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Structural credit risk models

Structural models. In this model class default occurs if asset value
V of a given firm falls below some threshold K , interpreted as
liability. This leads to

τ := inf{t ≥ 0: Vt ≤ K}.

Typically V is modelled as a diffusion ⇒ τ is predictable.

Problems.

• The model gives unrealistically low short-term credit spreads.

• Asset value V is hard to observe precisely for investors on
capital markets

⇒ Consider models where asset value is not perfectly observable.

Notation. We represent information available to the market by the
filtration FM
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Structural models with Incomplete information.

[Duffie and Lando, 2001]. V is geometric Brownian motion.
Market observes at discrete time points tn a signal Zn = ln Vtn + εn
(termed noisy accounting information) and moreover default.
Results.

• Under incomplete information, τ admits an intensity (an
FM-adapted process λt so that 1{τ≤t} −

∫ t∧τ
0 λsds is an FM

martingale).

• Characterization of intensity: λt = 1
2σ

2K 2 ∂
∂v π(t,K ), π(t, ·)

the density of πVt |FM
t

.

• Link between structural and firm-value models via information
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Structural models with Incomplete information ctd.

Shortcomings of Duffie Lando

• Noisy accounting information implies unrealistic asset price
dynamics (no price volatility)

• No analytic results on asset price dynamics under incomplete
information

[Frey and Schmidt, 2009]. Similar setup as in Duffie Lando.

• Dividends are introduced to study pricing of equity and debt.

• A systematic link between pricing corporate securities and
filtering: Prices are first computed under full information using
Markov property, and then projected on market filtration FM.

• The ensuing filtering problem is studied via a simple
Markov-chain approximation
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A price path under David-Lando information structure
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Our Extensions of Duffie-Lando / Frey-Schmidt

1. Asset-value observation is modelled by a continuous-time
process Zt =

∫ t
0 a(Vs)ds + Wt .

• More in line with continuous-time filtering literature

• Security price processes follow standard (jump-)diffusion
processes.

2. Systematic analysis of the ensuing filtering problem

• We extend the Duffie-Lando characterization of default
intensities to our setting.

• We derive price dynamics for corporate securities in the
market filtration FM

3. Applications (work in progress)

• Pricing derivatives and model calibration

• Analysis of contingent convertibles (Cocos)
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Some literature

• Structural credit risk models: [Duffie and Lando, 2001],
[Giesecke, 2004], [Jarrow and Protter, 2004],
[Coculescu et al., 2008], [Frey and Schmidt, 2009],
[Cetin, 2012],. . .

• Reduced-form models: [Collin-Dufresne et al., 2003],
[Schönbucher, 2004], [Duffie et al., 2009] (empirical focus),
[Frey and Runggaldier, 2010], [Frey and Schmidt, 2012]
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The Model

We use the following setup

• We work on (Ω,G,G = (Gt)t>0,Q); all processes are
G-adapted; Q is the martingale measure used for pricing

• Consider a company with asset value process V = (Vt)t>0

and default time τ = inf{t > 0: Vt 6 K} .
• Company pays dividend dn at date Tn, n ≥ 0. Tn is nth jump

time of a Poisson process with intensity λD and dn = δnVTn

for a iid sequence (δn)n=1,2,..., independent of V , with mean δ̄.

• Dt =
∑
{n : Tn6t} dn is the cumulative dividend process and

ϕ(y ,VTn) denotes conditional density of dn given V .

• Under Q, V is geometric Brownian motion,
dVt = (r − λD δ̄)Vtdt + σVtdBt . Moreover V0 has Lebesgue
density π0(v) with π0(K ) = 0.
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Market Information
The market uses the following pieces of information to price
securities

• Default information. Market observes default state
Nt = 1{τ6t} of the firm. We denote the default history by

FN = (FN
t )t≥0.

• Dividend information. Market observes Dt with associated
filtration FD = (FD

t )t≥0.

• Noisy asset observation. Market observes a process Z with
Zt =

∫ t
0 a(Vs)ds + Wt . W is an l-dim G-Brownian motion

independent of B, and a is a smooth and bounded with
a(K ) = 0. Z is an abstract process modelling information
contained in security prices.

• Market information is FM = FN ∨ FZ ∨ FD ; FZ ∨ FD will be
termed background filtration.
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Pricing basic corporate securities and filtering
Risk-neutral pricing wrt FM ⇒ price of security with cash flow
stream (Ht)0≤t≤T is

ΠH
t = EQ

( ∫ T

t
e−r(s−t)dHs | FM

t

)
, t ≤ T . (1)

Consider a basic corporate securities with FN ∨ FD-adapted cash
flow such as a bond, a CDS or the equity value of the firm.
Iterated conditional expectations gives

1{τ>t}Π
H
t = EQ

(
EQ
(
1{τ>t}

∫ T

t
e−r(s−t)dHs | Gt

)
| FM

t

)
.

Markov property of V ⇒ inner conditional expectation is typically
of the form 1{τ>t}h(t,Vt), (the full-information value). Hence

1{τ>t}Π
H
t = 1{τ>t}E

Q
(
h(t,Vt) | FM

t ). (2)

Evaluation of this expression is a nonlinear filtering problem
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Equity Pricing

The equity value is defined as value of dividend payments up to
default time time τ . Full-information value S(v) satisfies

S(v) = EQ
(∫ τ

0
e−rsdDs | V0 = v

)
= EQ

(∫ τ

0
e−rs δ̄Vsλ

D ds | V0 = v
)
.

(3)
Hence S is time-independent and solves LV S(v) + δ̄λDv = rS(v),
with boundary condition S(K ) = 0. For K = 0 (and hence τ =∞)
we get S(v) = v . For K > 0 one has

Proposition. The full information value (3) of the firms equity is
given by S(v) = v − K ( v

K )α
∗
, where α∗ is the negative root of the

equation (r − λD δ̄)α + 1
2σ

2α(α− 1)− r = 0.

Remark. Full-information value for debt securities can be
computed via first passage time of Brownian motion with drift
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The filtering problem

Recall that we want to compute recursively the conditional
expectation

1{τ>t}E
Q
(
f (Vt) | FM

t

)
, t ≤ T , f ∈ L∞

(
[K ,∞)

)
. (4)

This is a nonstandard filtering problem, due to inclusion of default
history FN in the observation filtration:

• Under full information G τ is a predictable stopping time and
does not admit an intensity.

• In standard filtering theory with point process information on
the other hand N is assumed to have a G intensity.

Basic idea. Reduce (4) to a filtering problem wrt background
filtration FZ ∨ FD via Dellacherie formula.
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Reduction to background filtration

Using the Dellacherie formula, we get

1{τ>t}E
Q
(
f (Vt) | FM

t

)
= 1{τ>t}

EQ
(
f (Vt)1{τ>t} | FZ

t ∨ FD
t

)
Q
(
τ > t | FZ

t ∨ FD
t

) .

Denote by V τ the process V τ
t = Vt∧τ . By definition of τ we have

{τ > t} = {V τ
t > K}; moreover, Vt = V τ

t for t ≤ τ . Hence we get

1{τ>t}E
Q
(
f (Vt) | FM

t

)
= 1{τ>t}

EQ
(
f (V τ

t )1{V τ
t >K} | FZ

t ∨ FD
t

)
Q
(
V τ
t > K | FZ

t ∨ FD
t

) .

(5)
Remark. (5) is a filtering problem with standard diffusion and
point process information. On the other hand new signal process
X := V τ with state space SX is a stopped diffusion process.
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Measure transform

Start with independent processes (X ,Z ) on (Ω,G,Q∗) such that X
is a stopped geometric Brownian motion and Z is a standard BM.
(We largely ignore dividend payments.)
Consider the density martingale Lt = dQ

dQ∗ |Ft
with

Lt = exp
(∫ t

0
a
(
Xs

)>
dZs −

1

2

∫ t

0
|a
(
Xs

)
|2 ds

)
. (6)

Girsanov ⇒ the pair (X ,Z ) has the right law under Q and we have

EQ
(
f (Xt) | FZ

t

)
=

EQ∗(
f (Xt)Lt | FZ

t

)
EQ∗(Lt | FZ

t )
=:

Σt f

Σt1
. (7)
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SPDE for the density of Σt

Suppose that Σt is absolutely continuous with density u. u is
related to the SPDE

du(t) = L∗u(t)dt + a>u(t)dZt , u(0) = π0.

Formal interpretation. Denote by (f , g) the scalar product on
L2(SX ). Then u is an FZ adapted continuous process with values
in the Sobolev space H0

1 (SX ) ∩ H2(SX ), and one has for v ∈ L2(
u(t), v

)
= (u(0), v

)
+

∫ t

0
(L∗u(s), v)ds +

∫ t

0

(
a>u(s), v

)
dZs . (8)

Theorem. ([Pardoux, 1978]) There is a unique solution u of
equation (8). Moreover, for f ∈ L∞(SX ),

Σt f =
(
u(t), f

)
+ νK (t)f (K ) where νK (t) =

∫ t

0

1

2
σ2K 2 du

dx
(s,K )ds .

(9)
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Comments and Implications

Comments.

• The measure Σt consists of two parts: an absolutely
continuous part with density u(t) and a point mass νK (t) at
the boundary K .

• Boundary term drives form of default intensities.

• We give a simplified presentation here: the result has been
shown only for bounded domain [K ,N) (see paper).

• Numerical solution via Galerkin approximation of (8)

Corollary. We get for the original filtering problem

E (f (Vt) | FM
t ) =

(
π̃(t), f

)
with π̃(t, x) =

u(t, x)(
u(t), 1

) . (10)
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A Path of V and V̂
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Corresponding Filter Density
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Default Intensity

Theorem. The FM compensator of Nt is given by (Λt∧τ )t≥0 where

Λt =

∫ t

0
λsds with λt =

1

2
σ2K 2 dπ

dx
(t,K ) . (11)

Here π(t, x) is conditional density of Xt given FM
t .

• This extends earlier results of [Duffie and Lando, 2001] and
[Frey and Schmidt, 2009] to the case where information
arrives continuously.

• An alternative characterization of the compensator of N has
recently been given by [Cetin, 2012].
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Filter equations

Theorem. For f ∈ C 1,2([0,T ]× SX ) the projection
f̂t = E (f (t,Xt) | FM

t ) has dynamics

f̂t = f̂0 +

∫ t

0
(

d̂f

dt
)s + (1− Ns−)(L̂X f )s ds +

∫ t∧τ

0
(f̂a>)s − f̂s â>s dMZ

s

+

∫ t∧τ

0
(f (s,K )− f̂s−) d(Ns − λsds)

+

∫ t∧τ

0

∫
R+

( ̂f ϕd(y))s− − f̂s−(ϕ̂d(y))s−

f̂s−(ϕ̂d(y))s−
(µD − γD)(dy , ds) .

Here MZ = Zt −
∫ t
0 âsds is a FM Brownian motion and

(µD − γD)(dy , ds) is the FM -compensated random measure
associated with the dividends.
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Stock price dynamics

Using the filter equations it is straightforward to compute the

semimartingale decomposition of the stock price Ŝt . We get

dŜt = (1− Nt−)(r Ŝt − λD δ̄V̂t)dt + (1− Nt−)
(
(Ŝa>)t − Ŝt â>t

)
dMZ

t

− (1− Nt−)Ŝt− d(Nt − λtdt) + integral wrt(µD − γD)(dy , dt)

• Similar formulas can be obtained for debt securities.

• Note that stock-price dynamics can be quite wild even if asset
price dynamics follow standard geometric Brownian motion.
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A path of the default intensity
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A typical stock price trajectory
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Derivative Pricing

Basic corporate securities (FD ∨ FN -adapted payoff H).
Here ΠH

t = 1{τ>t}(π(t), h). Note that price is linear in π(t)

Options. Here payoff depends on price path of basic corporate
securities; examples include equity options, convertibles, . . . Price is
given by some function C (·) of the current density π(t), but C (·)
needs to be computed with Monte Carlo.

Simulation of price trajectories.

• Crucial point: generate a numerical approximation to the
solution u(t) of the Zakai SPDE.

• This is best done via Galerkin approximation: one considers
an approximation of the form um(t) =

∑m
i=1 Ψi (t)ei ,

ei ∈ H0
1 (SX ) a suitable sequence of basis functions and one

derives an SDE system for Ψ(t) that can be solved
numerically. More details in [Frey et al., 2013]
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Contingent Convertibles (CoCo
Cocos.

• A CoCo is a corporate bond that is automatically triggered
once the issuer enters into financial distress.

• At trigger the CoCo is either converted into equity or into a
(low) cash-payment Purpose: strengthen the equity capital of
the issuer.

Payoff description. Cocos are characterized by maturity date T ;
coupons cj , due at tj ; conversion time θ > 0 and payment at
conversion.

• Payoff stream with cash payment C < 1 at conversion:

m∑
j=1

e−rtj cj1{θ>tj} + e−rT1{θ>T} + e−rθC 1{θ≤T} ;

• Conversion into a fraction γ of equity ⇒ last term becomes
e−rθγSθ1{θ≤T}.
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Modelling the conversion time θ

CoCos in practice have an accounting trigger based on capital
adequacy ratios. Difficult to model directly ⇒ use approximations.

Asset trigger. Here θass = inf{t ≥ 0: Vt ≤ KCoCo}.
+ conversion always before default ⇒ protection of debtholders

– asset value and hence θass not publicly observable, hence
monitoring difficult

Equity trigger. Here conversion if stock price hits threshold SCoCo,
that is θeq = inf{t ≥ 0: St ≤ SCoCo}. A natural choice in our
model is SCoCo = S(KCoCo).

+ Stock price is publicly available.

– It may happen that θeq = τ , that is conversion takes place too
late
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Comparison of the two trigger mechanisms

Under full information it holds that θeq = θass; under incomplete
information the two mechanisms differ.

• asset trigger contains extra information whereas θeq is FM

stopping time.

• Late conversion (θeq = τ) most likely if KCoCo close to the
default boundary and if asset information is quite noisy

• In our experiments equity trigger led to higher prices for the
Coco.
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Cocos: numerical experiments

Coco price
Information θeq θass Q(τ < T ) Q(θeq < T ) Q(θeq = τ)
noisy 1.1 0.828 0.2876 0.2894 0.2861
precise 0.882 0.828 0.2876 0.6099 0.0328

Other parameters. T = 10; coupon 5% biannually; K = 20; KCoCo = 30;
mean initial asset price 40.
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