
Sequential Posterior Simulators for Bayesian Inference

Sequential Posterior Simulators for Bayesian
Inference

John Geweke
University of Technology Sydney; Erasmus University;

University of Colorado; Amazon.com
Garland Durham

University of Colorado

Vienna University of Economics and Business
Institute for Statistics and Mathematics

May 17, 2013

Sequential Posterior Simulators for Bayesian Inference

Introduction

Goals and notation

Goals and tools

Goal: Better quantitative decision-making

Using formal probability methods
When data are an important part of the information
(but never all of the information)
When data are time series (including longitudinal data)

Tools

Thinking carefully about formal and coherent
probability models
In my research this leads to

Updating and prediction
Optimal smoothing and filtering
Law of inverse probability
Bayesian inference

Sequential Posterior Simulators for Bayesian Inference

Introduction

Goals and notation

Notation

Random vectors and data
Yt (t = 1, . . . ,T): Observable random vectors
Yt1 :t2 : The collection {Yt1 , . . . ,Yt2}
yt : Observed value of Yt (one data vector)
yt1 :t2 : The collection {yt1 , . . . , yt2} (so y1:T is the data set)

Formal and coherent probability models
ModelsMi , each with unobservables (often parameters)
θi (i = 1, . . . ,M)
Prior density in modelMi :

p (θi | Mi)

Sequence of conditional densities in model Mi :

p (Yt | Y1:t−1, θi ,Mi) (t = 1, 2, . . .) ,

Henceforward, notation dispenses with the conditioning on
Mi , but the idea is always there.

Sequential Posterior Simulators for Bayesian Inference

Introduction

Updating, prediction and simulation

Implications of the formal probability model

For any t = 1, 2, Updated conditional parameter density

p (θ | y1:t−1)

represented as

θjn ∼ p (θ | y1:t−1) (t = 1, 2, . . .) (j = 1., . . . , J; n = 1, . . . ,N) ;

Predictive density

p (Yt | y1:t−1) =
∫

Θ
p (Yt | y1:t−1, θ) p (θ | y1:t−1)

represented as

Yt ,jn ∼ p (Yt | θjn) (j = 1., . . . , J; n = 1, . . . ,N) ;

Sequential Posterior Simulators for Bayesian Inference

Introduction

Updating, prediction and simulation

Implications (continued)

Predictive likelihood

p (yt | y1:t−1) =
∫

Θ
p (yt | y1:t−1, θ) p (θ | y1:t−1) ;

represented as

(JN)−1
J

∑
j=1

N

∑
n=1

p (yt | y1:t−1, θjn) .

If the sample size is T , then the log marginal likelihood is

log p (y1:T) =
T

∑
t=1
log p (yt | y1:t−1)

for ModelMi

Sequential Posterior Simulators for Bayesian Inference

Introduction

Updating, prediction and simulation

Motivation

Sequential posterior simulators combine ideas from sequential
Monte Carlo (particle filtering), importance sampling,
resampling and Markov chain Monte Carlo.

They (now) have a solid theoretical justification.

They apply immediately to a huge range of models: all that is
needed is code to evaluate the prior density and the likelihood
function and to simulate from the prior distribution.

While they are globally sequentially, they are locally parallel
and nearly idea for massively parallel processing.

Recent innovation in hardware (graphics processing units) and
software (C/CUDA, Matlab) provide access to this technology
that is both quick and inexpensive.

Sequential Posterior Simulators for Bayesian Inference

Introduction

Conditions

Sequential posterior simulation algorithms:
Conditions for some theorems and algorithms

Prior distribution: The model specifies a proper prior
distribution that can be evaluated in closed form.

Likelihood function evaluation: The sequence of conditional
densities

p (yt | y1:t−1, θ) (t = 1, . . . ,T)

can be evaluated in closed form. (T is sample size.)

Bounded likelihood: The sequence of densities p (y1:T | θ) is
bounded above by p < ∞ for all θ ∈ Θ.
Existence of prior moments: If the algorithm is used to
approximate E [g (θ) | y1:T], then E

[
g (θ)2+δ

]
< ∞ for some

δ > 0.

Sequential Posterior Simulators for Bayesian Inference

Introduction

Fixed design algorithm

An algorithm with all design parameters fixed

Always fixed:

Number and organization of particles: J, N

Cycles in the algorithm

` = 1, . . . , L cycles
Cycle ` processes observations yt`−1+1:t`
0 = t0 < t1 < · · · < tL−1 < tL = T

Fixed algorithm parameters in this but not in the adaptive
version of the algorithm

Number L and timing of cycles: t1, . . . , tL−1
Number of Metropolis steps in each cycle: R1, . . . ,RL
Metropolis random walk variance matrices in each step, each
cycle: Σ`r (r = 1, . . .R`; ` = 1, . . . , L)

Sequential Posterior Simulators for Bayesian Inference

Introduction

Fixed design algorithm

A little more detail

Particles in cycle ` of the algorithm (` = 1, . . . , L)

C phase: θ
(`−1)
jn

At the start, θ
(`−1)
jn ∼ p

(
θ | y1:t`−1

)
Use importance sampling to update to θ

(`−1)
jn ∼ p (θ | y1:t`)

Transition from C to S phase: θ
(`−1)
jn with associated weights

w
(

θ
(`−1)
jn

)
S phase: Select particles θ

(`,0)
jn (no weights)

For each θ
(`,0)
jn there exists some n′ such that θ

(`,0)
jn = θ

(`−1)
jn′

M phase

At the end of Metropolis step r denote the particles θ
(`,r)
jn .

End of M phase and cycle (Metropolis step R`): θ
(`)
jn = θ

(`,R`)
jn

At the conclusion of the algorithm: θjn = θ
(L)
jn

Sequential Posterior Simulators for Bayesian Inference

Introduction

Fixed design algorithm

Convergence and posterior moments

Because there is no adaptation, existing convergence results
(N → ∞; Chopin 2004 Theorem 2) apply.

Posterior moment: g = E [g (θ) | y1:T]

Approximation: g (J ,N) = (NJ)−1 ∑J
j=1 ∑N

n=1 g (θjn)

Chopin 2004 Theorem 2: (JN)1/2
(
g (J ,N) − g

)
d−→ N (0, v)

Our v not the same as v in Chopin 2004 Theorem 2
But that paper does not show how to approximate v (nor does
any other, to our knowledge) and this is required for practical
application in any event.

Sequential Posterior Simulators for Bayesian Inference

Introduction

Fixed design algorithm

Assessing the accuracy of posterior moments

Define within-group sample means gNj = N
−1 ∑N

n=1 g (θjn).
Chopin 2004 Theorem 2 applies to each one (N → ∞), so
limiting distribution is normal.
Independence of particles θjn across groups in every cycle of
every phase (recall: residual sampling done group-by-group),
hence gN1 , . . . , gNJ mutually independent.
Variance estimate appropriate to g (J ,N) is

v̂N =
J

∑
j=1

(
gNj − gN

)2
/J (J − 1)

and
(J − 1) v̂N/v d−→ χ2 (J − 1) .

Sequential Posterior Simulators for Bayesian Inference

Introduction

Fixed design algorithm

Problem with the fixed design algorithm

Sound theoretical foundations, but it does not work as a
practical matter.

These must be specified before the algorithm executes:

Number L and timing of cycles: t1, . . . , tL−1
Number of Metropolis steps in each cycle: R1, . . . ,RL
Metropolis random walk variance matrices in each step, each
cycle: Σ`r (r = 1, . . .R`; ` = 1, . . . , L)

This never works

Sequential Posterior Simulators for Bayesian Inference

Introduction

Adaptive design algorithm

Adaptive design algorithm: Main features

User specifies: J, N, R
In the C phase, determine the effective sample size

ESS =

[
J

∑
j=1

N

∑
n=1

ws
(

θ
(`−1)
jn

)]2
/

J

∑
j=1

N

∑
n=1

ws
(

θ
(`−1)
jn

)2
after each observation is added. Proceed to the CS transition
if ESS/NJ < D1 = 0.5.
In the M phase, Metropolis step r :

Σ`r = h`r · var
(

θ
(`,r−1)
jn

)
;

h`1 = 0.5;
After each Metropolis step r is completed compute the
acceptance rate across all particles in all groups. If this
exceeds 0.25, h`,r+1 = h`r + 0.01; else h`,r+1 = h`r − 0.01;
R Metropolis steps if ESS/NJ > D2, otherwise 3R steps.

Sequential Posterior Simulators for Bayesian Inference

Introduction

Adaptive design algorithm

Problem with the adaptive algorithm

It “works” in a very wide variety of models.

But it does not have sound theoretical foundations
nor is it likely to in the foreseeable future

Why we care

The adaptive algorithm works well on conventional CPU’s
and it works very well in cheap desktop parallel computing
with graphical processing units (GPUs).
and (I conjecture) algorithms like this will be in widespread
application in 5 to 10 years

Sequential Posterior Simulators for Bayesian Inference

Introduction

Adaptive design algorithm

Providing a sound theoretical foundation
for the adaptive algorithm

Run the adaptive version of the algorithm.

Save the design parameters

Number L and timing of cycles: t1, . . . , tL−1
Number of Metropolis steps in each cycle: R1, . . . ,RL
Metropolis random walk variance matrices in each step, each
cycle: Σ`r (r = 1, . . .R`; ` = 1, . . . , L)

Discard the particles

Run the fixed design algorithm using the saved design
parameters and new random number generator seeds.

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Exponential generalized autoregressive
conditional heteroskedasticity (EGARCH) model

Background:
Decision-making about allocation and pricing of financial
assets, and economic policy
Mean returns are almost unpredictable, and we know why.
The spread of the distribution (loosely, volatility) is constantly
changing.
This matters —greatly! — for pricing and allocation of asset
derivatives and economic policy

EGARCH model
Variant here is a substantial generalization of a successful
model
Strong competitor with other models (Geweke and Durham
pooling paper, 2011)
Model is well suited to show robustness properties of the
sequential posterior simulator

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Model and data

Model

Sequence of observed asset returns {yt}
Evolution of volatility factors

vkt = αkvk ,t−1+ βk

(
|εt−1| − (2/π)1/2

)
+γk εt−1 (k = 1, . . . ,K)

Then

yt = µY + σY exp

(
K

∑
k=1

vkt/2

)
εt

with

p(εt) =
I

∑
i=1
piφ(xi ; µi , σ

2
i); E (εt) = 0, var (εt) = 1.

Notation: This is the EGARCH(K,I) model.

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Model and data

Data

S&P 500 index closing value pt on trading days from January 2,
1990 (t = 0) through March 31, 2010 (t = T = 5100).
The returns are yt = log (pt/pt−1) (t = 1, . . . ,T).

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Performance

Performance
Model Time (secs.) Cycles L logML NSE

EGARCH(1, 1) 716 52 16,641.76 0.01
EGARCH(1, 2) 1224 68 16,712.55 0.02
EGARCH(2, 1) 849 59 16,669.50 0.03
EGARCH(2, 2) 1377 73 16,735.80 0.04
EGARCH(2, 3) 1796 76 16,750.73 0.03
EGARCH(3, 2) 1455 73 16,733.94 0.04
EGARCH(3, 3) 1857 74 16,748.62 0.04
EGARCH(3, 4) 2492 80 16,748.42 0.04
EGARCH(4, 3) 2074 75 16,745.68 0.05
EGARCH(4, 4) 2613 78 16,745.34 0.04
J = 64; N = 4096; J ·N = 262, 144; R = 55

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Some specific aspects of the application

Moment of interest: g (θ) = 100 · P (Yt+1 < −0.03 | y1:t , θ)

t = March 31, 2009 t = March 31, 2010
Posterior Posterior
mean NSE RNE mean NSE RNE

R = 5 9.7045 0.0481 0.0009 0.0632 0.0015 0.0013
R = 8 9.7996 0.0379 0.0014 0.0704 0.0012 0.0024
R = 13 9.7445 0.0267 0.0027 0.0728 0.0009 0.0045
R = 21 9.7418 0.0198 0.0050 0.0748 0.0005 0.0137
R = 34 9.7639 0.0114 0.0145 0.0759 0.0004 0.0268
R = 55 9.7834 0.0074 0.0343 0.0770 0.0002 0.0643
R = 89 9.7851 0.0047 0.0857 0.0770 0.0001 0.1665
R = 144 9.7760 0.0037 0.1382 0.0769 0.0001 0.3524
EGARCH(2,3) J = 64; N = 4096; J ·N = 262, 144

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Some specific aspects of the application

Multimodal posterior distributions

There are J ! permutations of the factors and K ! permutations
of the normal components of εt .

6× 2 = 12 in the preferred EGARCH(2, 3) model
24× 24 in the EGARCH(4, 4) model for which the algorithm
performed very smoothly.

The prior distribution is also symmetric with respect to the
factors and normal components of εt .

This leads to reflections or “mirror images” in the posterior
distribution.

These permutations present a severe challenge for Markov
chain Monte Carlo (MCMC) and are a standard test for such
algorithms.

(Generic MCMC simply cannot handle the multimodality here.)

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Some specific aspects of the application

Performance of the algorithm

Focus on the 3! permutations of parameters (ps , µs , σs) of the
normal mixture distribution

Consider a parameter vector θ with 3 distinct values of the
triplets (ps , µs , σs)

There are six distinct ways these could be assigned to the three
components of the normal mixture.
These permutations define six points θu (u = 1, . . . , 6).

Thus the posterior distribution has six “mirror images” in a
high-dimensional space.

These mirror images will also be evident in any marginal
distribution, including two-dimensional marginal distributions.

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Some specific aspects of the application

6 4 2 0 2
6

4

2

0

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=0

4 2 0 2
4

3

2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=600

3 2 1 0 1 2
3

2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=1200

3 2 1 0 1 2
3

2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=1800

2 1 0 1 2
2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=2400

2 1 0 1 2
2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=3000

2 1 0 1 2
2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=3600

2 1 0 1 2
2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=4200

2 1 0 1 2
2

1

0

1

2

log(sigma1)

lo
g(

 s
ig

m
a2

)

t=4800

Sequential Posterior Simulators for Bayesian Inference

Example: EGARCH model

Some specific aspects of the application

“Speedup Factors”

EGARCH(2,3) model

SMC with J = 16, N = 4, 096, J ·N = 262, 144, R = 55
MCMC random walk Metropolis, iterated until SMC
numerical standard error is matched

Marginal Posterior moments
Likelihood Type 1 Type 2

SMC particles 262,144 262,144 262,144
SMC time 1,796 1,796 1,796

MCMC iterations 2.772× 109 1.087× 106 → ∞
MCMC time u 7.18× 107 28, 167 → ∞

“Speedup factor” u 40, 000 15.68 → ∞

Sequential Posterior Simulators for Bayesian Inference

Conclusion

Conclusion

The sequential posterior simulator is very closely related to
simulated annealing methods for function optimization
Essentially the same algorithm can be used to:

Conduct Bayesian inference
Conduct classical inference (extremum estimators)
Solve optimization problems (decision making)

Especially attractive for irregular functions, multiple local
modes

Solve complex dynamic models

Can be used to determine existence and uniqueness

In the next 10 - 20 years

Cheap parallel computing on graphical processing
Single-instruction multiple-data compatible algorithms will
become vital to the computational infrastructure of statistics.

	Introduction
	Goals and notation
	Updating, prediction and simulation

	Sequential posterior simulators
	Motivation
	Conditions
	Fixed design algorithm
	Adaptive design algorithm

	Example: EGARCH model
	Model and data
	Performance
	Some specific aspects of the application

	Conclusion

