Bayesian nonparametric inference for hidden Markov models: an overview and some new insights.

Sonia Petrone
joint work with Sandra Fortini
Bocconi University, Milano

April 12, 2013 - Institute for Statistics and Mathematics Vienna University of Economics and Business

aim and contents

Hidden Markov models (HMM) are popular tools for time series analysis, speech recognitions, ...
Observable process $\left(Y_{t}\right)$ and latent process $\left(\theta_{t}\right)$. Assume

- $\left(\theta_{t}\right)$ is a Markov chain with state space $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$,
- and conditionally on the θ_{t} 's, the Y_{t} are independent:

$$
Y_{t} \mid \theta_{t}=\xi_{i} \stackrel{\text { indep }}{\sim} f\left(y \mid \xi_{i}\right)
$$

aim and contents

Hidden Markov models (HMM) are popular tools for time series analysis, speech recognitions, ...
Observable process $\left(Y_{t}\right)$ and latent process $\left(\theta_{t}\right)$. Assume

- $\left(\theta_{t}\right)$ is a Markov chain with state space $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$,
- and conditionally on the θ_{t} 's, the Y_{t} are independent:

$$
Y_{t} \mid \theta_{t}=\xi_{i} \stackrel{\text { indep }}{\sim} f\left(y \mid \xi_{i}\right)
$$

A general problem in HMMs is how to choose the number of states.
A Bayesian nonparametric approach offers an interesting solution, which allows to generate states as the need occurs.

Furthermore, efficient computational tools are available, which exploit the predictive construction of nonparametric priors.

aim and contents

In recent years, there has been an impressive explosion of Bayesian nonparametric methods, in the statistical literature and in other areas, such as machine learning.

This talk is an overview of some of these constructions, and gives theoretical insights on connections across apparently unrelated literature

- urn processes (Polya, Hoppe, .. see Feng, 2010) and reinforced urn processes (or random walk on graphs: Coppersmit \& Diaconis(1987), Pemantle (1988), Diaconis \& Rolles (2006), Muliere, Secchi, Walker (2000), ...)
- many recent proposals in machine learning, such us hierarchical Dirichlet Processes (Teh et al., 2006), infiniteHMM (Beal, Ghahramani, Rasmussen, 2002), sticky infiniteHMM (Fox et al., 2007) Indian Buffet (Griffiths \& Ghahramani, 2006), ...)

Here these methods are used for BNP: predictive construction of nonparametric priors for exchangeable and Markov exchangeable sequences.

outline

- Introduction: predictive construction of nonparametric priors
- Exchangeability.

Dirichlet process and Hoppe's urn

- Markov exchangeability

Reinforced urn processes.

outline

- Introduction: predictive construction of nonparametric priors
- Exchangeability.

Dirichlet process and Hoppe's urn

- Markov exchangeability

Reinforced urn processes.

- Nonparametric priors for HMMs
- Hierarchical Hoppe's urns
- Infinite HMMs

outline

- Introduction: predictive construction of nonparametric priors
- Exchangeability.

Dirichlet process and Hoppe's urn

- Markov exchangeability

Reinforced urn processes.

- Nonparametric priors for HMMs
- Hierarchical Hoppe's urns
- Infinite HMMs
- Related processes and extensions

1. Exchangeability

Consider first an exchangeable sequences $\left(Y_{i}\right)$ with probability law P. From de Finetti representation theorem, there exist a unique probability measure (prior) on $\mathcal{P}(\mathcal{Y})$ such that

$$
Y_{i} \mid F \stackrel{i . i . d}{\sim} F, \quad F \sim \pi .
$$

The random d.f. F is the weak limit of the sequence of empirical distributions $\hat{F}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}}$, but it is also the limit of the sequence of predictive distributions

$$
P_{n}(y)=P\left(Y_{n+1} \leq y \mid y_{1}, \ldots, y_{n}\right), \quad n=1,2, \ldots
$$

In a predictive approach, rather than specifying the model and the prior, one wants to construct them starting from predictive assumptions, i.e., assigning a sequence of predictive distributions P_{n}, that characterize a law P for $\left(Y_{i}\right)$ that is exchangeable.
Then, at least in principle, one has characterized the random F, i.e. the model and the prior.

Dirichlet process

Suppose $\left(Y_{i}\right)$ is exchangeable, and assume that $Y_{1} \sim F_{0}$ and for any $n \geq 1$

$$
P_{n}(y) \equiv P\left(Y_{n+1} \leq y \mid y_{1}, \ldots, y_{n}\right)=\frac{\alpha}{\alpha+n} F_{0}(y)+\frac{n}{\alpha+n} \sum_{i=1}^{n} \frac{1}{n} \delta_{y_{i}}
$$

a weighted average of a prior guess F_{0} and the empirical d.f. $\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}$.

Dirichlet process

Suppose $\left(Y_{i}\right)$ is exchangeable, and assume that $Y_{1} \sim F_{0}$ and for any $n \geq 1$

$$
P_{n}(y) \equiv P\left(Y_{n+1} \leq y \mid y_{1}, \ldots, y_{n}\right)=\frac{\alpha}{\alpha+n} F_{0}(y)+\frac{n}{\alpha+n} \sum_{i=1}^{n} \frac{1}{n} \delta_{y_{i}}
$$

a weighted average of a prior guess F_{0} and the empirical d.f. $\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}$.
Blackwell and McQueen (1973) showed that the Polya sequence $\left(Y_{n}\right)$ so defined is exchangeable, more specifically

- $P_{n} \Rightarrow F$, a.s.;
- F is discrete a.s. and $F \sim D P\left(\alpha F_{0}\right)$
- $Y_{i} \mid F \stackrel{i . i . d}{\sim} F$.

One can show that $F=\sum_{j=1}^{\infty} w_{j} \delta_{\xi_{j}}$ where the atoms $\xi_{j} \stackrel{i . i . d}{\sim} F_{0}$ and the weights $\left(w_{j}\right)$ have a stick-breaking prior (α), independently on the $\left(\xi_{j}\right)$.

DP and random partitions

The discrete nature of the DP is at the basis of many applications to BNP mixture models and clustering.
For understanding the implications of the predicitve rule in terms of random partitions, and thus the potentiality in clustering and more, it is useful to use an urn representation, proposed by Hoppe (1984).

DP and random partitions

The discrete nature of the DP is at the basis of many applications to BNP mixture models and clustering.
For understanding the implications of the predicitve rule in terms of random partitions, and thus the potentiality in clustering and more, it is useful to use an urn representation, proposed by Hoppe (1984).

Hoppe's urn (Hoppe, 1984). Urn with α black balls.
Pick a ball: if black, return it together with a ball of new color; if colored, return 2 balls of the same color.

Initially, we pick a black ball, generate a color and set $S_{1}=1$.
Then, we pick a ball: if colored, we set $S_{2}=1$; if black, generate a new color, and set $S_{2}=2$, and so on.

Hoppe's urn

By construction, $S_{1}=1$,

$$
S_{2} \left\lvert\, S_{1}=1 \sim \begin{cases}=2 & \text { with prob. } \frac{\alpha}{\alpha+1} \\ =1 & \text { with prob. } \frac{1}{\alpha+1}\end{cases}\right.
$$

and for $n \geq 1$, denoting by k the number of colors discovered in (S_{1}, \ldots, S_{n}) and by n_{j} the frequency of color j

$$
S_{n+1} \mid S_{1}, \ldots, S_{n}=\left\{\begin{array}{cc}
=k+1 & \text { with prob. } \frac{\alpha}{\alpha+n} \\
=j & \text { with prob. } \frac{n_{j}}{\alpha+n}, j=1, \ldots, k
\end{array}\right.
$$

Hoppe's urn

By construction, $S_{1}=1$,

$$
S_{2} \left\lvert\, S_{1}=1 \sim \begin{cases}=2 & \text { with prob. } \frac{\alpha}{\alpha+1} \\ =1 & \text { with prob. } \frac{1}{\alpha+1}\end{cases}\right.
$$

and for $n \geq 1$, denoting by k the number of colors discovered in $\left(S_{1}, \ldots, S_{n}\right)$ and by n_{j} the frequency of color j

$$
S_{n+1} \mid S_{1}, \ldots, S_{n}=\left\{\begin{array}{cc}
=k+1 & \text { with prob. } \frac{\alpha}{\alpha+n} \\
=j & \text { with prob. } \frac{n_{j}}{\alpha+n}, j=1, \ldots, k
\end{array}\right.
$$

The sequence $\left(S_{1}, \ldots, S_{n}\right)$ defines a random partition of $\{1,2, \ldots, n\}$. For example, for $n=6,\left(S_{1}, \ldots, S_{n}\right)=(1,2,1,1,3,2)$ gives the partition $(\{1,3,4\},\{2,6\},\{5\})$.

colored Hoppe's urn

The sequence $\left(S_{n}\right)$ is not exchangeable
However, if we color $\left(S_{n}\right)$ with colors $\xi_{i} \stackrel{i . i . d}{\sim} p_{0}$, the resulting sequence of colors $\left(X_{n}\right)$ is a Polya sequence

$$
Y_{n+1} \mid y_{1}, \ldots, y_{n} \sim \frac{\alpha}{\alpha+n} p_{0}+\frac{1}{\alpha+n} \sum_{j=1}^{k} n_{j} \delta_{y_{j}^{*}}
$$

thus it is exchangeable and its de Finetti measure is a $D P\left(\alpha p_{0}\right)$.

Applications in mixture models

This clustering property is often used at the second stage of Bayesian hierarchical models. Consider

$$
\begin{aligned}
& Y_{i} \mid \theta_{i} \stackrel{\text { indep }}{\sim} f\left(y \mid \theta_{i}\right) \\
& \theta_{i} \mid G \stackrel{i . i . d}{\sim} G \\
& G \sim \pi
\end{aligned}
$$

Integrating the θ_{i} out, we obtain a mixture model

$$
Y_{i} \mid G \stackrel{i . i . d}{\sim} \int f(y \mid \theta) d G(\theta) .
$$

Applications in mixture models

This clustering property is often used at the second stage of Bayesian hierarchical models. Consider

$$
\begin{aligned}
Y_{i} \mid \theta_{i} & \stackrel{\text { indep }}{\sim} f\left(y \mid \theta_{i}\right) \\
\theta_{i} \mid G & \stackrel{i . i . d}{\sim} G \\
G & \sim \pi
\end{aligned}
$$

Integrating the θ_{i} out, we obtain a mixture model

$$
Y_{i} \mid G \stackrel{i . i . d}{\sim} \int f(y \mid \theta) d G(\theta)
$$

If we assume $G \sim \operatorname{DP}\left(\alpha G_{0}\right)$, then

- G is a.s. discrete, $G=\sum_{j=1}^{\infty} w_{j} \delta_{\xi_{j}}$, thus the model reduces to a countable mixture

$$
Y_{i} \mid G \stackrel{i . i . d}{\sim} \sum_{j=1}^{\infty} w_{j} f\left(y \mid \xi_{j}\right) .
$$

- the predictive structure implies a prior on the random clustering of $\left(\theta_{1}, \ldots, \theta_{n}\right)$.

Markov exchangeability

Let us now consider Bayesian inference for a Markov chain $\left(Y_{t}\right)$, with state space $\{1, \ldots, k\}$.
We assume that $\left(Y_{t}\right)$ is a Markov chain conditionally on the unknown transition matrix $\Pi=\left\{\pi_{i, j}\right\}$ and we should assign a prior on Π.

Again, we can take a predictive approach: define predictive distributions P_{n} such that $\left(Y_{n}\right)$ is Markov exchangeable and recurrent. This characterizes the prior on the transition matrix Π.

Markov exchangeability

Let us now consider Bayesian inference for a Markov chain $\left(Y_{t}\right)$, with state space $\{1, \ldots, k\}$.
We assume that $\left(Y_{t}\right)$ is a Markov chain conditionally on the unknown transition matrix $\Pi=\left\{\pi_{i, j}\right\}$ and we should assign a prior on Π.

Again, we can take a predictive approach: define predictive distributions P_{n} such that $\left(Y_{n}\right)$ is Markov exchangeable and recurrent. This characterizes the prior on the transition matrix Π.

Fortini and Petrone (2013) give necessary and sufficient conditions on the predictive rules $P_{n}, n \geq 1$ so that they characterize a law P for $\left(Y_{n}\right)$ such that $\left(Y_{n}\right)$ is recurrent and Markov exchangeable.

Markov exchangeability

exchangeability \Leftrightarrow mixture of i.i.d.

?? $\quad \Leftrightarrow$ mixture of Markov chains

If $\left(Y_{n}\right)$ is recurrent, "??" is Markov exchangeability (Diaconis+Freedman, 1980).

Markov exchangeability

exchangeability \Leftrightarrow mixture of i.i.d.

?? $\quad \Leftrightarrow$ mixture of Markov chains

If $\left(Y_{n}\right)$ is recurrent, "??" is Markov exchangeability (Diaconis+Freedman, 1980).
$\left(Y_{n}, n \geq 0\right), Y_{i} \in I$ countable.
$\left(Y_{n}\right)$ is recurrent if $P\left(Y_{n}=Y_{0}\right.$ for infinitely many $\left.n\right)=1$.

Markov exchangeability

exchangeability \Leftrightarrow mixture of i.i.d.

?? $\quad \Leftrightarrow$ mixture of Markov chains

If $\left(Y_{n}\right)$ is recurrent, "??" is Markov exchangeability
(Diaconis+Freedman, 1980).
$\left(Y_{n}, n \geq 0\right), Y_{i} \in I$ countable.
$\left(Y_{n}\right)$ is recurrent if $P\left(Y_{n}=Y_{0}\right.$ for infinitely many $\left.n\right)=1$.
Two sequences $y=\left(y_{1}, \ldots, y_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$ are equivalent, $y \sim x$ iff they start from the same state and have same transitions counts e.g.: $y=(1,3,2,1,2)$ and $x=(1,2,1,3,2)$.
$\left(Y_{n}\right)$ is Markov exchangeable if $y \sim x$ implies

$$
P\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=P\left(Y_{1}=x_{0}, \ldots, Y_{n}=x_{n}\right)
$$

de Finetti theorem for Markov chains

Theorem

Suppose $\left(Y_{n}\right)$ is recurrent. Then $\left(Y_{n}\right)$ is Markov exchangeable iff it is a mixture of Markov chains,

$$
P\left(Y_{0}=y_{0}, \ldots, Y_{n}=y_{n} \mid Y_{0}=y_{0}\right)=\int \prod_{i=1}^{n} \Pi\left(y_{i} \mid y_{i-1}\right) d \mu\left(\Pi \mid y_{0}\right)
$$

The prior μ is uniquely determined.

In other words: $\left(Y_{n}\right) \mid \Pi$ is Markov, with state space I and transition matrix Π, and $\Pi \sim \mu$.

An equivalent definition

Zabell (1995) and Fortini, Ladelli, Petris, Regazzini (2002) give an equivalent characterization of mixtures of Markov chains.
successors matrix S : ith row $\left(X_{i, n}, n \geq 1\right)$ successors of state i.

Theorem

$\left(X_{n}\right)$ is a mixture of Markov chains iff each state that is visited has an infinite number of successors, and the successor matrix S is partially exchangeable by rows.

The prior on the the i th row of the transition matrix is the de Finetti measure of the exchangeable sequence of the successors of state i.

An equivalent definition

Zabell (1995) and Fortini, Ladelli, Petris, Regazzini (2002) give an equivalent characterization of mixtures of Markov chains.
successors matrix S : ith row $\left(X_{i, n}, n \geq 1\right)$ successors of state i.

Theorem

$\left(X_{n}\right)$ is a mixture of Markov chains iff each state that is visited has an infinite number of successors, and the successor matrix S is partially exchangeable by rows.

The prior on the the i th row of the transition matrix is the de Finetti measure of the exchangeable sequence of the successors of state i.

Remark: this is useful in urn schemes where draws from urn U_{i} represent the successors of state i. If recurrent and Markov exchangeable, one can also characterize the prior and the dependence across the rows of Π.

Interpretation of Π

- From Diaconis and Freedman (1980), Π is the limit of the matrix of transition counts

$$
\frac{T_{i, j}\left(X_{1}, \ldots, X_{n}\right)}{T_{i+}\left(X_{1}, \ldots, X_{n}\right)} \rightarrow \Pi_{i}(j), \quad \text { a.s. } P
$$

- From Fortini et al. (2002), it is the limit of the sequence of empirical distributions of the successors:

$$
\left(\frac{\sum_{k=1}^{n} \delta_{X_{1, k}}}{n}, \frac{\sum_{k=1}^{n} \delta_{X_{2, k}}}{n}\right) \rightarrow\left(\Pi_{1}, \Pi_{2}\right) \sim \mu_{1,2}(\cdot, \cdot)
$$

Interpretation of Π

- From Diaconis and Freedman (1980), Π is the limit of the matrix of transition counts

$$
\frac{T_{i, j}\left(X_{1}, \ldots, X_{n}\right)}{T_{i+}\left(X_{1}, \ldots, X_{n}\right)} \rightarrow \Pi_{i}(j), \quad \text { a.s. } P
$$

- From Fortini et al. (2002), it is the limit of the sequence of empirical distributions of the successors:

$$
\left(\frac{\sum_{k=1}^{n} \delta_{X_{1, k}}}{n}, \frac{\sum_{k=1}^{n} \delta_{X_{2, k}}}{n}\right) \rightarrow\left(\Pi_{1}, \Pi_{2}\right) \sim \mu_{1,2}(\cdot, \cdot)
$$

- Theorem $\left(X_{n}\right)$ recurrent and Markov exchangeable. Then it is a mixture of Markov chains, where the mixing distribution μ is the law of the limit of the sequence of predictive distributions.

Predictive construction of nonparametric priors for Markov exchangeable processes

Aim: Construct a process $\left(Y_{n}\right)$, with $Y_{i} \in I=\{1, \ldots, k\}, k \leq \infty$, through a collection of Hoppe's urns.

We first consider Bayesian inference for Markov chains, then for hidden Markov models

Reinforced Hoppe's urns

state space $I=\{1, \ldots, k\}, k \leq \infty$.
For any i, associate a Hoppe urn U_{i} with α black balls, and discrete color distribution p_{0} on I.

Reinforced Hoppe's urns

state space $I=\{1, \ldots, k\}, k \leq \infty$.
For any i, associate a Hoppe urn U_{i} with α black balls, and discrete color distribution p_{0} on I.

Fix $Y_{0}=y_{0}$, and pick a ball from urn $U_{y_{0}}$.
Since it is black, a color is sampled from p_{0} and added in the urn, together with the black ball.
If y_{1} is the sampled color, we set $Y_{1}=y_{1}$ and move to Hoppe's urn $U_{y_{1}}$, and so on.

Reinforced Hoppe's urns

state space $I=\{1, \ldots, k\}, k \leq \infty$.
For any i, associate a Hoppe urn U_{i} with α black balls, and discrete color distribution p_{0} on I.

Fix $Y_{0}=y_{0}$, and pick a ball from urn $U_{y_{0}}$.
Since it is black, a color is sampled from p_{0} and added in the urn, together with the black ball.
If y_{1} is the sampled color, we set $Y_{1}=y_{1}$ and move to Hoppe's urn $U_{y_{1}}$, and so on.

Thus at time n

$$
P_{n}(j) \equiv P\left(Y_{n+1}=j \mid y_{1}, \ldots, y_{n}=i\right)=\frac{\alpha_{i} p_{0, i}(j)+T_{i, j}\left(y_{1: n}\right)}{\alpha_{i}+T_{i,+}\left(y_{1: n}\right)}
$$

Call the process of colors $\left(Y_{n}\right)$ so defined a reinforced Hoppe's urn process (Hoppe RUP).

Hoppe RUP

The Hoppe RUP $\left(Y_{n}, n \geq 0\right)$ is not Markov. It is defined through the predictive rule.

We can prove that:

- $\left(Y_{n}\right)$ is Markov exchangeable.

Hoppe RUP

The Hoppe RUP $\left(Y_{n}, n \geq 0\right)$ is not Markov. It is defined through the predictive rule.

We can prove that:

- $\left(Y_{n}\right)$ is Markov exchangeable.
- Infinitely many black balls are drawn, thus we sample an infinite sequence of colors $\xi_{i} \stackrel{i . i . d}{\sim} p_{0}$.

Hoppe RUP

The Hoppe RUP $\left(Y_{n}, n \geq 0\right)$ is not Markov. It is defined through the predictive rule.

We can prove that:

- $\left(Y_{n}\right)$ is Markov exchangeable.
- Infinitely many black balls are drawn, thus we sample an infinite sequence of colors $\xi_{i} \stackrel{i . i . d}{\sim} p_{0}$.
- $\left(Y_{n}\right)$ is recurrent.

Hoppe RUP

The Hoppe RUP $\left(Y_{n}, n \geq 0\right)$ is not Markov. It is defined through the predictive rule.

We can prove that:

- $\left(Y_{n}\right)$ is Markov exchangeable.
- Infinitely many black balls are drawn, thus we sample an infinite sequence of colors $\xi_{i} \stackrel{i . i . d}{\sim} p_{0}$.
- $\left(Y_{n}\right)$ is recurrent.
- The draws from urn U_{i} are the successors of state i, and they are independent through the different urns.
Each urn is visited infinitely often. By construction, the draws from urn U_{i} are sampled through a Hoppe scheme, thus they are exchangeable and their de Finetti measure is a $D P\left(\alpha p_{0}\right)$.

Hoppe RUP

The Hoppe RUP $\left(Y_{n}, n \geq 0\right)$ is not Markov. It is defined through the predictive rule.

We can prove that:

- $\left(Y_{n}\right)$ is Markov exchangeable.
- Infinitely many black balls are drawn, thus we sample an infinite sequence of colors $\xi_{i} \stackrel{i . i . d}{\sim} p_{0}$.
- $\left(Y_{n}\right)$ is recurrent.
- The draws from urn U_{i} are the successors of state i, and they are independent through the different urns.
Each urn is visited infinitely often. By construction, the draws from urn U_{i} are sampled through a Hoppe scheme, thus they are exchangeable and their de Finetti measure is a $D P\left(\alpha p_{0}\right)$.
Thus we have proved
Proposition. The reinforced Hoppe RUP $\left(Y_{n}\right)$ is conditionally Markov, given the transition matrix Π, and the prior on Π is such that $\Pi_{i} \stackrel{\text { indep }}{\sim} D P\left(\alpha p_{0}\right)$.

Hierarchical Hoppe RUP

Consider a hierarchical extension of the Hoppe RUP.

- (1) Known colors.

Colors are drawn from an oracle Hoppe urn, with γ black balls and discrete, known distribution q on $\{1,2, \ldots\}$.

- (2) Unknown state space (HMM).

As before, colors are drawn from an oracle Hoppe urn, with γ black balls. But now we have a diffuse color distribution q.

Hierarchical Hoppe RUP - 1. known colors

If the color distribution of the oracle urn q is discrete on $\{1,2, \ldots, k\}, k \leq \infty$, only these colors can be drawn. Thus the state space of $\left(Y_{n}\right)$ is $\{1,2, \ldots, k\}$.

Hierarchical Hoppe RUP - 1. known colors

If the color distribution of the oracle urn q is discrete on $\{1,2, \ldots, k\}, k \leq \infty$, only these colors can be drawn. Thus the state space of $\left(Y_{n}\right)$ is $\{1,2, \ldots, k\}$.
lemma. The oracle urn is visited infinitely many times, a.s..

Thus the colors $\left(\xi_{i}\right)$ from the oracle urn are an infinite, exchangeable sequence, thus $\xi_{i} \mid p \stackrel{i . i . d}{\sim} p$, with $p \sim D P(\gamma q)$.

Hierarchical Hoppe RUP - 1. known colors

If the color distribution of the oracle urn q is discrete on $\{1,2, \ldots, k\}, k \leq \infty$, only these colors can be drawn. Thus the state space of $\left(Y_{n}\right)$ is $\{1,2, \ldots, k\}$.
lemma. The oracle urn is visited infinitely many times, a.s..
Thus the colors $\left(\xi_{i}\right)$ from the oracle urn are an infinite, exchangeable sequence, thus $\xi_{i} \mid p \stackrel{i . i . d}{\sim} p$, with $p \sim D P(\gamma q)$.

Therefore, conditionally on p, we are back to the previous case, and we have
$\left(Y_{n}\right) \mid \Pi, p$ is a Markov chain with state space I and transition matrix Π; the prior on Π is such that the rows are conditionally independent, with a hierarchical DP prior, namely

$$
\begin{array}{rll}
\Pi_{i} \mid p & \stackrel{\text { indep }}{\sim} & D P(\alpha p) \\
p & \sim & D P(\gamma q)
\end{array}
$$

2. diffuse q - infinite HMM

If q is diffuse, each time we visit the oracle urn we create a new color $\xi_{i}^{*} \sim q$.

Thus the state space of $\left(Y_{n}\right)$ is $\left\{\xi_{1}^{*}, \xi_{2}^{*}, \ldots\right\}$. We have $Y_{1}=\xi_{1}^{*}$, then Y_{2} can be of color ξ_{1}^{*} or a new color ξ_{2}^{*}, etc: colors are created when needed!

2. diffuse q - infinite HMM

If q is diffuse, each time we visit the oracle urn we create a new color $\xi_{i}^{*} \sim q$.

Thus the state space of $\left(Y_{n}\right)$ is $\left\{\xi_{1}^{*}, \xi_{2}^{*}, \ldots\right\}$. We have $Y_{1}=\xi_{1}^{*}$, then Y_{2} can be of color ξ_{1}^{*} or a new color ξ_{2}^{*}, etc: colors are created when needed!

But this is what we need as a prior for HMMs!
in HMMs, the Markov process is latent, thus also the state space $\left\{\xi_{1}^{*}, \xi_{2}^{*}, \ldots\right\}$ is unknown.

Hierachical Hoppe RUP with diffuse q

lemma. The oracle urn is visited infinitely many times, a.s..

Thus the colors $\left(\xi_{i}\right)$ from the oracle urn are an infinite, exchangeable sequence, thus $\xi_{i} \mid p \stackrel{i . i . d}{\sim} p$, with $p \sim D P(\gamma q)$.

Hierachical Hoppe RUP with diffuse q

lemma. The oracle urn is visited infinitely many times, a.s..
Thus the colors $\left(\xi_{i}\right)$ from the oracle urn are an infinite, exchangeable sequence, thus $\xi_{i} \mid p \stackrel{i . i . d}{\sim} p$, with $p \sim D P(\gamma q)$.

Therefore the above results hold conditionally on p, and we have
$\left(Y_{n}\right) \mid \Pi, p$ is a Markov chain with state space given by the support $\xi_{1}^{*}, \xi_{2}^{*}, \ldots$ of p, and transition matrix Π. The prior on Π is such that the rows are conditionally independent, with a hierarchical DP prior:

$$
\begin{array}{rr}
\pi_{\xi_{j}^{*}} \mid p=\sum_{j=1}^{\infty} w_{j} \delta_{\xi_{j}^{*}} & \stackrel{\text { indep }}{\sim} \\
p & D P(\alpha p) \\
p & D P(\gamma q)
\end{array}
$$

HMMs

In a HMM $\left(Y_{n}, \theta_{n}\right)$, we can construct the latent sequence $\left(\theta_{n}\right)$ as a hierarchical Hoppe reinforced urn process.

The results show that $\left(\theta_{n}\right)$ is conditionally Markov, and the prior on the unknown transition matrix is a hierarchical Dirichlet process.

The predictive scheme used to construct the prior is usefully exploited for computations.

Further examples and developments

- Sticky infinite HMMs: each Hoppe urn U_{i} has α black balls, and M balls of color i, so we put more mass on $\pi_{i, i}$ (Fox et al.).
- The Indian buffet process (Griffiths and Ghahramani, 2006) is also based on an urn scheme
- Other examples: Hoppe RUP with random reinforcement. The number Y_{n} of balls added at time n is random, with Y_{n} independent on $\left(X_{1}, \ldots, X_{n-1}\right)$.
- Covariate-dependent transition matrix

Urns indexed by color and covariate value.
$\left(X_{n}\right)$ is partially Markov exchangeable.

- mixture of Markov chain observed at random time points
- ...

summary

This was an overview of some predictive constructions, based on urn schemes, for characterizing mixtures of Markov chains. Hoppe RUPs and hierarchical Hoppe's RUPs shed light on theoretical properties and connections between RUP, infinite HMM and hierarchical DP.

The predictive construction is exploited for efficient computational algorithms, with a huge number of applications....

summary

This was an overview of some predictive constructions, based on urn schemes, for characterizing mixtures of Markov chains. Hoppe RUPs and hierarchical Hoppe's RUPs shed light on theoretical properties and connections between RUP, infinite HMM and hierarchical DP.

The predictive construction is exploited for efficient computational algorithms, with a huge number of applications....

Developments:
Further nonparametric constructions for Markov exchangeable sequences (e.g.
using extensions of Hoppe's urn (Feng and Hoppe, 1998; two-parameters Poisson-Dirichlet)
and extensions to more general exchangeability structures (row-column exchangeability, network data)

summary

This was an overview of some predictive constructions, based on urn schemes, for characterizing mixtures of Markov chains. Hoppe RUPs and hierarchical Hoppe's RUPs shed light on theoretical properties and connections between RUP, infinite HMM and hierarchical DP.

The predictive construction is exploited for efficient computational algorithms, with a huge number of applications....

Developments:
Further nonparametric constructions for Markov exchangeable sequences (e.g.
using extensions of Hoppe's urn (Feng and Hoppe, 1998; two-parameters Poisson-Dirichlet)
and extensions to more general exchangeability structures (row-column exchangeability, network data)

thank you for your attention!

References

Fortini, S. and Petrone, S. (2012). Hierarchical reinforced urn processes. Statistics and Probability Letters 82, 1521-1529.
Fortini, S. and Petrone, S. (2012). Predictive construction of priors in Bayesian nonparametrics Brazilian Journal of Probability and Statistics, 26, 423-449.

Fortini, S. and Petrone, S. (in preparation). Predictive characterization of Markov exchangeable sequences.

References

Fortini, S. and Petrone, S. (2012). Hierarchical reinforced urn processes. Statistics and Probability Letters 82, 1521-1529.
Fortini, S. and Petrone, S. (2012). Predictive construction of priors in Bayesian nonparametrics Brazilian Journal of Probability and Statistics, 26, 423-449.
Fortini, S. and Petrone, S. (in preparation). Predictive characterization of Markov exchangeable sequences.

Beal, M.J., Ghahramani, Z. and Rasmussen, C.E. (2002). The Infinite Hidden Markov Model. Machine Learning, MIT Press, 239-245.
Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn schemes. Annals of Statistics, 1, 353-355.
Coppersmith, D. and Diaconis, P. (1987). Random walk with reinforcement. Unpublished manuscript.
Diaconis, P. and Freedman, D. (1980). de Finetti theorem for Markov chains. Annals of Probability, 8, 115-130.
Diaconis, P. and Rolles, S.W.W. (2006). Bayesian analysis for reversible Markov chains. Annals of Statistics, 34, 1270-1292.

References

Ewens, W.J. (1972). The sampling theory of selectively neutral alleles. Theoretical Population Biology, 3, 87-112.
Feng, S. (2010) The Poisson-Dirichlet Distribution and Related Topics. Springer.
Fortini, S., Ladelli, L., Petris, G. and Regazzini, E. (2002). On mixtures of distributions of Markov chains. Stochastic Processes and their Applications, 100, 147-165.
Fox, E.B., Sudderth, E.B., Jordan, M.I and Willsky, A.S. (2011). A sticky HDP-HMM with application to speaker diarization. Annals of Applied Statistics, 5, 1020-1056.
Griffiths, T.L. and Ghahramani, Z. (2006). Infinite latent features models and the Indian Buffet process. Advances in Neural Information Processing Systems 18, Cambridge, MA. MIT Press.
Griffiths, T.L. and Ghahramani, Z. (2011). The Indian Buffet Process: An Introduction and Review. Journal of Machine Learning Research, 12, 1185-1224.
Hoppe, F.M. (1984). Pólya-like urns and the Ewens's sampling formula. Journal Mathematical Biology, 20, 91-94.
Hoppe, F.M. (1987). The sampling theory of neutral alleles and an urn model in population genetics. Journal of Mathematical Biology, 25, 123-159.

References

Muliere, P., Secchi, P. and Walker, S.G. (2000). Urn schemes and reinforced random walks. Stochastic Processes and their Applications, 88, 59-78.
Paganoni, A. M. and Secchi, P. (2004). Interacting Reinforced-Urn Systems. Advances in Applied Probability, 36, 791-804.
Pemantle, R. (1988). Random Processes with Reinforcement. Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of Technology.
Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, Probability and Game Theory. Papers in honor of David Blackwell, T.S. Ferguson et al. Eds., Lecture Notes-Monograph Series, Vol 30, 245-267. Institute of Mathematical Statistics, Hayward, California.
Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006). Hierarchical Dirichlet Processes. Journal of the American Statistical Association, 101, 1566-1581.

References

Teh, Y.W. and Jordan, M. I. (2010). Hierarchical Bayesian Nonparametric Models with Applications In Bayesian Nonparametrics: Principles and Practice, Hjort, N.L., Holmes, C., Muller, P. and Walker, S.G. Eds, Cambridge University Press, Cambridge, UK.
Van Gael, J., Teh, Y.W. and Ghahramani, Z. (2009). The Infinite Factorial Hidden Markov Model. Advances in Neural Information Processing Systems, 21.
Walker, S. and Muliere, P. (1997). Beta-Stacy processes and a generalization of the Polya-urn scheme. Annals of Statistics, 25, 1762-1780.

Zabell, S.L. (1995). Characterizing Markov exchangeable sequences. Journal of Theoretical Probability, 8, 175-178.

