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Introduction

My research mainly focuses on mixture distributions:

◮ Model-based clustering to capture heterogeneity in the data

◮ Mixtures as universal approximators

Focus on Bayesian methods:

◮ Straightforward to estimate such complex models using Bayesian
techniques

◮ Intuitive to have distributions for parameters in this complex structures
rather than assuming fixed parameters

◮ Effective number of observations can be quite small: refraining from
asymptotic theory is important

2 / 21



Multimodality

Introduction

Modeling economic growth:

◮ Heterogeneity across countries, not necessarily explained by conditioning
factors

◮ Different effects of conditioning factors (e.g. investment rate) on economic
growth over time

◮ Changing time-series properties: composition of ‘rich’ and ‘poor’ can
change over time

(joint work with Richard Paap & Dick van Dijk)

3 / 21



Multimodality

Introduction

Mixture distributions for accurate inflation forecasting:

◮ Standard models for this do not take possible shifts over time into account

◮ Introducing a ‘switching’ average inflation alters the results substantially
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(joint work with Cem Cakmakli, Pinar Ceyhan & Herman van Dijk)
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Introduction

Mixtures in the ‘model space’:

◮ Averaging over models when choosing one alternative is not
straightforward
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Introduction

Mixtures in the ‘parameter space’: Obtaining densities that we can ‘simulate

from’
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Motivation for this work

Motivation for this work

Goal:

◮ Assessing the number of modes in data with non-standard distribution

Details:

◮ Descriptive analysis (limited theory for modeling these differences)
This ‘descriptive work’ on differences can later be used by specialists to
find linkages between these differences and (for example) genetic diseases

◮ Number of ‘modes’ in the genetic structure is of interest
(differences in the number of MSR sequences in DNA)

◮ Large dataset but quite some heterogeneity:
Subsets of data we can claim to be ‘homogenous’ are small

◮ Count data: standard tests relying on continuous data may not be
appropriate

◮ We can ‘treat’ this data as a continuous process
◮ We can develop appropriate tests for count data

◮ Bayesian testing method we propose is novel, to the best of our knowledge
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Frequentist tests for the number of modes

A ‘direct’ estimate of the number of modes

Estimating L modes yl ∈ [min(y),max(y)], l = 1, . . . , L:

p̂(y) =
1

n

n
∑

i=1

I [yi = y ] (pdf estimate)

p̂(yl ) > p̂(yl − 1), p̂(yl ) < p̂(y⋆
l ) (mode definition)

y⋆
l = min

yi ;yi>yl

p̂(yi ) 6= p̂(yl)

Unimodal ‘true’ dist.
Multiple modes in p̂(y)
(Izenman & Sommer, 1988;
Hall & York, 2001)

42 47 52 57 62 67 72 77

y

0.00
0.02

0.04
0.06

0.08

50 60 70 80

0.01
0.02

0.03
0.04

0.05

y

n = 100, λ = 60

8 / 21



Multimodality

Frequentist tests for the number of modes

Silverman test (Silverman, 1981)

◮ Applicable to continuous data

◮ Tests hypothesis ‘a single mode’ versus ‘at least two modes’ in the data

◮ Relies on Gaussian kernel estimates with window size h:

f̂ (y ; h) =
1

n

n
∑

i=1

1

h
φ
(y − yi

h

)

with h ∈ (0,∞), φ() is the std. normal density function.

◮ Estimated number of modes decreases with h

Bootstrap test:

1. Approximate f̂ (x , h⋆) with minimum h⋆ leading to a unimodal density

2. Simulate x (m) from f̂ (x ; h⋆) for m = 1, . . . ,M (inverse CDF technique),
count number of modes L(m) in x (m) using f (x (m); h⋆)

3. Calculate p-value (Efron & Tibshirani, 1994)

p-value =
1

M

M
∑

m=1

I (L(m)
> 1)
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Frequentist tests for the number of modes

Other related work

Testing for ‘multimodality’

◮ DIP test (Hartigan and Hartigan, 1985),
‘one mode’ versus ‘at least two modes’
applicable to continuous data

Tests for number of mixtures in count data (mixtures of Poisson)

◮ Hellinger distance estimator (Karlis & Xekalaki, 1998)

◮ Woo & Sriram (2006), Umashanger & Sriram, 2009
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Bayesian test for the number of modes

Main idea of this work

◮ Approximating the distribution of count data using a ‘flexible’ mixture
distribution

◮ A finite/infinite number of mixtures to be used to approximate the
distribution

◮ Distributions for each mixture components should be suitable for count
data, such as the Poisson distribution or negative binomial distributions can
be used

◮ Defining the number of modes as a random variable
◮ Straightforward in Bayesian context
◮ From the estimated posterior distribution, we can retrieve the posterior

distribution for the number of modes

◮ Mixture of shifted Poisson distributions
◮ applicable for modeling ‘non-standard’, possibly multimodal data

distribution
◮ ‘shifted’ distributions overcome the ‘overdispersion/underdispersion’

problem
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Bayesian test for the number of modes

Finite mixture of ‘shifted’ Poisson distributions

yi for i = 1, . . . , n are independent realizations from a mixture of J shifted
Poisson distributions:

yi − κj ∼ Poisson(λj ) if zij = 1 for i = 1, . . . , n; j = 1, . . . , J,

where zij = 1 if yi belongs to cluster j , and 0 otherwise.
Latent variable distribution:

Pr[zij = 1] = πj , for i = 1, . . . , n; j = 1, . . . , J,

with πj > 0 for j = 1, . . . , J and
∑J

j=1 πj = 1.

The (augmented) likelihood:

ℓ (y , z |θ) =











∏n

i=1

∏J

j=1

[

exp(−λj)
λ
yi−κj

j

(yi−κj)!

]zij

π
zij
j , if yi ≥ κj ∀i , j with zij = 1

0, otherwise

.

where y = (y1, . . . , yn)
′, zi = (zi1, . . . , ziJ)

′, z = {zi , . . . , zn}, π = (π1, . . . , πJ )
and θ = {λ, κ, π}.
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Bayesian test for the number of modes

Prior specifications

Uninformative but proper priors:

λj ∼ unif(λmin, λmax)

κj ∼ unif(κmin, κmax)

(π1, . . . , πJ) ∼ Dirichlet(1, . . . , 1)

[λmin, λmax] = [κmin, κmax] = [0,max(yi |yi = 1, . . . , n)]

Possible label switching constraints:

κl < κj , for l < j

κl + λl < κj + λk , for l < j

πl < πj , for l < j

(label switching is not an issue for estimating the number of modes)
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Bayesian test for the number of modes

Gibbs sampling scheme & the number of mixture components

For j = 1, . . . , J, under the condition that yi ≥ κj ∀i , j with zij = 1

p
(

κj |y , z , θ−κj

)

∝
λ

∑
i|zij=1

yi−njκj

j
∏

i|zij=1
(yi − κj )!

p
(

λj |y , z , θ−λj

)

∝ Gamma[λmin,λmax ]





1

nj
, 1 +

∑

i|zij=1

(yi − κj )





p (π|y , z , θ−π) ∝ Dirichlet (n1 − 1, . . . , nJ − 1) ,

where nj =
∑n

i=1 zij is the number of observations in component j and κj is an
integer in [max{κmin,mini|zij=1 (yi )}, κmax].

Assessing the number of mixture components:

◮ AIC and BIC criteria for the number of mixtures
(possible straightforward extensions)
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Bayesian test for the number of modes

Posterior distribution of the number of modes

Each posterior draw, m = 1, . . . ,M leads to a posterior density:

p(ỹ |λ(m)
, κ

(m)
, π

(m)) =

J
∑

j=1

pdfPoisson(λ
(m)
j

)

(

ỹ − κ
(m)
j

)

.

Calculation of posterior modes for integers y = {ỹ1, . . . , ỹL} on the range
[min(y),max(y)].
Modes ŷ1(m) , . . . , ŷĴ(m) satisfy:

p(ỹj(m)) > p(ỹj(m) − 1)

p(ỹj(m)) < p(ỹt⋆)

where t⋆ = mint;t>j(m)(p(ỹj(m)) 6= p(ỹt)), j = 1, . . . , Ĵ.
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Bayesian test for the number of modes

Simulated data experiments

◮ Simulation study follows examples in Umashanger & Sriram, 2009.

◮ Different number of modes and number of Poisson mixture components
and Poisson parameters

◮ n = 100 observations in each sample

◮ Estimates of number of modes only (known number of mixtures)
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Data properties

MSR sequences

◮ 270 unrelated human DNA samples from Asian, African and Caucasian
origin:

◮ Yoruba individuals from Ibadan, Nigeria (African),
◮ Han Chinese individuals from Beijing, China (CHB), Japanese individuals

from Tokyo, Japan (JPT),
◮ Utah residents with ancestry from Northern and Western Europe

(Caucasian)

◮ Effort to eliminate ‘selection problems’: Subjects in the sample are not
from the same family

MSR Primer sequences P. size Location Washing conditions

RS447 F: ATCCAGGCAGCTCAGAGTGT
R: GCTCTTTCCACCAAGTGCTC 604 internal 2x 0.3xSSC, 0.1% SDS 1x 0.1xSSC, 0.1% SDS

MSR5p F: CGATCTGCTGTCTTCATCCA
R: GGAAGGTGAGCTCAGGAGTG 644 distal 1x 0.3xSSC, 0.1% SDS 2x 0.1xSSC, 0.1% SDS

FLJ40296 F: TTTGGATGCTTTCCTTGACC
R: GCAGGCGTTTGATGTACCTT 749 internal 2x 2xSSC, 0.1% SDS 1x 1xSSC, 0.1% SDS

RNU2 F: TAAGGGCTAGGAAGGGGGTA
R: AATGCCAATGACAACGATGA 650 distal 3x 2xSSC, 0.1% SDS

DXZ4 F: ACTAGCCTGCCTTCCTGACA
R: CCAGTAGAAGTGGGCGAGAG 940 internal 1x 2xSSC, 0.1% SDS 2x 1xSSC, 0.1% SDS

CT47 F: CTGCTGCTTGATCATTTCCA
R: AGAGGGTAAGGAACGGGCTA 710 internal 1x 2xSSC, 0.1% SDS 2x 1xSSC, 0.1% SDS
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Application: DNA tandem repeats data

Number of mixture components for DNA data

BIC (AIC) based number of mixture components:

Asian Caucasian African

CT47 1 2 1
D4Z4 4 4 3 (4) 4
D4Z4 10 4 4 4
DXZ4 4 3 3 (4)
FLJ40296 2 2 2
MSR5p 3 4 (5) 4
RNU2 3 3 3
RS447 4 3 3

◮ In case of different results, estimates are based on BIC

◮ This is still a ‘rough’ comparison, natural extensions such as a Dirichlet
Process prior are to be done

◮ The number of mixtures is not the main purpose, we rather try to find a
good approximation to the empirical distribution
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Application: DNA tandem repeats data

Estimated posterior probabilities of number of modes

(A: Asian, C: Caucasian, Y: African)
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Application: DNA tandem repeats data

Estimated empirical distributions for DNA data

◮ Estimated density and 95% interval

◮ Interval estimates for posterior modes can also be extracted
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Application: DNA tandem repeats data

Conclusion and future work

Summary:

◮ We propose a method to asses number of modes in count data using a
flexible distribution that could a priori take several shapes

◮ The proposed tests is more appropriate for the analysis of count data
compared to the alternative test

◮ The proposed method is in particular of interest for DNA analysis,
explaining the differences in number of modes across gene compositions
and populations

Future work:

◮ Simulated data experiments in order to assess the proposed test’s
performance

◮ Comparison with other tests to detect multimodality

◮ Applications in economic data, such as income distribution data
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