John Geweke University of Technology Sydney; Erasmus University; University of Colorado; Amazon.com Garland Durham University of Colorado

> Vienna University of Economics and Business Institute for Statistics and Mathematics

> > May 17, 2013

Goals and notation

Goals and tools

Goal: Better quantitative decision-making

- Using formal probability methods
- When data are an important part of the information (but never all of the information)
- When data are time series (including longitudinal data)
- Tools
 - Thinking carefully about formal and coherent probability models
 - In my research this leads to
 - Updating and prediction
 - Optimal smoothing and filtering
 - Law of inverse probability
 - Bayesian inference

Introduction

Goals and notation

Notation

Random vectors and data

- Y_t (t = 1, ..., T): Observable random vectors
- $Y_{t_1:t_2}$: The collection $\{Y_{t_1}, \ldots, Y_{t_2}\}$
- y_t : Observed value of Y_t (one data vector)
- $y_{t_1:t_2}$: The collection $\{y_{t_1}, \ldots, y_{t_2}\}$ (so $y_{1:T}$ is the data set)

Formal and coherent probability models

■ Models M_i , each with unobservables (often parameters) θ_i (i = 1, ..., M)

• Prior density in model \mathcal{M}_i :

$$p(\theta_i \mid \mathcal{M}_i)$$

Sequence of conditional densities in model M_i:

$$p(Y_t \mid Y_{1:t-1}, \theta_i, \mathcal{M}_i) \ (t = 1, 2, \ldots),$$

 Henceforward, notation dispenses with the conditioning on *M_i*, but the idea is always there.

LUpdating, prediction and simulation

Implications of the formal probability model

For any t = 1, 2, ... Updated conditional parameter density

$$p\left(\theta \mid y_{1:t-1}\right)$$

represented as

$$\theta_{jn} \sim p(\theta \mid y_{1:t-1}) \ (t = 1, 2, ...) \ (j = 1, ..., J; n = 1, ..., N);$$

Predictive density

$$p(Y_t \mid y_{1:t-1}) = \int_{\Theta} p(Y_t \mid y_{1:t-1}, \theta) p(\theta \mid y_{1:t-1})$$

represented as

$$Y_{t,jn} \sim p(Y_t \mid \theta_{jn}) \quad (j = 1, \dots, J; n = 1, \dots, N);$$

Introduction

Updating, prediction and simulation

Implications (continued)

Predictive likelihood

$$p(y_t | y_{1:t-1}) = \int_{\Theta} p(y_t | y_{1:t-1}, \theta) p(\theta | y_{1:t-1});$$

represented as

$$(JN)^{-1} \sum_{j=1}^{J} \sum_{n=1}^{N} p(y_t \mid y_{1:t-1}, \theta_{jn}).$$

• If the sample size is T, then the log marginal likelihood is

$$\log p(y_{1:T}) = \sum_{t=1}^{T} \log p(y_t \mid y_{1:t-1})$$

for Model \mathcal{M}_i

Introduction

Updating, prediction and simulation

Motivation

- Sequential posterior simulators combine ideas from sequential Monte Carlo (particle filtering), importance sampling, resampling and Markov chain Monte Carlo.
- They (now) have a solid theoretical justification.
- They apply immediately to a huge range of models: all that is needed is code to evaluate the prior density and the likelihood function and to simulate from the prior distribution.
- While they are globally sequentially, they are locally parallel and nearly idea for massively parallel processing.
- Recent innovation in hardware (graphics processing units) and software (C/CUDA, Matlab) provide access to this technology that is both quick and inexpensive.

-Conditions

Sequential posterior simulation algorithms: Conditions for some theorems and algorithms

- Prior distribution: The model specifies a proper prior distribution that can be evaluated in closed form.
- Likelihood function evaluation: The sequence of conditional densities

$$p(y_t \mid y_{1:t-1}, \theta) \quad (t = 1, \dots, T)$$

can be evaluated in closed form. (T is sample size.)

- Bounded likelihood: The sequence of densities p (y_{1:T} | θ) is bounded above by p̄ < ∞ for all θ ∈ Θ.</p>
- *Existence of prior moments:* If the algorithm is used to approximate $E[g(\theta) | y_{1:T}]$, then $E[g(\theta)^{2+\delta}] < \infty$ for some $\delta > 0$.

└─Fixed design algorithm

An algorithm with all design parameters fixed

Always fixed:

Number and organization of particles: J, N

- Cycles in the algorithm
 - $\ell = 1, \ldots, L$ cycles
 - Cycle ℓ processes observations $y_{t_{\ell-1}+1:t_{\ell}}$
 - $\bullet \ 0 = t_0 < t_1 < \cdots < t_{L-1} < t_L = T$

 Fixed algorithm parameters in this but not in the adaptive version of the algorithm

- Number L and timing of cycles: t_1, \ldots, t_{L-1}
- Number of Metropolis steps in each cycle: R₁,..., R_L
- Metropolis random walk variance matrices in each step, each cycle: Σ_{ℓr} (r = 1,..., R_ℓ; ℓ = 1,..., L)

└─Fixed design algorithm

A little more detail

Particles in cycle ℓ of the algorithm ($\ell = 1, ..., L$) • C phase: $\theta_{in}^{(\ell-1)}$ • At the start, $\theta_{ip}^{(\ell-1)} \sim p\left(\theta \mid y_{1:t_{\ell-1}}\right)$ Use importance sampling to update to $\theta_{in}^{(\ell-1)} \sim p(\theta \mid y_{1:t_{\ell}})$ • Transition from C to S phase: $\theta_{in}^{(\ell-1)}$ with associated weights $w\left(\theta_{in}^{(\ell-1)}\right)$ • S phase: Select particles $\theta_{in}^{(\ell,0)}$ (no weights) For each $\theta_{in}^{(\ell,0)}$ there exists some n' such that $\theta_{in}^{(\ell,0)} = \theta_{in'}^{(\ell-1)}$ M phase • At the end of Metropolis step r denote the particles $\theta_{in}^{(\ell,r)}$. End of *M* phase and cycle (Metropolis step R_{ℓ}): $\theta_{in}^{(\ell)} = \theta_{in}^{(\ell,R_{\ell})}$ • At the conclusion of the algorithm: $\theta_{in} = \theta_{in}^{(L)}$

└─Fixed design algorithm

Convergence and posterior moments

- Because there is no adaptation, existing convergence results $(N \rightarrow \infty; \text{ Chopin 2004 Theorem 2})$ apply.
- Posterior moment: $\overline{g} = E[g(\theta) \mid y_{1:T}]$
- Approximation: $\overline{g}^{(J,N)} = (NJ)^{-1} \sum_{j=1}^{J} \sum_{n=1}^{N} g(\theta_{jn})$
- Chopin 2004 Theorem 2: $(JN)^{1/2} \left(\overline{g}^{(J,N)} \overline{g}\right) \xrightarrow{d} N(0, v)$
 - Our v not the same as v in Chopin 2004 Theorem 2
 - But that paper does not show how to approximate v (nor does any other, to our knowledge) and this is required for practical application in any event.

└─Fixed design algorithm

Assessing the accuracy of posterior moments

- Define within-group sample means $\overline{g}_{i}^{N} = N^{-1} \sum_{n=1}^{N} g(\theta_{jn})$.
- Chopin 2004 Theorem 2 applies to each one $(N \to \infty)$, so limiting distribution is normal.
- Independence of particles θ_{jn} across groups in every cycle of every phase (recall: residual sampling done group-by-group), hence <u>g</u>^N₁,..., <u>g</u>^N_j mutually independent.

• Variance estimate appropriate to $\overline{g}^{(J,N)}$ is

$$\widehat{v}^{N} = \sum_{j=1}^{J} \left(\overline{g}_{j}^{N} - \overline{g}^{N} \right)^{2} / J \left(J - 1 \right)$$

and

$$(J-1) \,\widehat{v}^N / v \stackrel{d}{\longrightarrow} \chi^2 \, (J-1) \, .$$

└─Fixed design algorithm

Problem with the fixed design algorithm

 Sound theoretical foundations, but it does not work as a practical matter.

• These must be specified before the algorithm executes:

- Number L and timing of cycles: t_1, \ldots, t_{L-1}
- Number of Metropolis steps in each cycle: R_1, \ldots, R_L
- Metropolis random walk variance matrices in each step, each cycle: Σ_{ℓr} (r = 1,..., R_ℓ; ℓ = 1,..., L)
- This never works

└─Adaptive design algorithm

Adaptive design algorithm: Main features

■ User specifies: *J*, *N*, *R*

■ In the *C* phase, determine the effective sample size

$$ESS = \left[\sum_{j=1}^{J}\sum_{n=1}^{N}w_{s}\left(\theta_{jn}^{(\ell-1)}\right)\right]^{2} / \sum_{j=1}^{J}\sum_{n=1}^{N}w_{s}\left(\theta_{jn}^{(\ell-1)}\right)^{2}$$

after each observation is added. Proceed to the CS transition if ESS/NJ $< D_1 = 0.5.$

■ In the *M* phase, Metropolis step *r*:

•
$$\Sigma_{\ell r} = h_{\ell r} \cdot \operatorname{var}\left(\theta_{jn}^{(\ell,r-1)}\right);$$

• $h_{\ell 1} = 0.5;$

- After each Metropolis step r is completed compute the acceptance rate across all particles in all groups. If this exceeds 0.25, h_{ℓ,r+1} = h_{ℓr} + 0.01; else h_{ℓ,r+1} = h_{ℓr} 0.01;
- *R* Metropolis steps if $ESS/NJ > D_2$, otherwise 3*R* steps.

└─Adaptive design algorithm

Problem with the adaptive algorithm

It "works" in a very wide variety of models.

- But it does not have sound theoretical foundations
- nor is it likely to in the foreseeable future

Why we care

- The adaptive algorithm works well on conventional CPU's
- and it works very well in cheap desktop parallel computing with graphical processing units (GPUs).
- and (I conjecture) algorithms like this will be in widespread application in 5 to 10 years

└─Adaptive design algorithm

Providing a sound theoretical foundation for the adaptive algorithm

- Run the adaptive version of the algorithm.
- Save the design parameters
 - Number L and timing of cycles: t_1, \ldots, t_{L-1}
 - Number of Metropolis steps in each cycle: R₁,..., R_L
 - Metropolis random walk variance matrices in each step, each cycle: Σ_{ℓr} (r = 1,..., R_ℓ; ℓ = 1,..., L)
- Discard the particles
- Run the fixed design algorithm using the saved design parameters and new random number generator seeds.

Exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model

- Background:
 - Decision-making about allocation and pricing of financial assets, and economic policy
 - Mean returns are almost unpredictable, and we know why.
 - The spread of the distribution (loosely, volatility) is constantly changing.
 - This matters greatly! for pricing and allocation of asset derivatives and economic policy
- EGARCH model
 - Variant here is a substantial generalization of a successful model
 - Strong competitor with other models (Geweke and Durham pooling paper, 2011)
 - Model is well suited to show robustness properties of the sequential posterior simulator

Example: EGARCH model

└─ Model and data

Model

- Sequence of observed asset returns $\{y_t\}$
- Evolution of volatility factors

$$v_{kt} = \alpha_k v_{k,t-1} + \beta_k \left(|\varepsilon_{t-1}| - (2/\pi)^{1/2} \right) + \gamma_k \varepsilon_{t-1} \quad (k = 1, \dots, K)$$

Then

$$y_t = \mu_Y + \sigma_Y \exp\left(\sum_{k=1}^K v_{kt}/2\right) \varepsilon_t$$

with

$$p(\varepsilon_t) = \sum_{i=1}^{l} p_i \phi(x_i; \mu_i, \sigma_i^2); \quad \mathbf{E}(\varepsilon_t) = 0, \quad \operatorname{var}(\varepsilon_t) = 1.$$

Notation: This is the EGARCH(K,I) model.

└─ Model and data

Data

S&P 500 index closing value p_t on trading days from January 2, 1990 (t = 0) through March 31, 2010 (t = T = 5100). The returns are $y_t = \log (p_t/p_{t-1}) (t = 1, ..., T)$.

Performance

Performance						
Model	Time (secs.)	Cycles L	log ML	NSE		
EGARCH(1, 1)	716	52	16,641.76	0.01		
EGARCH(1, 2)	1224	68	16,712.55	0.02		
EGARCH(2, 1)	849	59	16,669.50	0.03		
EGARCH(2, 2)	1377	73	16,735.80	0.04		
EGARCH(2, 3)	1796	76	16,750.73	0.03		
EGARCH(3, 2)	1455	73	16,733.94	0.04		
EGARCH(3, 3)	1857	74	16,748.62	0.04		
EGARCH(3, 4)	2492	80	16,748.42	0.04		
EGARCH(4, 3)	2074	75	16,745.68	0.05		
EGARCH(4, 4)	2613	78	16,745.34	0.04		
$J = 64; N = 4096; J \cdot N = 262, 144; R = 55$						

Some specific aspects of the application

Moment of interest: $g(\theta) = 100 \cdot P(Y_{t+1} < -0.03 | y_{1:t}, \theta)$ t = March 31, 2009t = March 31, 2010Posterior Posterior NSE RNE NSE RNE mean mean R = 59.7045 0.0481 0.0009 0.0632 0.0015 0.0013 R = 89.7996 0.0379 0.0014 0.0704 0.0012 0.0024 R = 139.7445 0.0267 0.0027 0.0728 0.0009 0.0045 R = 219.7418 0.0198 0.0050 0.0748 0.0005 0.0137 R = 349.7639 0.0114 0.0145 0.0759 0.0004 0.0268 R = 559.7834 0.0074 0.0343 0.0770 0.0002 0.0643 R = 899.7851 0.0047 0.0857 0.0770 0.0001 0.1665 R = 1449.7760 0.0037 0.1382 0.0769 0.0001 0.3524 EGARCH(2,3) $J = 64; N = 4096; J \cdot N = 262, 144$

Some specific aspects of the application

Multimodal posterior distributions

- There are J! permutations of the factors and K! permutations of the normal components of ε_t.
 - $6 \times 2 = 12$ in the preferred EGARCH(2, 3) model
 - 24×24 in the EGARCH(4, 4) model for which the algorithm performed very smoothly.
- The prior distribution is also symmetric with respect to the factors and normal components of ε_t.
- This leads to reflections or "mirror images" in the posterior distribution.
- These permutations present a severe challenge for Markov chain Monte Carlo (MCMC) and are a standard test for such algorithms.
 - (Generic MCMC simply cannot handle the multimodality here.)

Some specific aspects of the application

Performance of the algorithm

- Focus on the 3! permutations of parameters (p_s, μ_s, σ_s) of the normal mixture distribution
- Consider a parameter vector θ with 3 distinct values of the triplets (p_s, μ_s, σ_s)
 - There are six distinct ways these could be assigned to the three components of the normal mixture.
 - These permutations define six points θ_u (u = 1, ..., 6).
- Thus the posterior distribution has six "mirror images" in a high-dimensional space.
- These mirror images will also be evident in any marginal distribution, including two-dimensional marginal distributions.

Sequential Posterior Simulators for Bayesian Inference

Some specific aspects of the application

Example: EGARCH model

Some specific aspects of the application

"Speedup Factors"

- EGARCH(2,3) model
- SMC with J = 16, N = 4,096, $J \cdot N = 262,144$, R = 55
- MCMC random walk Metropolis, iterated until SMC numerical standard error is matched

	Marginal	Posterior m	Posterior moments	
	Likelihood	Type 1	Type 2	
SMC particles	262,144	262,144	262,144	
SMC time	1,796	1,796	1,796	
MCMC iterations	$2.772 imes10^9$	$1.087 imes10^6$	$\rightarrow \infty$	
MCMC time	\cong 7.18 $ imes$ 10 ⁷	28, 167	$\rightarrow \infty$	
"Speedup factor"	\cong 40, 000	15.68	$ ightarrow\infty$	

- Conclusion

Conclusion

- The sequential posterior simulator is very closely related to simulated annealing methods for function optimization
- Essentially the same algorithm can be used to:
 - Conduct Bayesian inference
 - Conduct classical inference (extremum estimators)
 - Solve optimization problems (decision making)
 - Especially attractive for irregular functions, multiple local modes
 - Solve complex dynamic models
 - Can be used to determine existence and uniqueness
- In the next 10 20 years
 - Cheap parallel computing on graphical processing
 - Single-instruction multiple-data compatible algorithms will become vital to the computational infrastructure of statistics.