1994), de Jong and Shephard (1995) and Durbin and Koopman (2002)
- Precision-based algorithms: Chan and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011)

Non-linear Non-Gaussian case: a very active research area Non-linearity in many states is tricky and we present an approach for one important application

Non-linear Non-Gaussian case: Three Broad Approaches

Auxiliary mixture sampling:

- Use data augmentation and finite Gaussian mixtures to approximate non-Gaussian errors
- Applicable to various stochastic volatility models and state space models for Poisson counts

- Efficient and easy to implement when applicable
- Typically model-specific

Three Broad Approaches (cont.)

Particle filter:

- A Broad class of techniques that involves sequential importance sampling and bootstrap resampling
- In the state space setting, it is used to evaluate the integrated likelihood via sequential importance sampling and resampling

- Popular for estimating (non-linear) DSGE models (Rubio-Ramirez and Fernandez-Villaverde, 2005; Fernandez-Villaverde and Rubio-Ramirez, 2007)
- Very general approach, but computationally demanding (computation time in days)

Three Broad Approaches (cont.)

Direct sampling via MH:

- Construct an approximation for the conditional density of the states, which is used to generate candidate draws for the MH step
- Common choice: Gaussian. e.g., Durbin and Koopman (1997), Shephard and Pitt (1997), Strickland, Forbes, and Martin (2006), etc.
- Difficulties:
 - Obtaining the approximation and generating draws from it at every iteration of the MCMC cycle is not trivial;
 - MH acceptance rate can be quite low: Gaussian approximation not sufficiently good

- Better approximation: HESSIAN method (McCausland, 2008).
- ► Highly efficient, but currently only applicable to univariate state models (i.e., m = 1)

Main Goals

- Describe a fast routine to construct a Gaussian approximation based on the precision-based method (as a by-product, also get a *t* approximation)
- 2. Discuss two more efficient sampling schemes for simulation of the states: ARMH and collapsed sampler

3. Application: TVP-VAR with stochastic volatility and a non-negativity restriction

Linear Gaussian Case

For now, consider

$$\begin{split} y_t &= X_t \eta_t + \varepsilon_t, \\ \eta_t &= \Gamma_t \eta_{t-1} + \zeta_t, \end{split}$$

for $t = 1, \ldots, T$, with

$$\left(\begin{array}{c} \varepsilon_t \\ \zeta_t \end{array}\right) \sim \mathsf{N}\left(\mathbf{0}, \left(\begin{array}{c} \boldsymbol{\Sigma}_t^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Omega}_t^{-1} \end{array}\right)\right)$$

Σ_t and Ω_t are respectively the precision of ε_t and ζ_t
Let y = (y'₁,..., y'_T)', η = (η'₁,..., η'_T)', and θ = {η₀, {Γ_t}, {Σ_t}, {Ω_t}}

The Measurement Equation

Stacking the measurement equation over the T time periods:

$$y = X\eta + \varepsilon, \quad \varepsilon \sim \mathsf{N}(0, \Sigma^{-1}),$$

where $\varepsilon = (\varepsilon'_1, \dots, \varepsilon'_T)'$,

$$X = \begin{bmatrix} X_1 & & \\ & \ddots & \\ & & X_T \end{bmatrix}, \quad \Sigma^{-1} = \begin{bmatrix} \Sigma_1^{-1} & & \\ & \ddots & \\ & & \Sigma_T^{-1} \end{bmatrix}$$

- ► log $p(y \mid \theta, \eta) \propto -\frac{1}{2} \log |\Sigma^{-1}| \frac{1}{2} (y X\eta)' \Sigma (y X\eta)$
- Note: Σ is a banded matrix

The State Equation

Stacking the state equation over the T time periods:

$$\begin{pmatrix} I_m & & & \\ -\Gamma_2 & I_m & & \\ & -\Gamma_3 & I_m & & \\ & & \ddots & \ddots & \\ & & & -\Gamma_T & I_m \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \vdots \\ \eta_T \end{pmatrix} = \begin{pmatrix} \Gamma_1 \eta_0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \\ \vdots \\ \zeta_T \end{pmatrix},$$

i.e.,
$$K\eta = \gamma + \zeta$$
, $\zeta \sim N(0, \Omega^{-1})$
• Let $\eta^0 = K^{-1}\gamma$. Since $|K| = 1$, we have
 $\log p(\eta | \theta) \propto -\frac{1}{2} \log |\Omega^{-1}| - \frac{1}{2} (\eta - \eta^0)' K' \Omega K (\eta - \eta^0)$

• Note $K'\Omega K$ is a also a banded matrix

The Conditional Density for the States

• Therefore, the log conditional density $\ln p(\eta | y, \theta)$ is

$$\propto \ln p(y \mid heta, \eta) + \ln p(\eta \mid heta)$$

 $\propto -\frac{1}{2} \left[\eta'(X'\Sigma X + K'\Omega K)\eta - 2\eta'(X'\Sigma y + K'\Omega K \eta^0)
ight]$

▶ In other words, $(\eta \,|\, y, \theta) \sim \mathsf{N}(\hat{\eta}, H^{-1})$, where

$$H = K'\Omega K + X'\Sigma X,$$

$$\hat{\eta} = H^{-1}(K'\Omega K \eta^0 + X'\Sigma y)$$

Since X'ΣX is banded, it follows that H is also banded

What this process gives us

- At this point we have the mean, $\hat{\eta}$, and precision, H
- ▶ Note that the precision, *H*, is a banded and sparse matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Efficient State Simulation for the Linear Gaussian Case

- 1. Compute H and obtain its Cholesky decomposition C_H such that $H = C'_H C_H$
- 2. Sample $u \sim N(0, I_{Tm})$, and solve $C_{HX} = u$ for x by back-substitution Then $x \sim N(0, H^{-1})$
- 3. Solve

$$C'_H C_H \hat{\eta} = K' \Omega K \eta^0 + X' \Sigma y$$

for $\hat{\eta}$ by forward- and back-substitution.

4. Finally return $\eta = \hat{\eta} + x$, so that $\eta \sim N(\hat{\eta}, H^{-1})$

Key features:

- Can compute $\hat{\eta}$ and C_H fast
- Marginal cost of sampling from $N(\hat{\eta}, H^{-1})$ is low
- Built-in routines for sparse matrices in Matlab and Gauss
- Can also generate from $t(\nu, \hat{\eta}, H^{-1})$

General State Space: Measurement Equation

Idea: approximate the log-likelihood In $p(y | \eta, \theta)$ via a second-order Taylor expansion around $\tilde{\eta} = (\tilde{\eta}'_1, \dots, \tilde{\eta}'_T)'$:

$$\ln p(y \mid \eta, \theta) \approx \ln p(y \mid \tilde{\eta}, \theta) + (\eta - \tilde{\eta})' f - \frac{1}{2} (\eta - \tilde{\eta})' G(\eta - \tilde{\eta})$$
$$\propto -\frac{1}{2} \left[\eta' G \eta - 2\eta' (f + G \tilde{\eta}) \right],$$
$$f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_T \end{bmatrix}, G = \begin{bmatrix} G_1 & 0 & \cdots & 0 \\ 0 & G_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & G_T \end{bmatrix},$$
$$f_t \equiv \frac{\partial}{\partial \eta_t} \ln p(y_t \mid \eta_t, \theta) \Big|_{\eta_t = \tilde{\eta}_t}, G_t \equiv -\frac{\partial^2}{\partial \eta_t \eta'_t} \ln p(y_t \mid \eta_t, \theta) \Big|_{\eta_t = \tilde{\eta}_t}$$

The Gaussian Approximation

State equation: linear Gaussian as before (for simplicity):

$$\ln p(\eta \mid \theta) \propto rac{1}{2} \ln |\Omega| - rac{1}{2} (\eta - \eta^0)' \mathcal{K}' \Omega \mathcal{K} (\eta - \eta^0)$$

 Combining this and the approximation for the measurement equation:

$$\ln p(\eta \mid y, \theta) \propto \ln p(y \mid \eta, \theta) + \ln p(\eta \mid \theta)$$
$$\approx -\frac{1}{2} \left[\eta'(G + K'\Omega K)\eta - 2\eta'(f + G\tilde{\eta} + K'\Omega K\eta^0) \right]$$

• That is, the approximating distribution is Gaussian with precision $H \equiv G + K'\Omega K$

What we need for the Gaussian approximation

- Expand the Taylor approximation at the mode $\hat{\eta}=\tilde{\eta}$
- This then gives us the precision matrix, H
- Note that, again, the precision, H, is a banded and sparse matrix
- This structure will give us the necessary computational speed

We Investigate Three Sampling Schemes

- Sampling Scheme 1 (S1): MH with a Gaussian Proposal
 - Expand the Taylor approximation at the mode $\hat{\eta}$
 - ► Generate candidates from $q(\eta | y, \theta) = N(\hat{\eta}, H^{-1})$ or $q(\eta | y, \theta) = t(\nu, \hat{\eta}, H^{-1})$ for the MH step
- Sampling Scheme 2 (S2): ARMH with a Gaussian or t Proposal
- Sampling Scheme 3 (S3): Collapsed Sampling with Cross Entropy
 - Used to draw $\theta \sim p(\theta \mid y)$ then draw $\eta \sim p(\eta \mid y, \theta)$

Sampling Scheme 1: MH with a Gaussian Proposal

- Expand the Taylor approximation at the mode $\hat{\eta}$
- The mode can be found by Newton-Raphson method: given the current location η^(s), compute

$$\eta^{(s+1)} = \eta^{(s)} + H(\eta^{(s)})^{-1} \frac{\partial}{\partial \eta} \log p(\eta \mid y, \theta) \bigg|_{\eta = \eta^{(s)}}$$
$$= H(\eta^{(s)})^{-1} \left(f(\eta^{(s)}) + G(\eta^{(s)}) \eta^{(s)} + K'^{0} \right)$$

- Continue until $||\eta^{(s+1)} \eta^{(s)}|| < \epsilon$, set $\hat{\eta} = \eta^{(s+1)}$
- Generate candidates from N $(\hat{\eta}, H^{-1})$ for the MH step

Accept-reject Sampling

- Target density: p(η | y, θ) ∝ p(y | η, θ)p(η | θ); proposal density q(η | y, θ)
- ▶ In the classic AR sampling, we need a constant *c* such that

 $p(y | \eta, \theta)p(\eta | \theta) \leq cq(\eta | y, \theta),$

for all η in the support of $p(\eta | y, \theta)$

 Difficult to obtain c efficiently (especially when θ is revised at every iteration)

Accept-reject Metropolis-Hastings

- Combination of the classic accept-reject sampling with the MH algorithm
- The ARMH relaxes the domination condition. When it is not satisfied, use MH

Let

$$\mathcal{D} = \{ \eta : p(y | \eta, \theta) p(\eta | \theta) \le cq(\eta | y, \theta) \},\$$

and let \mathcal{D}^c denote its complement

Sampling Scheme 2: ARMH with a Gaussian Proposal

1. AR step: Generate a draw $\eta^* \sim q(\eta | y, \theta)$. Accept η^* with probability

$$\alpha_{\mathrm{AR}}(\eta^* | y, \theta) = \min\left\{1, \frac{p(y | \eta^*, \theta)p(\eta^* | \theta)}{cq(\eta^* | y, \theta)}\right\}$$

Continue the process until a draw η^{\ast} is accepted

2. MH-step: Given the current draw η and the proposal η^*

• if
$$\eta \in \mathcal{D}$$
, set $\alpha_{MH}(\eta, \eta^* | y, \theta) = 1$;
• if $\eta \in \mathcal{D}^c$ and $\eta^* \in \mathcal{D}$, set
 $\alpha_{MH}(\eta, \eta^* | y, \theta) = \frac{cq(\eta | y, \theta)}{p(y | \eta, \theta)p(\eta | \theta)}$

$$\blacktriangleright \ \ \, \text{if} \ \eta\in\mathcal{D}^c \ \text{and} \ \eta^*\in\mathcal{D}^c, \ \text{set}$$

$$\alpha_{\rm MH}(\eta, \eta^* \,|\, y, \theta) = \min\left\{1, \frac{p(y \,|\, \eta^*, \theta)p(\eta^* \,|\, \theta)q(\eta \,|\, y, \theta)}{p(y \,|\, \eta, \theta)p(\eta \,|\, \theta)q(\eta^* \,|\, y, \theta)}\right\}$$

Return η^* with prob. $\alpha_{MH}(\eta, \eta^* | y, \theta)$; otherwise return η

Another Way to Look at ARMH

The AR step: a way to sample from

$$q_{\mathrm{AR}}(\eta \,|\, \mathbf{y}, \theta) = d^{-1} \alpha_{\mathrm{AR}}(\eta \,|\, \mathbf{y}, \theta) q(\eta \,|\, \mathbf{y}, \theta)$$

- By adjusting the original proposal density q(η | y, θ) by the function α_{AR}(η | y, θ), a better approximation is achieved
- In fact, we have

$$q_{\mathrm{AR}}(\eta \,|\, y, heta) = \left\{ egin{array}{ll} p(y \,|\, \eta, heta) p(\eta \,|\, heta)/\mathsf{cd}, & \eta \in \mathcal{D}, \ q(\eta \,|\, y, heta)/\mathsf{d}, & \eta \in \mathcal{D}^c, \end{array}
ight.$$

 Better approximation, but requires multiple draws in the AR step

Joint Sampling of (θ, η)

- ▶ Typically sample from $p(\eta | y, \theta)$ and $p(\theta | y, \eta)$ sequentially
- \blacktriangleright In some settings, η and θ might be highly correlated
- ► Hence, sample (θ, η) jointly by first drawing from p(θ | y) marginally of the states η followed by a draw from p(η | y, θ)
- Need a mechanism to generate candidates for θ. Often use random walk

Sampling Scheme 3: Collapsed Sampling with CE

- ► We propose an independence chain MH sampler instead
- The proposal density for θ, denoted as q(θ | y), is obtained optimally: given a parametric family of densities P, use the member in P that is the closest to the marginal density p(θ | y) in the Kullback-Leibler divergence or the cross-entropy distance
- Generate θ* ~ q(θ | y), then evaluate the acceptance probability (that involves estimating the integrated likelihood via importance sampling)

Illustration: TVP-VAR with SV

Write the VAR(I) in SUR form:

$$y_t = x_t \beta_t + \epsilon_t, \quad \epsilon_t \sim \mathsf{N}(0, \Sigma_t^{-1}),$$

where $x_t = I_n \otimes [1, y'_{t-1}, \dots, y'_{t-l}]$ and $\beta_t = \text{vec}([\mu_t : A_{t1} : \dots : A_{tl}]')$ is a $k \times 1$ vector of VAR coefficients with $k = n^2 l + n$

Following Primiceri (2005), the time-varying precision matrix Σ_t is modeled as $\Sigma_t = L'_t D_t^{-1} L_t$, where $D_t = \text{diag}(e^{h_{t1}}, \dots, e^{h_{tn}})$ and

$$L_{t} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_{t21} & 1 & 0 & \cdots & 0 \\ a_{t31} & a_{t32} & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{tn1} & a_{tn2} & \cdots & a_{tn,n-1} & 1 \end{pmatrix}$$

State Equations

▶ Let $h_t = (h_{t1}, ..., h_{tn})'$ and a_t be the free elements of L_t , i.e., $a_t = (a_{t21}, a_{t31}, a_{t32}, ..., a_{tn,n-1})'$

Random walks for all the states:

$$\begin{split} \beta_t &= \beta_{t-1} + \eta_t, \quad \eta_t \sim \mathsf{N}(0, \Omega_\beta^{-1}), \\ h_t &= h_{t-1} + \xi_t, \quad \xi_t \sim \mathsf{N}(0, \Omega_h^{-1}), \\ \mathbf{a}_t &= \mathbf{a}_{t-1} + \zeta_t, \quad \zeta_t \sim \mathsf{N}(0, \Omega_a^{-1}), \end{split}$$

where Ω_{β} , Ω_{h} , and Ω_{a} are all diagonal matrices

Inequality Restriction

- For the application, we have n = 3 variables: nominal interest rate (3-month Tbill), inflation rate (CPI) and GDP growth
- U.S. quarterly data from 1947 Q1 to 2011 Q2
- Impose the restriction that the nominal interest rate is always non-negative (a model for computing liquidity trap)
- ► Assume y_{t1} ≥ 0 is the nominal interest rate, and let x_{t1} be the first row of x_t
- The marginal distribution of y_{t1} is

$$(y_{t1} | \beta_t, \Sigma_t) \sim \mathsf{N}(x_{t1}\beta_t, \mathsf{e}^{h_{t1}})\mathbf{1}(y_{t1} \ge 0)$$

Inequality Restriction (cont.)

Hence,

$$\mathbb{P}(y_{t1} \ge 0 \,|\, \beta_t, \Sigma_t) = 1 - \Phi\left(-x_{t1}\beta_t/e^{\frac{1}{2}h_{t1}}\right) = \Phi\left(x_{t1}\beta_t e^{-\frac{1}{2}h_{t1}}\right),$$

• The log-likelihood is $\ln p(y | \beta, \Sigma) = \sum_{t=1}^{T} \ln p(y_t | \beta_t, \Sigma_t)$, where

$$\ln p(y_t \mid \beta_t, a_t, h_t) \propto -\frac{1}{2} \sum_{i=1}^n h_{ti} - \frac{1}{2} (y_t - x_t \beta_t)' L'_t D_t^{-1} L_t (y_t - x_t \beta_t) - \ln \Phi \left(x_{t1} \beta_t e^{-\frac{1}{2} h_{t1}} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Acceptance Rate and Running Time

Table: Acceptance rate (in %) and running time (in minutes; 50000 draws) of the three sampling schemes: MH (S1), ARMH (S2) and the collapsed sampler with CE (S3).

scheme	β	<i>h</i> .1	h .2	·3	Ω_eta	Ω_h	Ω_a	time
S1	68	28	35	59	-	-	-	23
S2	95	71	79	97	_	_	_	27
S3	98	69	79	97	62	58	76	182

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inefficiency Factors

Estimation Results: volatilities and correlations

Figure: Evolution of the log-volatilities and correlations. Solid *red line* is the estimated posterior mean under the *unrestricted* model. The solid *blue line* is the estimated posterior mean under the *restricted* model with 5%-tile and 95%-tile, respectively.

Estimation Results: Impulse responses

Figure: Impulse response to a credit shock under the unrestricted model (red solid line) and the model with the inequality restrictions imposed (blue solid line).

Concluding Remarks and Future Research

- Building on recent developments in precision-based algorithms, we propose a practical approach to simulating the states in a more general state space model
- A general approach that is much less computationally demanding than PF

Future research:

- non-linear DSGE models limitations to invertible states
- a state space model for bounded inflation rate (already done)
- time-varying-parameter MA models (already done)
- non-linear factor models (wrestling with this and about to give up)