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Outline

Control variates for Lévy process models

I Control variate framework

I Option pricing examples

Variance reduction for Asian options

I A unified framework for non-Gaussian models

I The proposed method is a combination of
F Control Variate (CV)
F Conditional Monte Carlo (CMC)
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Monte Carlo (MC) Method: General Principles

Estimation of an unknown parameter: µ = E [Y]

Generation of iid sample Y1,Y2, . . . ,Yn

The estimator: µ̂ = ∑
n
i=1 Yi
n

To quantify the error µ̂−µ:

I Central Limit Theorem: µ̂−µ

sn/
√

n ⇒ N(0,1) as n→ ∞.

I Probabilistic error bound: Φ−1(1−α/2) s/
√

n

I To get smaller error bound:
F Increase the sample size n (Larger computational time) O(1/

√
n)

F Decrease the variance s2 (Variance reduction techniques)
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Problem definition

Lévy process {L(t), t ≥ 0}
I Stationary and independent increments, and L(0) = 0

Functional of L:
I q(L(t1), . . . ,L(td))

I Time grid 0 = t0 < t1 < t2 < ... < td with tj = j∆t

I tj = j∆t⇒ increments L(ti)−L(ti−1) are iid

Estimation of E [q(L(t1), . . . ,L(td))] by simulation.

A new variance reduction method

Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 4 / 50



Problem definition

In the literature, there exist variance reduction methods suggested for
Lévy processes

I They are often special to the ’process type’ or ’problem type’

A new control variate (CV) method

It can be applied for any Lévy process for which the probability
density function (PDF) of the increments is available in closed form

Numerical examples: path-dependent options

Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 5 / 50



Control Variate Method

Estimator: Y = q(L)− cT(V−E [V])

I V = (V1, . . . ,Vm)T set of CVs with known E [V]

I c = (c1, . . . ,cm)T the coefficient vector (optimal c∗ by linear regression)

Successful if strong linear dependence: VRF = 1/(1−R2).

Our CV framework:

I Special CV, tailored to q()

I General CVs, selected from a basket of CVs (not tailored to q())
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Special CV

Functional of a Brownian Motion (BM).

Brownian motion {W(t), t ≥ 0} with parameters {µ,σ}:
I W(t) = µ t +σ B(t)

I B(t) is a standard BM

Functional ζ (W(t1), . . . ,W(td))
I Similar to the original function: ζ ∼ q.

Known expectation: E [ζ (W)] is available in closed form
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Special CV

similarity of paths: (W(t1), . . . ,W(td))∼ (L(t1), . . . ,L(td)) and
similarity of functions: ζ ∼ q
⇒ Large correlation between q(L) and ζ (W)

For similar paths,
I µ = E [L(1)] and σ =

√
Var(L(1))

I Using CRN (common random numbers) for path simulation

Comonotonic increments lead to maximal correlation
I U ∼ U(0,1)

I L(ti)−L(ti−1)← F−1
L (U)

I W(ti)−W(ti−1)← F−1
BM(U)
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Special CV

Inverse CDFs:
I F−1

BM(U), Inverse CDF of normal distribution.

I F−1
L (U), non-tractable.

Approximation of F−1
L (U) by numerical inversion algorithm of

Derflinger et al. (2010)

It requires only PDF (probability density function)

For many Lévy processes, PDF is available in closed form (while CDF
and the inverse CDF are not).
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General CVs

Simple path characteristics of L and W (e.g. average, maximum)

They are not tailored to q()

We call them as ’general CVs’ since they are applicable to any q(),
whereas ζ (W) is called ’special CV’ as it is designed considering the
special properties of q().

Let γ(W,L) be a function of the paths of W and L that evaluates the
set of path characteristics.
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Algorithm

Require: special CV function ζ (), general CV function γ()

1: for i = 1 to n do
2: for j = 1 to d do
3: Generate uniform variate U ∼ U(0,1).
4: Set Xj← F−1

L (U) and Zj← F−1
BM(U).

5: Set L(tj)← L(tj−1)+Xj and W(tj)←W(tj−1)+Zj

6: end for
7: Set Yi← q(L)− c1 (ζ (W)−E [ζ (W)])− cT

2 (γ(W,L)−E[γ(W,L)]).
8: end for
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Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 11 / 50



Algorithm

Require: special CV function ζ (), general CV function γ()

1: for i = 1 to n do
2: for j = 1 to d do
3: Generate uniform variate U ∼ U(0,1).
4: Set Xj← F−1

L (U) and Zj← F−1
BM(U).

5: Set L(tj)← L(tj−1)+Xj and W(tj)←W(tj−1)+Zj

6: end for
7: Set Yi← q(L)− c1 (ζ (W)−E [ζ (W)])− cT

2 (γ(W,L)−E[γ(W,L)]).
8: end for
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CV Selection

In algorithm, the user has to provide the CV functions ζ () and γ().

The selection of special CV ζ () depends on the problem type, as it is
tailored to q().

Our approach for the selection of general CVs:
I A large basket of CV candidates

I Stepwise backward linear regression.

F The t-statistics of regression coefficients: t = β̂

s.e.(β̂ )

F Check the significancy: t ∈ (−5,5) ?

pilot simulation run
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CV Selection

Stepwise backward regression
1 Start with a full regression model

2 remove the CV with the smallest absolute t statistic from the model, if
its value is smaller than 5

3 recompute the t-statistics of the remaining CVs for the new regression
model

4 Steps 2-3 are repeated until all absolute t values > 5

5 Use the remaining CVs for the main simulation

Why not use all CVs in the basket ?
I Simulation or evaluation of expectation of some CVs can be expensive.

I Backward regression automatically eliminates the CV if it is not useful.
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Complexity

A single regression with k covariates requires O(np k2) operations
I k number of CVs

I np sample size of pilot simulation

The worst case: All CVs are useless O(np k3)

Since np < n, no substantial increase in the computational time
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Basket of CVs

Path characteristics of which the expectation is available in closed
form.

not exhaustive and depends on our knowledge of the closed form
solutions

No CV that require a numerical method to evaluate the expectation

Our notation
I CVL: path characteristics of L (internal CVs)

I CVW: path characteristics of W (external CVs)
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Basket of CVs

Table: Basket of CVs.

Label CV Label CV

CVL1 L(td) CVW1 W(td)
CVL2 exp(L(td)) CVW2 exp(W(td))
CVL3 1

d ∑
d
i=1 L(ti) CVW3 1

d ∑
d
i=1 W(ti)

CVL4 exp( 1
d ∑

d
i=1 L(ti)) CVW4 exp( 1

d ∑
d
i=1 W(ti))

CVL5 1
d ∑

d
i=1 exp(L(ti)) CVW5 1

d ∑
d
i=1 exp(W(ti))

CVW6 max0≤i≤d W(ti)
CVW7 exp(max0≤i≤d W(ti))
CVW8 sup0≤u≤td W(u)
CVW9 exp(sup0≤u≤td W(u))

Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 16 / 50



Basket of CVs

All CVs in the basket are easy to simulate

A bit more difficult CVs: sup0≤u≤td W(u) and esup0≤u≤td
W(u)

Simulation of sup0≤u≤td W(u) conditional on (W(t1), . . . ,W(td))

sup
0≤u≤td

W(u) = max
1≤i≤d

(
sup

ti−1≤u≤ti
W(u)

)
.

generate the maxima of d Brownian bridges
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Basket of CVs

CDF of the maximum of a Brownian bridge

P
(

sup
0≤u≤t

W(u)≤ x
∣∣∣∣W(t) = y

)
= 1− exp

(
−2x(x− y)

σ2t

)
,

Inversion
x = 0.5

(
y+
√

y2−2σ2 t logU
)

,

where U ∼ U(0,1) is a uniform random number

E [sup0≤u≤td W(u)|W(t1), . . . ,W(td)] as alternative to sup0≤u≤td W(u)

requires numerical integration, not efficient
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Basket of CVs

CVs in the basket are strongly correlated with each other.

Multicollinearity: It inflates the standard errors of the estimates of the
regression coefficients

It can be a problem for the accuracy of the estimates of the t
statistics, when the sample size is too small.

np = 104 is generally sufficient to get relatively stable estimates of the
t values.
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Basket of CVs: Expectation formulas

Table: Expectation formulas for the CVs depending on the terminal value and the
averages.

Label CV Expectation

CVL1 L(td) d E [X]
CVL2 exp(L(td)) M∆t(1)d

CVL3 1
d ∑

d
i=1 L(ti) E [X](d +1)/2

CVL4 exp( 1
d ∑

d
i=1 L(ti)) ∏

d
i=1 M∆t(i/d)

CVL5 1
d ∑

d
i=1 exp(L(ti)) 1

d ∑
d
i=1 M∆t(1)i

CVW1 W(td) d µ ∆t
CVW2 exp(W(td)) e(d(µ∆t+σ2 ∆t/2))

CVW3 1
d ∑

d
i=1 W(ti) µ ∆t(d +1)/2

CVW4 exp( 1
d ∑

d
i=1 W(ti)) exp(µ̃ + σ̃2/2)

CVW5 1
d ∑

d
i=1 exp(W(ti)) 1

d ∑
d
i=1 e(i(µ∆t+σ2 ∆t/2))
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Basket of CVs: Expectation formulas

Table: Expectation formulas for the CVs depending on maximum.

Label CV Expectation

CVW6 max0≤i≤d W(ti) by Spitzer’s identity

CVW7 exp(max0≤i≤d W(ti)) by Öhgren (2001)
CVW8 sup0≤u≤td W(u) e.g. Shreve (2004)
CVW9 exp(sup0≤u≤td W(u)) e.g. Shreve (2004)
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A Simple Example

We use only general CVs in the basket without a special CV

q(L) = exp(max0≤i≤d L(ti))

L is a generalized hyperbolic (GH) process
I ∆t = 1/250

I λ = 1.5 , α = 189.3, β =−5.71, δ = 0.0062, µ = 0.001

I the increment distribution is close to normal but has a higher kurtosis

Variance Reduction Factors (VRFs)
I For d = 5, VRF= 560

I For d = 50, VRF= 395
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Examples from Option Pricing

Underlying stock: S(t) = S(0)eL(t),
I Non-normal logreturns with high kurtosis.

Payoff of path dependent options: ψ(S(t1), . . . ,S(td))

Price
e−r td E [ψ(S(t1), . . . ,S(td))],

q(L) = ψ(S(0)eL)
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Examples from Option Pricing

Special CV: a similar option with analytically available price under
geometric Brownian Motion (GBM)

I ζ () corresponds to ψCV() payoff function of new option.

I
{

S̃(t), t ≥ 0
}

stock price under GBM:

S̃(t) = S̃(0)eW(t) = S̃(0)exp((r−σ
2/2)t +σB(t)).

I We set σ =
√

Var(L(1)) and S̃(0) = S(0)

General CVs: Use the basket
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Option Examples

Asian Option: ψA(S) =
(

∑
d
i=1 S(ti)

d −K
)+

Special CV: ψG(S̃) =
((

∏
d
i=1 S̃(ti)

)1/d−K
)+

.

Lookback Option: ψL(S) = (max0≤i≤d S(ti)−K)+ ,

Special CV: ψLC(S̃) =
(
sup0≤u≤td S̃(u)−K

)+
.
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Numerical Results

Table: Results for Asian and lookback options under GH process with
T = 1,∆t = 1/250,r = 0.05,S(0) = 100,n = 104. Error: 95% error bound.

Option K Price Error VRF-A VRF-G VRF-S

Asian 90 12.239 0.004 1,743 185 78
100 4.912 0.005 530 51 64
110 1.240 0.006 121 13 40

Lookback 110 7.534 0.012 294 57 57
120 3.297 0.012 160 35 44
130 1.266 0.011 79 17 32

VRF-A: VRF obtained by using all (significant) CVs,

VRF-G: VRF obtained by using only general CVs (CVLs and CVWs),

VRF-S: VRF obtained by using only special CV
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Numerical Results

Efficiency factor: EF = (σ2
N tN)/(σ2

CV tCV)
I tN and tCV are the CPU times of naive simulation and CV method.

In naive simulation, we used the subordination (the standard method
in the literature).

Asian option: tN/tCV = 1

Lookback option: tN/tCV = 0.7

time of the pilot simulation run is between 30% and 50% of the main
simulation
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Success of the method

Proximity of increment (log-return) distribution to the normal
distribution.

Shape depends on ∆t
I ∆t→ ∞, gets close to normal
I ∆t→ 0, very high kurtosis

In option pricing,
I ∆t = 1/4, quarterly monitoring
I ∆t = 1/12, monthly monitoring
I ∆t = 1/50, weekly monitoring
I ∆t = 1/250, daily monitoring
I ∆t→ 0, continuous monitoring (not possible in practice)
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Asian option example for variance gamma (VG) process

K ∆t Price Error VRF
70 1/4 31.562 0.004 2,966

1/12 31.156 0.004 2,582
1/50 31.002 0.006 894

1/250 30.975 0.019 87

100 1/4 5.903 0.003 1,949
1/12 5.229 0.003 1,815
1/50 4.972 0.005 795

1/250 4.912 0.015 72

130 1/4 0.082 0.002 114
1/12 0.034 0.001 101
1/50 0.025 0.001 43

1/250 0.020 0.002 15

Table: Using ’special CV’ for Asian VG options with T = 1 and different ∆t’s;
n = 10,000; Error: 95% error bound; VRF: variance reduction factor.

Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 29 / 50



Conclusions

A general control variate framework for the functionals of Lévy
processes.

The method exploits the strong correlation between the original Lévy
process and an auxiliary Brownian motion

I Numerical inversion of CDFs

In the CV framework,
I special control variates tailored to the functionals

I general control variates selected from a large basket of control variate
candidates

In the application to path dependent options, we observe moderate to
large variance reductions
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Asian options

Stock price process {S(t), t ≥ 0}

Arithmetic average call option

PA(S) =
( 1

d ∑
d
i=1 S(ti)−K

)+
Time grid 0 = t0 < t1 < t2 < ... < td = T with tj = j∆t

Option price: e−rTE [PA(S)]

Geometric Brownian motion (GBM)

S(t) = S(0)exp
{
(r−σ2/2) t +σ B(t)

}
, t ≥ 0

No closed form solution for the price
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Simulation of Asian options

Efficient numerical methods under GBM

I PDE based finite difference methods, e.g. Večěr (2001)

I Approximations, e.g. Curran (1994); Lord (2006)

Monte Carlo simulation

I Advantage : Probabilistic error bound

I Disadvantage : Slow convergence rate

Variance reduction method
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CVs for Asian options

Classical CV method of Kemna and Vorst (1990)

I Arithmetic and geometric averages :

A = 1
d ∑

d
i=1 S(ti) and G =

(
∏

d
i=1 S(ti)

)1/d

I If S(ti)’s are close to each other, then A∼ G

I PA = (A−K)+ ∼ (G−K)+ = PG

E [PG] is available in closed form under GBM

Very successful, if σ and T are small
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CVs for Asian options

Lower bound E [(A−K)1{G>K}] suggested by Curran (1994) :

(A−K)+ = (A−K)+ 1{G≤K}+(A−K)+ 1{G>K}

= (A−K)+ 1{G≤K}+(A−K)1{G>K} ,

New CV by Dingeç and Hörmann (2013)

YCV = PA− c(W−E [W]),

where W = (A−K)1{G>K}.

E [W] is available in closed form under GBM

Dingeç, Hörmann, Sak (IE -BOUN) New CVs for Levy processes June 20, 2013 34 / 50



CVs for Asian options

If we set c = 1, then YCV = (A−K)+ 1{G≤K}+E [W]

Conditional Monte Carlo (CMC) for Y = (A−K)+ 1{G≤K}

I New estimator as conditional expectation: E [Y|Z] =
∫

Y dF(G)

I All variance due to G is removed

Algorithm in Dingeç and Hörmann (2013)

I New CV + CMC + additional CVs

I Larger VRF than the classical CV

I Special to GBM
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Non-Gaussian models

Under GBM, log-returns are iid normals

Observed facts
I Non-normality of log-returns,

Higher kurtosis, heavier tails than normal

I Volatility clustering
F Large absolute log-returns are followed by large absolute log-returns
F Non-linear dependency between log-returns

Alternative models to GBM

I Lévy process, (i.i.d. log-returns)

I Stochastic volatility models

I Regime switching models
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A unified framework for non-Gaussian models

Three models

I Generalized hyperbolic (GH) Lévy process (Prause, 1999)

I Heston stochastic volatility (SV) model (Heston, 1993)

I Regime switching (RS) model (Hardy, 2001)

A unified framework

I Stock price process S(t) = S(0)eX(t)

I Log-returns: ∆Xi = X(ti)−X(ti−1)
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Unified Framework

The unified representation

∆Xi = Γi +Λi Zi, i = 1, . . . ,d,

I Γi,Λi’s are modulated by stochastic process {V(t), t ≥ 0}
I Γ = fm(V) and Λ = fv(V).

I Zi’s are i.i.d. standard normal variables independent of V(t).

I (∆X1, . . . ,∆Xd |V) is multivariate normal

The variance process V(t)

I GH Lévy: GIG process (subordinator)

I Heston: CIR process

I Regime switching: Discrete Time Markov Chain (DTMC)
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Typical Control Variate Methods for the Unified Framework

The standard CV approach mentioned in Glasserman (2004)

YCV = PA− c(P̃G−E [P̃G]).

where P̃G denote the payoff of the geometric average option under
GBM

I Using common Z to introduce correlation

A more elaborate CV approach by Zhang (2011)

YCV = PA− c(PG−E [PG|V]).

They do not reduce the variance due to V
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New Control Variate Method

CV of Dingeç and Hörmann (2013) : W = (A−K)1{G>K}

It will reduce the variance coming from both random variables (Z and
V)

Evaluation of the expectation µW = E [W]

I Lemmens et al. (2010) use µW as lower bound for the price under Lévy
processes

I Our new observation:
Formulas of Lemmens et al. (2010) can be used for any model allowing
the computation of joint characteristic function (JCF) of the log-return
vector ∆X = (∆X1, . . . ,∆Xd).
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Expectation of the CV

Formula of Lemmens et al. (2010) (after simplifications)

µW =
g(0)

2
− i

2π

∫
∞

−∞

e−iωL g(ω)−g(0)
ω

dω,

g(ω) =
S(0)

d

d

∑
j=1

ϕX̄,Xj
(ω,−i)−KϕX̄(ω).

ϕX̄(ω): CF of X̄ = ∑
d
j=1 X(tj)/d

ϕX̄,Xj
(ω1,ω2) : bivariate CF of X̄ and X(tj)

Both CFs can be evaluated, if ϕ∆X(u) = E [eiuT ∆X] is available
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Expectation of the CV

Formulas for JCF: ϕ∆X(u) = E [eiuT ∆X]

Lévy process: only requires CF of i.i.d. increment

Heston model: given by Rockinger and Semenova (2005) for affine
jump diffusion models

Regime switching model: it is possible to derive a simple recursion
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Improving the CV Method by CMC

By setting c = 1, we get

YCV = Y + µW with Y = (A−K)+ 1{G≤K}.

Conditional Monte Carlo (CMC) for Y = (A−K)+ 1{G≤K}

I Simulation output as a function of two random inputs Y = q(V,Z)

I The idea: Simulation of standard multinormal vector Z in a specific
direction ϑ ∈ℜd, ||ϑ ||= 1 by the formula

Z = ϑ Ξ+(Id−ϑϑ
T)Z′, Ξ∼ N(0,1), Z′ ∼ N(0, Id), (1)

where Id is d×d identity matrix.

I Select the direction depending on V,

ϑi(V) =
(d− i+1)Λi√

∑
d
j=1(d− j+1)2Λ2

i

, i = 1, . . . ,d, (2)

where Λ = fv(V).
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Conditional Monte Carlo

Y = q(V,Ξ,Z′)

Use E [Y|Z′,V] as an estimator.

E [Y|Z′ = z,V = v] =
1
d

d

∑
i=1

si(z,v)eai(v)2/2 [Φ(k(v)−ai(v))−Φ(b(z,v)−ai(v))]

−K [Φ(k(v))−Φ(b(z,v))] .

I Φ() : CDF of std. normal dist.

I b(z,v) is the root of equation, A(x)−K = 0, which is found by
Newton’s method
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Algorithm

1: Compute µW

2: for i = 1 to n do
3: Simulate a variance path V
4: Simulate Z′ ∼ N(0, Id)
5: Compute E [Y|Z′,V]
6: Set Yi← e−rT(E [Y|Z′,V]+ µW)
7: end for
8: return Ȳ and the error bound Φ−1(1−α/2) s/

√
n.

Up to 10 times slower than naive simulation
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Numerical Results

Model T K Price Error VRF

GH 1 90 12.23708 0.00002 8.8 ×107

(∆t = 1/250) 100 4.91175 0.00003 2.3 ×107

110 1.24135 0.00004 2.8 ×106

2 90 14.38544 0.00004 3.0 ×107

100 7.56806 0.00005 1.3 ×107

110 3.26088 0.00011 1.4 ×106

Heston SV 1 90 12.49622 0.00010 1.8 ×106

(∆t = 1/12) 100 4.52669 0.00003 9.9 ×106

110 0.44090 0.00002 2.9 ×106

2 90 14.57217 0.00024 5.5 ×105

100 7.15495 0.00009 2.6 ×106

110 2.19650 0.00005 2.5 ×106

RS 1 90 12.46569 0.00004 1.9 ×107

(∆t = 1/12) 100 4.93411 0.00003 1.9 ×107

110 1.24898 0.00005 1.8 ×106

2 90 14.53311 0.00007 9.6 ×106

100 7.49728 0.00006 8.1 ×106

110 3.11583 0.00010 1.7 ×106

Table: Variance reduction factors (VRF) compared to naive simulation.
S(0) = 100,r = 0.05,n = 104
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Conclusions

A new efficient simulation method developed for Asian option pricing
under a general model framework

I GH Lévy process

I Heston stochastic volatility model

I Discrete-time regime switching model

Combination of CV and CMC

I CV is applicable to all models in which the numerical computation of
JCF of the log-return vector is possible

I CMC is applicable to all models having normal mean-variance mixture
representation

Numerical results show significant variance reduction compared to
naive simulation
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Thank You
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