Learning from Constraints Bridging perception and symbolic reasoning

Marco Gori
University of Siena (Italy)

WU - 6/I/20I2

Acknowledgments

- Stefano Melacci
- Marco Maggini
- Michelangelo Diligenti
- Claudio Saccà
- Leonardo Rigutini
- Salvatore Frandina
- Marcello Sanguineti
- Giorgio Gnecco
WU - 6/I/20I2

Outline

- Environment and constraints
- Learning from (given) constraints
- Case studies
- Developmental agents

Environment and constraints

WU-6/I/20I2

Labeled examples are constraints ...

classic learning from examples

$$
\begin{aligned}
& x \in \mathcal{X} \\
& \epsilon-\theta_{j}\left\|y_{j}(x)-f_{j}(x)\right\|_{p} \geq 0
\end{aligned}
$$

examples can be sets

$$
\mathcal{E}_{L}=\left\{\left(\mathcal{X}_{i}, y_{i}\right) \in 2^{\mathcal{X}} \times \mathcal{Y}, i=1, \ldots, m\right\}
$$

as this becomes a box, the pair is a proposition

Diagnosis and prognosis in medicine

Pima Indian Diabetes Dataset
$(M A S S \geq 30) \wedge(P L A S M A \geq 126) \Rightarrow$ positive
$(M A S S \leq 25) \wedge(P L A S M A \leq 100) \Rightarrow$ negative
body mass index
blood glucose
Wisconsin Breast Cancer Prognosis
$(S I Z E \geq 4) \wedge(N O D E S \geq 5) \Rightarrow$ recurrent
$(S I Z E \leq 1.9) \wedge(N O D E S=0) \quad \Rightarrow$ non recurrent
diameter of the tumor
number of metastasized lymph nodes

Handwritten char discrimination

GRAYLEVEL >220 in blue region $\quad \Rightarrow 3$
GRAYLEVEL <160 in red region $\quad \Rightarrow \quad 8$.
blue region: a selection of (blue) coordinates out of the $256=16 * 16$ red region: a selection of (red) coordinates out of the 256=16*16

Text categorization

graphic \wedge pixel \wedge bitmap \Rightarrow comp.graphics \vee comp.sys.ibm.pc.hardware

i. $\forall x \forall y \quad x \bowtie y \Leftrightarrow a(x)=a(y) \longleftarrow$ docs of the same author
ii. $\forall x c_{1}(x) \wedge c_{2}(x) \Rightarrow c_{3}(x)$
iii $\forall x c_{3}(x) \Rightarrow c_{4}(x)$.
categories: decision level

Optical flow

$$
\begin{aligned}
& E(x, y, t) \text { is constant } \\
& u=\dot{x}, \quad v=\dot{y}
\end{aligned}
$$

$$
\forall t \forall x \forall y \quad \frac{\partial E}{\partial x} u+\frac{\partial E}{\partial y} v+\frac{\partial E}{\partial t}=0
$$

(Logic) constraints

... given in terms of real numbers ...
$\forall x \quad a(x) \wedge b(x) \Rightarrow c(x)$

$$
\begin{gathered}
\quad \neg(a(x) \wedge b(x)) \vee c(x)) \\
\neg \neg(\neg(a(x) \wedge b(x)) \wedge c(x)) \\
\neg(a(x) \wedge b(x) \wedge \neg c(x)) \\
\text { p-norm } \quad \\
1-f_{a}(x) \cdot f_{b}(x):\left(1-f_{c}(x)\right)=1 \\
f_{a}(x) f_{b}(x)\left(1-f_{c}(x)\right)=0
\end{gathered}
$$

WU-6/I/20I2

(Logic) constraints (con't)

$\forall x \quad a(x) \wedge b(x) \Rightarrow c(x)$

Gödel T-norm
$1-\min \left\{f_{a}(x), f_{b}(x), 1-f_{c}(x)\right\}=1$
$\min \left\{f_{a}(x), f_{b}(x), 1-f_{c}(x)\right\}=0$

Equivalence

$$
\begin{array}{lll}
\check{\phi}_{1}(f, y) & =\epsilon-|y-f| \geq 0 & \\
\check{\phi}_{2}(f, y)=\check{\mathcal{F}}_{1} & =\epsilon^{2}-(y-f)^{2} \geq 0 & \\
f \in \check{\mathcal{F}}_{2}
\end{array}
$$

the same admissible functional space! $\check{\mathcal{F}}_{1}=\check{\mathcal{F}}_{2}$
$\check{\phi}_{1} \sim \check{\phi}_{2} \Leftrightarrow \check{\mathcal{F}}_{1}=\check{\mathcal{F}}_{2}$

$$
\mathcal{F} / \sim=\{\phi \in \mathcal{F}: \phi \sim[\phi]\}
$$

quotient set
representer

Learning from (given) constraints

Learning:"the simplest solution" compatible with the constraints

Ambient space

Where do I look for the solution?

RKHS

$$
\begin{array}{ll}
\mathcal{X} \subset \mathbb{R}^{d} f=\left[f_{1}, \ldots, f_{n}\right]^{\prime} & f_{j}: \mathcal{X} \rightarrow \mathbb{R} \\
\forall j \in N_{n}: f_{j} \in W^{k, p} & \ddots \\
\mathcal{X}^{\star}
\end{array}
$$

Search in Sobolev spaces:
it is related to the topic of learning kernels!
WU - 6/I/20I2

Semi-norm in Sobolev spaces

... parsimony principle in learning ...

$$
P=\sum_{|\alpha|<m} a_{\alpha} D_{x}^{\alpha}=\sum_{|\alpha|<m} a_{\alpha}\left(\frac{\partial}{\partial x_{1}}+\ldots+\frac{\partial}{\partial x_{d}}\right)^{\alpha}
$$

under proper boundary conditions ...

$$
P=\sum_{h=0}^{m} a_{h} \sum_{|\alpha|=h} \frac{h!}{\alpha!}\left(\frac{\partial}{\partial x}\right)^{\alpha} \quad P^{\star}=\sum_{h=0}^{m}(-1)^{h} a_{h} \sum_{|\alpha|=h} \frac{h!}{\alpha!}\left(\frac{\partial}{\partial x}\right)^{\alpha}
$$

Given P and $\gamma_{i}>0, \ldots, i=1, \ldots, n$

$$
\left.E(f)=\|f\|_{P, \gamma}=\sum_{j=1}^{n} \gamma_{j}<P f_{j}, P f_{j}>=\sum_{j=1}^{n} \gamma_{j}<f_{j}, P^{\star} P f_{j}>=\sum_{j=1}^{n} \gamma_{j}<f_{j}, L f_{j}\right\rangle
$$

Parsimony Principle

Occam's razor, lex parsimoniae

\mathcal{F}_{ϕ} admissible w.r.t the collection of constraints \mathcal{C}_{ϕ}

$$
f^{\star}=\operatorname{argmin}_{f \in \mathcal{F}_{\phi}}\|f\|_{P, \gamma}
$$

partially (soft)
check of a "new" constraint
$\forall x \quad \phi\left(x, f^{\star}(x), D f^{\star}(x)\right)=0 ?$

Representation (hard constraints)

 from constrained variational calculus$$
\begin{array}{cl}
\forall x \in \mathcal{X}_{i} \subset X: \phi_{i}(x, f(x))=0, i \in \mathbb{N}{ }_{m} & \frac{D\left(\phi_{1}, \ldots, \phi_{m}\right)}{D\left(f_{1}, \ldots, f_{m}\right)} \neq 0 \\
\mathcal{L}(f)=\|f\|_{P, \gamma}^{2}+\sum_{i=1}^{m} \int_{\mathcal{X}} \lambda_{i}(x) \cdot \phi_{i}(x, f(x)) d x & \text { Lagrangian approach } \\
L f(x)+\sum_{i=1}^{m} \lambda_{i}(x) \cdot \nabla_{f} \phi_{i}(x, f(x))=0 & \text { Euler-Lagrange equat } \\
L g=\delta \quad \text { Green function } &
\end{array}
$$

$$
\omega_{i}(\cdot)=-\lambda_{i}(\cdot) \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right)
$$

reaction of the constraint
support constraints

$$
f^{\star}(\cdot)=\sum_{i=1}^{m} g(\cdot) \otimes \omega_{i}\left(f^{\star}(\cdot)\right)
$$

Fredholm eq. (II kind)
"merging of two ideas ..."

$$
\text { WU - } 6 / 1 / 2012
$$

Lagrange multipliers and probability density Unilateral constraints

hard constraints

Two remarkable "examples"

Optical flow (Horn and Schunck (1981))

$$
\begin{aligned}
& \frac{\partial E}{\partial x} u+\frac{\partial E}{\partial y} v+\frac{\partial E}{\partial t}=0 \\
& \int_{X} \int_{X}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right] d x d y
\end{aligned}
$$

Learning from examples (Poggio and Girosi (1989))

$$
\left.E(f)=C \sum_{i=1}^{m} V\left(x_{i}, f\left(x_{i}\right)\right)+\frac{1}{2}<P f, P f\right\rangle
$$

Where do kernel machines come from

When kernels arise from regularization operators ...

$$
L g=\delta \quad \text { Green function / "plain kernel" }
$$

$$
\begin{array}{ll}
L=d^{4} / d x^{4} & g(x)=|x|^{3} \\
L=\left(\sigma^{2} I-\nabla^{2}\right)^{n} & \text { Sobolev spline kernel } \\
L=\sum_{\kappa=0}^{\infty}(-1)^{\kappa} \frac{\sigma^{2 \kappa} \kappa!2^{\kappa}}{\kappa} \nabla^{2 \kappa} & \text { Gaussian kernel }
\end{array}
$$

Polynomial kernels don't come from regularization operators!

New Kernels (from prior knowledge)

(plain) kernel

... distributional degeneration ... quantization operator

$$
\breve{g}\left(x_{j}, x\right)=\delta\left(x-x_{j}\right)
$$

$$
f^{\star}(\cdot)=-\sum_{i=1}^{m} \sum_{j=1}^{\ell} \lambda_{j} \cdot g(\cdot) \otimes \delta\left(\cdot-x_{j}\right) \otimes \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right)
$$

$$
=-\sum_{i=1}^{m} \sum_{j=1}^{\ell} \lambda_{j} \cdot g\left(\cdot-x_{j}\right) \otimes \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right)
$$

Putting things in context by unsupervised data

i. more accurate description of reality
ii. simplified math and the birth of \forall_{p}

Algorithmic issues

fixed-point iteration algorithms
kernel-based representation

$$
\begin{aligned}
& \omega_{i}\left(f^{\star}\right)=-\lambda_{i}(\cdot) \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right) \\
& f^{\star}=\sum_{i=1}^{m} g \otimes \omega_{i}\left(f^{\star}\right) \\
& \forall \mathcal{X}_{i} \quad \phi_{i}\left(x, f^{\star}(x)\right)=0
\end{aligned}
$$

$g(\cdot) \otimes \breve{g}\left(x_{j}, \cdot\right) \otimes \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right)$
kernel machines math \& algorithmic apparatus

Reduction to kernels

direct computation of the constraint reaction

- Learning from examples
- Learning from sets (propositions) - box kernels
- Linear constraints
- Quadratic constraints (Fredholm linear equation)
- Poly constraints via auxiliary functions \& quadratic constraints

Case studies

Where one faces the problem of determining the constraint reactions ...

Preliminary "walk-through"

- diagnosis, prognosis in medicine (Pima Indian Diabetes Dataset, Wisconsin Breast Cancer Prognosis)
- handwritten chars (USPST)
- tagging (Flickr)
- asset allocation in finance

Multi-intervals

Back to kernels (under some hyp)!

$$
\begin{aligned}
& \phi_{i}(x, f(x)):=\max \left\{0,1-y_{i} f\left(x_{i}\right)\right\} \cdot c_{\mathcal{X}_{i}}(x) \\
& \omega_{i}=-\lambda \nabla \phi(x, f(x)) \propto c_{\mathcal{X}_{i}}(x)
\end{aligned}
$$

sign consistency uniform weight reaction $g \otimes c \mathcal{X}_{i} \stackrel{\text { constraint reaction }}{ }$ box kernels!
the case of soft-constraints ...

$g \otimes c_{\mathcal{X}_{i}}$
 Box kernels

Gaussian (plain kernel) $\Longrightarrow \prod_{i=1}^{d} \frac{(\sqrt{2 \pi} \sigma)}{2}\left(\operatorname{erfc}\left(\frac{x^{i}-b_{j}^{i}}{\sqrt{2} \sigma}\right)-\operatorname{erfc}\left(\frac{x^{i}-a_{j}^{i}}{\sqrt{2} \sigma}\right)\right)$

degeneration to the Gaussian

$$
\begin{equation*}
[-6,-4] \times[6,4] \quad[-3,-2] \times[3,2] \tag{0,0}
\end{equation*}
$$

plain kernel (Gaussian) + multi-interval knowledge = box kernel response to the "rectangular impulse"

$$
\text { WU - } 6 / I / 20 I 2
$$

points only

boxes only

changing the regularization parameter
WU - 6/I/20I2

Perceptual and logic constraints ...

Back to kernels (soft-constraints)

$$
\begin{array}{llll}
A=\left\{\left(x_{1}, x_{2}\right) \in R^{2}:\right. & 0 \leq x_{1}<2, & \left.0 \leq x_{2} \leq 1\right\} & A \wedge B \Longrightarrow C \\
B=\left\{\left(x_{1}, x_{2}\right) \in R^{2}:\right. & 1 \leq x_{1}<3, & \left.0 \leq x_{2} \leq 1\right\} & \\
C=\left\{\left(x_{1}, x_{2}\right) \in R^{2}:\right. & 1 \leq x_{1}<2, & \left.0 \leq x_{2} \leq 2\right\} &
\end{array}
$$

WU-6/I/20I2
with supervised examples only
with logic constraints

(a)

(b)

WU - 6/I/20I2

The effect of forcing logic constraints

WU-6/I/20I2

Two-stages ...

WU - $6 / I / 20 I 2$

Constraint Check and Perceptual Logic

check of a new constraint $\mathcal{C} \models \phi$

$$
\forall x \quad \phi\left(x, f^{\star}(x)\right)=0
$$

$$
\begin{aligned}
\left\|\phi\left(\cdot, f^{\star}(\cdot)\right)\right\|^{2} & =\left(\int_{\mathcal{X}} \phi^{2}\left(x, f^{\star}(x) d x\right)\right. \\
& \propto \sum_{x_{\kappa} \in \mathcal{D}} \phi^{2}\left(x_{\kappa}, f^{\star}\left(x_{\kappa}\right)\right)
\end{aligned}
$$

Basic assumption: \mathcal{D} is of "nearly null" measure in \mathcal{X}

Facing the intractability coming from formal logic formal

Poly check

$$
\begin{aligned}
& \phi_{1}(f(x))=f_{2}(x) f_{4}(x)-f_{3}(x)+1=0 \\
& \phi_{2}(f(x))=f_{1}(x) f_{3}(x)+f_{2}^{2}(x)+6=0 \quad= \\
& \phi_{3}(f(x))=f_{1}^{2}(x)-f_{4}(x)=0 \\
& \forall x \text { (formal check) } \\
& f_{2}^{2}(x)+f_{1}(x) f_{2}(x) f_{4}(x)+f_{1}(x)+6=0 ? \\
& \phi_{1}: f_{3}=1+f_{2} f_{4} \\
& \quad f_{1} f_{3}=f_{1}+f_{1} f_{2} f_{4} \\
& \phi_{2}: f_{2}^{2}+f_{1} f_{2} f_{4}+f_{1}+6=0
\end{aligned}
$$

Learning from points and clauses

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 0 \leq x_{1}<2, \quad 0 \leq x_{2} \leq 1\right\} \\
& B=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 1 \leq x_{1}<3, \quad 0 \leq x_{2} \leq 1\right\} \\
& C=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 1 \leq x_{1}<2,0 \leq x_{2} \leq 2\right\} \\
& D=C \cup\left\{\left(x_{1}, x_{2}\right) \in R^{2}: 0 \leq x_{1} \leq 1,1 \leq x_{2} \leq 2\right\}
\end{aligned}
$$

"Knowledge Base"

$$
\begin{gathered}
a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{3}(x) \\
a_{3}(x) \stackrel{a_{4}(x)}{\Rightarrow} \\
a_{1}(x) \vee a_{2}(x) \vee a_{3}(x)
\end{gathered}
$$

What can I deduce?
Can the points help deduction?
$\mathcal{C} \models \phi$

WU-6/I/20I2

Checking (logic) constraints

WU - $6 / I / 20 I 2$

Checking (logic) constraints

WU - $6 / I / 20 I 2$

$$
a_{1}(x) \rightsquigarrow f_{1}(x)
$$

WU - $6 / I / 20 I 2$

$$
a_{2}(x) \leadsto f_{2}(x)
$$

points only

WU-6/I/20I2

$$
a_{3}(x) \rightsquigarrow f_{3}(x)
$$

points only
points and "logic rules"

$$
a_{4}(x) \rightsquigarrow f_{4}(x)
$$

points only
points and "logic rules"

WU - 6/I/20I2

Checking in the environment!

$$
\begin{aligned}
& a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{3}(x) \\
& \quad a_{3}(x) \Rightarrow a_{4}(x) \\
& a_{1}(x) \vee a_{2}(x) \vee a_{3}(x) \\
& x_{2} \uparrow \\
& \\
& \hline
\end{aligned}
$$

$$
\begin{array}{clll}
\text { Formally false ? } & \text { but true in this environment! } \\
a_{1}(x) \wedge a_{3}(x) & \stackrel{!}{\Rightarrow} a_{2}(x) & a_{1}=1, & a_{2}=0
\end{array} a_{3}=1
$$

WU-6/I/20I2

Checking constraints

FOL clause	Category	Average Truth Value		
$a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{3}(x)$	KB	98.26\% (1.778)		
$a_{3}(x) \Rightarrow a_{4}(x)$	KB	98.11\% (2.11)		
$a_{1}(x) \vee a_{2}(x) \vee a_{3}(x)$	KB	96.2\% (3.34)		
$a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{4}(x)$	LD	96.48\% (3.76)		True
$a_{1}(x) \wedge a_{3}(x) \Rightarrow a_{2}(x)$	ENV	91.32\% (5.67)		
$a_{3}(x) \wedge a_{2}(x) \Rightarrow a_{1}(x)$	ENV	91.7\% (4.57)		
$a_{2}(x) \wedge a_{3}(x) \Rightarrow a_{4}(x)$	LD	96.58\% (4.13)	\checkmark	
$a_{3}(x) \Rightarrow a_{1}(x) \vee a_{2}(x) \vee a_{4}(x)$	LD	99.7\% (0.54)		
$a_{1}(x) \wedge a_{4}(x)$	ENV	45.26\% (5.2)		False
$a_{2}(x) \vee a_{3}(x)$	ENV	78.26\% (6.13)		
$a_{1}(x) \vee a_{2}(x) \Rightarrow a_{3}(x)$	ENV	68.28\% (5.86)		
$a_{1}(x) \wedge a_{2}(x) \Rightarrow \neg a_{4}(x)$	ENV	3.51\% (3.76)		
$a_{1}(x) \wedge \neg a_{2}(x) \Rightarrow a_{3}(x)$	ENV	27.74\% (18.96)		
$a_{2}(x) \wedge \neg a_{3}(x) \Rightarrow a_{1}(x)$	ENV	5.71\% (5.76)		

Based on fixed-point iteration

Conclusions

What's next?

Do you want know more?

visit https://sites.google.com/site/ semanticbasedregularization/

A s/w simulator will be released soon for public use. Drop me an e-mail (marco@dii.unisi.it) if you want to try it!

Developmental Agents

-What if constraints are not available?

- don't use all the info at once! "easy-first" policy to select constraints?
reformulation based on information-theoretic
principles for feature generation, constraint selection and generation

