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Introduction

Context. Liquidation of large amount of a given asset typical
problem on financial markets. ⇒ large literature on optimal
portfolio execution.

Two classes of models (according to [Gatheral and Schied, 2013a])

• Market impact models. Here one specifies price process for a
given execution strategy. Market impact depends on size of
the transaction and on the speed of trading. Fundamental
price (price when the trader is inactive) usually a diffusion
([Almgren and Chriss, 2001a].)

• Order book models. Here one specifies dynamics of limit order
book ⇒ endogenous price impact. Again mostly diffusion
models.
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Our setup: a point process model
We consider a novel market impact model where the asset price S
follows a pure jump process.

Interesting features:

• Local characteristics (intensity and jump size distribution) of
S depend on the liquidation rate ⇒ (permanent) price impact.

• Local characteristics depend on an unobservable Markov chain
Y ⇒ Liquidity and trend of the market are random and not
directly observable; Stochastic filtering is used to estimate
state of Y

Setting captures typical features of high frequency data:

• In reality the bid price is constant between events

• Introducing (unobservable) Y in the price dynamics helps to
reproduce clustering in inter-event durations

• Y can be used to model the feedback effect from the trading
activity of the rest of the market.
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Our contributions

• Reduction to a complete-information setup by stochastic
filtering using the reference probability approach

• Resulting state process is a piecewise deterministic Markov
process (PDMP) ([Davis, 1993]). We carry out a detailed
analysis of optimization problem via PDMP techniques

• We identify the optimization problem with a discrete-time
Markov Decision Model (MDM)

• We characterize value function via optimality equation for the
MDM

• We use optimality equation to characterize value function as
viscosity solution of HJB equation and we derive a novel
comparison principle for that equation

• Numerical case study for specific example
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Related literature

Optimal liquidation. See eg. [Bertsimas and Lo, 1998],
[Almgren and Chriss, 2001b], [He and Mamaysky, 2005],
[Schied and Schöneborn, 2009], [Bian et al., 2012],
[Ankirchner et al., 2015], [Guo and Zervos, 2015], [Schied, 2013],
[Cayé and Muhle-Karbe, 2016];

Surveys [Gökay et al., 2011], [Gatheral and Schied, 2013b] or
[Cartea et al., 2015]

Other point process models. [Bäuerle and Rieder, 2010],
[Bayraktar and Ludkovski, 2011], [Bayraktar and Ludkovski, 2014].
Differences to our work: trading only at jump times of a Poisson
process, no partial information, order book models

Portfolio optimization and hedging for pure jump process
[Bäuerle and Rieder, 2009], [Kirch and Runggaldier, 2004]
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The Model

Throughout we work on (Ω,F ,F,P), for P is the historical
probability measure.

The trader. She wants to liquidate w0 units of the stock over
given period [0,T ] . She sells at the nonnegative FS adapted rate
ν = (νt)0≤t≤T so that her inventory is given by

Wt = w0 −
∫ t

0
νudu, t ∈ [0,T ]. (1)

Denote by St bid price of the stock at t. The revenue generated by
strategy ν over [0, t] is∫ t

0
νuSu(1− f (νu))du,

where f models temporary price impact (nonnegative, increasing)
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Bid price dynamics

Bid price satisfies dSt = St−dRt . Here the return process
R := (Rt)t≥0 is a finite activity pure jump process. Denote random
measure associated with R by

µR(dt,dz) :=
∑

u≥0: ∆Ru 6=0

δ{u,∆Rs}(dt, dz) , (2)

Compensator of µR . Given a strategy ν, the F-compensator ηP of
µR is absolutely continuous and of the form

ηPt (dt, dz) = ηP(t,Yt− , νt− ,dz)dt .

Here Yt is the unobservable Markov chain driving the model; Y
has generator matrix Q = (qij)i ,j=1,...,K and state space
E = {e1, e2, ..., eK}.
Regularity assumptions on η in the paper.
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Examples

Return R follows a bivariate point process, i.e. ∆R ∈ {−θ, θ} and

ηP(t, ei , ν,dz) = λ+(t, ei , ν)δ{θ}(dz) + λ−(t, ei , ν)δ{−θ}(dz) .

Case 1: ηP deterministic. Here we assume λ+ = cup and
λ−(t, ν) = cdown(1 + aν), for constants cup, cdown, a > 0. Strength
of market impact is governed by a.

Case 2: ηP depends on Y . Here we consider two-state Markov
chain Y such that e1 is a ‘good’ state and e2 a ‘bad’ state, i.e.
λ+(e1) > λ+(e2), λ−(e1) < λ−(e2).
Given cup

1 > cup
2 > 0, cdown

2 > cdown
1 > 0, a > 0 we let for i = 1, 2

λ+(t, ei , ν) = (cup
1 , cup

2 )ei and λ−(t, ei , ν) = (1+aν)(cdown
1 , cdown

2 )ei ,

Parameter estimation via the EM algorithm (work in progress)
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Optimization problem

Admissible strategies. Recall that chain Y is not observable.
Hence admissible strategies are FS -adapted processes ν with
νt ∈ [0, νmax].

Objective of the trader. Define τ := inf{t ≥ 0 : Wt ≤ 0} ∧ T and
denote discount rate by ρ. Trader wants to maximize expected
discounted value of proceeds from liquidation,

J(ν) = E
(∫ τ

0
e−ρuνu Sν

u (1− f (νu))du
)
. (3)

Comments.

• Liquidation value at T can be added

• Trader is assumed risk neutral

• S can (and will) have nonzero drift (even for νt ≡ 0)

• Restricted strategy space: only selling, νt ≤ νmax.
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On the upper bound on νt

Mathematical reasons for νt ≤ νmax

• facilitates application of control theory for PDMPs and
construction of model via change of measure

• Viscosity solution characterization of the value function is in
general not valid for νmax =∞

Financial justification. Exact value of νmax does not matter:
Denote by J∗,m the optimal value in a model with νmax = m.
{J∗,m} is obviously increasing. We show that

for all m, J∗,m ≤ S0w0e
η̄T ,

where η̄ is the maximal growth rate of S for ν ≡ 0. Hence the
sequence {J∗,m} is Cauchy.
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Filtering

Standard approach for optimization under incomplete information:
reduce to full information by including filter distribution in the set
of state variables (separated problem)

Here unobserved process is K -state Markov chain ⇒ filter
distribution is characterized by

(πt)t≥0 = (π1
t , . . . , π

K
t )t≥0 with πit := E

(
1{Yt=ei} | F

S
t

)
.

We derive an SDE system for (πt) (Kushner Stratonovich
equation) using reference probability approach by working under
equivalent measure Q such that µR is Poissonian random measure
under Q; existing literature
[Frey and Schmidt, 2012, Ceci and Colaneri, 2012] mostly based
on innovations approach.
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The Kushner-Stratonovich equation

Proposition. The process (π1
t , . . . , π

K
t )t≥0 solves the following SDE

system:

dπi
t =

K∑
j=1

qjiπj
tdt+

∫
R
πi
t−u

i (t, νt−, πt−, z)(µR(dt,dz)−πt−(ηP(dz))dt) ,

where ui (t, ν, π, z) :=
dηP(t, ei , ν)/dηQt (z)∑K

j=1 π
jdηP(t, ej , ν)/dηQt (z)

− 1.

Comments

• K -dimensional SDE system

• Independent of specific choice of reference probability Q

• Deterministic behaviour (ODE) between jumps, updating at
jump times Tn of R
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KS equation for two-state chain

Consider case where R is a bivariate process and Y a 2-state
chain. Define point processes

Nup
t =

∑
Tn≤t

1{∆RTn=θ}, Ndown
t =

∑
Tn≤t

1{∆RTn=−θ}

Then we get following SDE for π1
t (note π2

1 = 1− π1
t )

dπ1
t = (q11π1

t + q21π2
t )dt

+ π1
t−

( cup
1

π1
t−c

up
1 + π2

t−c
up
2

− 1
)
d
(
Nup

t − (π1
t−c

up
1 + π2

t−c
up
2 )dt

)
+ π1

t−

( cdown
1

π1
t−c

down
1 + π2

t−c
down
2

− 1
)
d
(
Ndown

t − (π1
t−c

down
1 + π2

t−c
down
2 )(1 + aνt)dt

)

Comments. Deterministic behaviour (ODE) between jumps,
updating at jump times Tn of R; general case in the paper.
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Optimization: Overview of theoretical results

• State process of the optimization problem is X := (W ,S , π);
state space denoted X . This is a PDMP as in [Davis, 1993]

• At each jump time Tn we choose a liquidation strategy to be
followed up to Tn+1 ∧ τ . ⇒ optimization problem can be
identified with discrete-time Markov decision model (MDM)
for Ln = XTn , n ∈ N ([Bäuerle and Rieder, 2011].)

• MDM-theory ⇒ under regularity conditions value function V
is characterized by a fixed-point equation and there is an
optimal relaxed control.

• Fixed point equation ⇒ V is value function of a deterministic
control problem. Can be used to show that V is unique
viscosity solution of the ‘naive’ HJB equation corresponding
to the Markov process X ([Davis and Farid, 1999]) and to
derive a comparison principle.
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State process as a PDMP

A controlled PDMP X is a jump process that follows between
jumps an ODE d

dtXt = g(Xt , νt) and that jumps at random times;
jumps governed by QX (· | x , ν).

Here: g1(x̃ , ν) = −ν, g2(x̃ , ν) = 0, and for k = 1, . . . ,K ,

gk+2(x̃ , ν) =
K∑
j=1

qjkπj − πk
K∑
j=1

πj
∫
R
uk(t, ν, π, z)ηP(t, ej , ν,dz);

Transition kernel: QX f (x , ν) := 1
λ(x ,ν)Q̄X f (x , ν) with

Q̄X f (x , ν) =
K∑
j=1

πj

∫
R
f
(
t,w , s(1 + z), π1(1 + u1(t, ν, π, z)), . . . ,

πK (1 + uK (t, ν, π, z))
)
ηP(t, ej , ν,dz).
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Optimal liquidation as control problem for PDMPs

In control of PDMPs one uses open-loop controls: trader chooses
at Tn < τ a liquidation strategy νn = νn(t,Tn,XTn) to be followed
up to Tn+1 ∧ τ .

Strategies. Denote by A the set of all α : [0,T ]→ [0, νmax]. An
admissible liquidation strategy is a sequence of functions
{νn}n∈N : X̃ → A; the liquidation rate at time t is given by

νt =
∑
n∈N

1(Tn∧τ,Tn+1∧τ ](t)νn (t − Tn;Tn,XTn) . (4)

Proposition. Under our regularity assumptions there exists for
every admissible {νn}n∈N and every initial value x a unique PDMP
with characteristics g , λ, and QX .
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The PDMP problem ctd

Denote by P
{νn}
(t,x) law of X provided that Xt = x ∈ X and that the

strategy {νn}n∈N is used. The associated reward function is

V (t, x , {νn}) = E{ν
n}

(t,x)

(∫ τ

t
e−ρ(u−t)νuSu(1− f (νu))du

)
,

and the value function of the liquidation problem under partial
information is

V (t, x) = sup {V (t, x , {νn}) : {νn}n∈N admissible liquidation strategy} .

Remark. This optimization problem is discrete: the strategy is
chosen at Tn and the system evolves in a deterministic way up to
next jump.
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Optimality equation

Theorem. 1. Under technical conditions the value function V is
continuous and satisfies the optimality equation

V (t, x) = sup
α∈A

{∫ τϕ

0
e−ρue−Λαu (t,x)

{
sαu(1− f (αu))

+ Q̄V (ϕαu (t, x), αu)
}
du
}

2. An optimal strategy exists in the space of all relaxed or
randomized controls.

Here ϕα is the flow of the vector field g and τϕ is the first exit
time of the system from the state space (at t = T or at w = 0).
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The HJB equation
The HJB equation for the optimal liquidation problem is

0 =
∂V ′

∂t
(t,w , π) + sup

{
H(ν, t,w , π,V ′,∇V ′) : ν ∈ [0, νmax]

}
,

where H is given by a complicated expression involving the
generator of X .

Theorem. V is the unique continuous viscosity solution of HJB
equation with appropriate boundary condition. Moreover a
comparison principle holds for that equation

Comments

• Proof uses optimality equation and results from [Barles, 1994]
on deterministic control problems.

• Different boundary conditions, V = 0 only on active boundary

• We have counterexamples that show that V is non-smooth
(for νmax <∞ ) and a strict supersolution ifwe consider
νmax →∞

19 / 23



Introduction The Model Filtering Optimization Numerical experiments

Case studies: Overview

We study the example where ηP depends on 2-state Markov chain
Y and is of the form

ηP(ei , ν, dz) = (1 + aν)(cdown
1 , cdown

2 )eiδ−θ(dz) + (cup
1 , cup

2 )eiδθ(dz) .

Finite differences are used to solve HJB equation numerically and
to compute approximately optimal strategy; convergence follows by
applying the [Barles and Souganidis, 1991]-approach.

Parameters

w0 νmax T θ a cf ς q12 q21

6000 18000 1 day 0.001 4× 10−6 5× 10−5 0.6 4 4

20 / 23



Introduction The Model Filtering Optimization Numerical experiments

Liquidation rate for moderate permanent price impact

Throughout cup
1 = cdown

2 = 1000, cup
2 = cdown

1 = 950.

Figure: Liquidation policy for a = 410−6, cf = 5× 10−11 (left),
cf = 10−5 (middle), and cf = 5× 10−5 (right) and t = 0 Note the
different scale in the graphs.
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Liquidation rate for large permanent price impact

Figure: Liquidation policy for cf = 5× 10−11 (left) and cf = 10−5 (right)
for a = 10−4 and t = 0
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Interpretation

• Temporary price impact ‘smoothes out’ trading behavior

• Qualitative behaviour of ν determined by an interplay of two
effects.

• price anticipation effect ⇒ ‘wait’ in the good state where
prices are increasing on average and ‘sell’ in the bad state

• liquidity effect. ⇒ sell in the good state and wait in the bad
state to reduce the permanent price impact.

• For small a price anticipation effect dominates. For large a
and large w liquidity effect dominates

• Gambling region for w large and π1 small
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