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Introduction

• Partial observation models are frequently used in finance and
insurance ⇒ parameter estimation in these models is of high
relevance.

• Examples:
• Credit risk: unobservable default intensity or credit quality of

obligors (corporates or sovereigns)
• Insurance: unobservable claims-arrival intensity or mortality

rate
• High frequency data: unobservable ‘state of the market’ that is

affected by trading activity of others

• EM algorithm is a possible approach for parameter estimation
under partial information; particularly useful if unobservable
state variable can be approximated by a finite state Markov
chain
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Our contributions

. Extending Elliott [1993] and Elliott and Malcolm [2008], we
obtain an EM algorithm for a setting in which the state
variable follows a finite-state Markov chain observed via
diffusive and point process observation; this is quite relevant
for the applications mentioned beforehand.

. In such setting, we derive the corresponding exact,
unnormalized and robust (in the sense of Clark [1978] and
James et al. [1996]) filters needed in the E step.

. We propose goodness of fit tests and we run an extensive
simulation study.

. We present a case study with rating data
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Markov Chain

- We consider a finite time interval [0,T ] and a continuous-time
finite-state Markov chain X defined on (Ω,G,G,P).

• X has the state space S = {e1, e2, ..., eK} where, without loss
of generality, we assume ek is the basis column vector of RK .

• The initial distribution is π = (π1, . . . , πK ).

• The transpose of the infinitesimal generator is A = (aij),
i , j ∈ {1, . . . ,K}.

• Accordingly, we define

MX
t := Xt − X0 −

∫ t

0
AXsds.

Clearly, MX is a G-martingale.

X is not directly observable !
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Observation Processes

Diffusion information. We consider the noisy observation process

Zt =

∫ t

0
g(Xs)ds + Wt . (1)

Often Z is constructed from discrete observations on timescale ∆.
Consider zn = g̃(Xtn) + εn for {εn} iid mean zero with variance σ2

ε .
Define scaled cumulative observations process

Z̃t := ∆
∑
tn≤t

zn =
∑
tn≤t

∆g̃(Xtn) + ∆
∑
tn≤t

εn . (2)

Then Z̃t ≈
∫ t

0 g̃(Xs)ds + σε
√

∆Wt (as in (1) after normalisation).

Point process. Second source of information is a point process D
with G-intensity λ(Xt). Hence we have the G-martingale

MD
t = Dt −

∫ t

0
λ(Xs)ds, t ≤ T .
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Graphical illustration
Parameter set: N = 20000, ∆n = 1

500
, σz = 0.2, g̃ = (−1, 0, 1)>, λ = (0.2, 1, 3)>,

(a12, a13, a21, a23, a31, a32) = (0.3, 0.1, 0.1, 0.2, 0.2, 0.2) and h ≡ 1.

Figure: Markov chain, Gaussian observation, point process observation
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Information and estimation problem

- The information available to the observer of the system is
carried by F = FZ ∨ FD. Note that Ft ⊂ Gt .

- For an integrable and measurable process Y , Ŷt denotes the
F-optional projection, that is Ŷt = E[Yt |Ft ], for every t. T

- For a generic function f it holds that f (Xt) = 〈Xt , f〉 where
〈 , 〉 denotes the scalar product and fk = f (ek), 1 ≤ k ≤ K .

- Hence, the unobserved parameters to be estimated are given
by the vector

θ = {ajk , gj , λj , j , k ∈ {1, . . . ,K}} .
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EM Methodology: General Description

• Assume that measures corresponding to different parameters
θ, θ′ are equivalent on GT (full information!). Define the
corresponding full-information log-likelihood:

L(θ, θ′) := log
dPθ
dPθ′

∣∣
GT
.

• Let θm be the optimal set of parameters after the mth

iteration of the algorithm. Then, iteration m + 1 of the EM
algorithm consists of the following two main steps:

• Expectation (E): compute filtered estimate

̂L(θ, θm) = Eθm
[

log
dPθ
dPθm

∣∣FT

]
.

• Maximization (M): find θm+1 ∈ argmax
θ

̂L(θ, θm).
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EM Methodology: Current Setting
Define for i , j ∈ {1, . . . ,K}, the following quantities:

. N ij
t =

∑
0<s≤t 1{Xs−=ei}1{Xs=ej},

. G i
t =

∫ t
0 〈Xs , ei 〉dZs ,

. J it =
∫ t

0 〈Xs , ei 〉ds,

. B i
t =

∫ t
0 〈Xs , ei 〉dDs ,

(number of jumps)

(level integral)

(occupation time)

(jump level integral)

E Step. By Girsanov, the filtered estimate for the log-likelihood is

̂L(θ, θm) = Eθm
[

log
dPθ
dPθm

∣∣∣FT

]
=

K∑
i,j=1,i 6=j

(
N̂ ij

T log aji − aji Ĵ iT

)
+

K∑
i=1

(
g i Ĝ i

T −
1

2
(g i )2Ĵ iT

)

+
K∑
i=1

(
log(λi )B̂ i

T − λ
i Ĵ iT

)
+ R̂(θm).

M-Step. FOCs give new parameter set:

(aji )m+1 =
N̂ ij

T

Ĵ iT

, (g i )m+1 =
Ĝ i
T

Ĵ iT

, (λi )m+1 =
B̂ i
T

Ĵ iT

.
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Unnormalized Filters
Reference Probability Measure

- We work under the so-called reference probability measure P∗
on (Ω,G). Under P∗,

• Z is a Brownian motion,
• D is a Poisson process with unit intensity, independent of X .

- P << P∗ with density dP
dP∗
∣∣
Gt

- For any G-adapted, integrable process Y define the
unnormalized conditional expectation by

σt(Y ) = E∗[Yt | Ft ];

by Bayes it holds that Ŷt = σt(Y )
σt(1)

10/28



Introduction Notation and EM algorithm Filtering Goodness of Fit Tests Simulation Analysis Credit risk example References

Unnormalized Filters

Theorem 3.1 (Main Result)

Consider a G-adapted process Y of the form

Yt = Y0+

∫ t

0
αY
s ds+

∫ t

0
γYs dWs+

∫ t

0

(
βYs

)>
dMX

s +

∫ t

0
δYs d(Ds−s).

Let Γ = diag(g), Λ = diag(λ) and I the identity matrix. Then

σt(YX ) = σ0(YX ) +

∫ t

0
σs(αYX )ds +

∫ t

0
Aσs(YX )ds

+
K∑

i,j=1

∫ t

0

〈
σs(βjX )− σs(βiX ), ei

〉
ajids(ej − ei )

+

∫ t

0
σs(γYX ) + Γσs(YX )dZs +

∫ t

0
Λσs−(δYX ) + (Λ− I )σs−(YX )d(Ds − s).
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On Theorem3.1

Comments

• The resulting filtering equations are linear and (for appropriate
αY , βY , γY , δY ) recursive.

• They are driven by observation processes Z and D.

Corollary 3.1 (Zakai equation)

The unnormalized filter for the unobserved state of the Markov
chain is given by (qt := σt(X ))

qt = q0 +

∫ t

0
Aqsds +

∫ t

0
ΓqsdZs +

∫ t

0
(Λ− I )qs−d(Ds − s)

Similar expressions for other quantities of interest
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Robust Filters

Goal. Derive versions of the unnormalized filters that depend
continuously on observations. ⇒ transform the filter dynamics
such that the resulting expressions involve a minimal number of
stochastic integrals. (Clark [1978])
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Figure: Naive discretization of exact state filters (pink) vs. robust
discretization (cyan), using ∆n = 1

100
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Goodness of Fit Tests

Goal. Find tests for the hypothesis that the model, parameterized
in terms of θ∗ =

(
ajk,∗, g j ,∗, λj ,∗, j , k ∈ {1, . . . ,K}, j 6= K

)
, models

the observed data (Z ,D) well.

Two testable observations.

1. wt = Zt −
∫ t

0 〈g
∗, X̂s〉ds is a Pθ∗-Brownian motion;

2. Define T (t) :=
∫ t

0 λ
∗(X̂s)ds. Then the process D̃ with

D̃t := D ◦ T −1(t), 0 ≤ t ≤ T (T ),

is a standard Poisson process under Pθ∗ .
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Potential Tests

Brownian motion hypothesis:

. QQ-plot and Kolmogorov-Smirnov for normality.

. Correlograms.

Poisson process hypothesis:

. QQ-plot and Kolmogorov-Smirnov for exponentiality of
inter-arrival times.

. If D̃ is standard Poisson,

→ Uk := D̃tk − D̃tk−1
, k = 1, . . . , κ, are i.i.d. Poisson with

parameter ∆̄.
→ Hence, the rvs Ũk = Uk ∧ 1, k = 1, . . . , κ are Bernoulli with

parameter p = 1− exp(−∆̄).
→ To check this, one can employ a standard Binomial test.
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Simulation Procedure
Algorithm

1. Fix a parameter set θ, an initial distribution π, some noise
variance σ2

z and generate trajectories of size N with step size
∆n for the Markov chain X , Brownian motion W and the
point process D. Obtain the corresponding observation series
(Z̃ , D).

2. Run the EM algorithm and obtain estimates for the hidden
states, as well as for the parameters:

I: Initialize the algorithm with some parameter set θ0 and σ0
z .

N: Normalize the data by σm
z .

E: Obtain the filtered estimates of the quantities of interest.
M: Compute θm+1 and σm+1

z .

T: Terminate if |θ
m+1−θm|
θm and

|σm+1
z −σm

z |
σm
z

are below the termination

tolerance; else return to step N.
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Performance of EM

. Parameter set: N = 20000, ∆n = 1
100

, σz = 0.1, g̃ = (0.01, 0.8, 1.3)>,

λ = (2, 8, 10)>, (a12, a13, a21, a23, a31, a32) = (0.2, 0.7, 0.3, 0.2, 0.2, 0.2) .

J1
T J2

T J3
T G1

T G2
T

Actual 92.86 73.13 34.01 9.39 58.63
Filters 94.54 70.95 34.52 10.17 57.88
Relative error % 1.80 2.98 1.50 8.30 1.28

G3
T B1

T B2
T B3

T N12
T

Actual 43.70 180.00 521.00 265.00 26.00
Filters 45.02 169.49 530.53 265.98 22.95
Relative error % 3.03 5.84 1.83 0.37 11.73

N21
T N13

T N31
T N23

T N32
T

Actual 17.00 16.00 26.00 18.00 9.00
Filters 16.95 15.60 22.59 19.77 13.78
Relative error % 0.27 2.51 13.10 9.84 53.07

. The final parameter estimates read:

(a12, a13, a21, a23, a31, a32)EM = (0.239, 0.655, 0.243, 0.399, 0.165, 0.279),
(g1, g2, g3)EM = (1.075, 8.158, 13.042)>,
(λ1, λ2, λ3)EM = (1.793, 7.478, 7.705)>,

Approach works well under favorable circumstances!
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Simulation Analysis: Tests

Comparison of 2 models

• Correctly specified model

• Weighted average case. Here generator A is specified
correctly, but λ∗,j = 〈λ, π〉 ∀ j and g∗,j = 〈g , π〉 ∀ j , π the
stationary distribution of X . (constant accross states)

• Weighted average case has on average correct drift and
correct number of jumps, but misspecifies dependence
structure of data
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Diffusion tests, correct model
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Parameter set: N = 20000, ∆n = 1
500

, σz = 0.1, g̃ = (0.01, 0.8, 1.3)>,

λ = (0.6, 1, 4)>, (a12, a13, a21, a23, a31, a32) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) .
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Diffusion tests, weighted average case
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Test for Point Process
Correctly Estimated Model vs. ‘Weighted Average’ Case
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Corresponding Kolmogorov-Smirnov p-values: 0.8122 and 0.0001351.
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A Hidden Markov Model for Credit Quality

We consider m rated firms with CDS contracts. Ratings and CDS
spreads form available information.

State Process. X i
t is true credit quality of firm i at t;

• Finite state Markov chain; generator matrix At identical
accross firms;

• e1 is best credit quality, eK is the worst (non-default) state;
el ≥ ek whenever l > k

Continuous observation (CDS spreads). Let z in = log(CDS i
tn), (log

of CDS spread of firm i at tn).Assume that

z in = g̃(X i
tn) + εin, for εin, 1 ≤ n ≤ N, 1 ≤ i ≤ m, iid (3)

Identifying (3) with a continuous model gives Z i .

22/28



Introduction Notation and EM algorithm Filtering Goodness of Fit Tests Simulation Analysis Credit risk example References

Point Process observation (ratings)

• R i
t ∈ S observed rating of firm i at time t.

• For simplicity only three types of events possible: upgrading
(by one category); downgrading; default.

• ⇒ Dynamics of R i described by three point processes:
• D+,i

t (number of upgradings of firm i up to time t)
• D−,it (number of downgradings of firm i up to time t)

• Dd,i
t (default indicator of firm i)

• Intensities. Idea: observed rating tracks ‘true’ credit quality,
possibly with rating error. We take

λ+(X i
t ,R

i
t) = λ+

1 1{X i
t<R i

t} + λ+
2 1{X i

t =R i
t} + λ+

3 1{X i
t>R i

t}

λ−(X i
t ,R

i
t) = λ−1 1{X i

t<R i
t} + λ−2 1{X i

t =R i
t} + λ−3 1{X i

t>R i
t};

we expect λ+
1 > λ+

2 > λ+
3 and λ−1 < λ−2 < λ−3 .
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Estimation

Methodology

• We considered 5 rating categories, 7 American firms

• Assumption: parameters identical across firms but signal and
observation are independent across firms.

• For simplicity we imposed next neighbour dynamics for X ,

• Slight extension of previous methodology necressary since
intensities depend on observable rating.

Estimated generator Q = A′.

AAA-A BBB BB B CCC-C
AAA-A -0.04390 0.04390 0 0 0

BBB 0.43039 -1.06006 0.62967 0 0
BB 0 0.80777 -0.80777 0.00000 0
B 0 0 0.11317 -0.11317 0.00000

CCC-C 0 0 0 0.00000 0.00000

24/28



Introduction Notation and EM algorithm Filtering Goodness of Fit Tests Simulation Analysis Credit risk example References

Results ctd

Estimated drifts g .

gAAA−A gBBB gBB gB gCCC−C
35.52313 41.83595 50.60478 64.23868 99.37381

Estimated λ+.
λ+

1 λ+
2 λ+

3

1.00008 0.08778 0.00000

Estimated λ−.
λ−1 λ−2 λ−3

0.00000 0.04386 0.29266

Parameter estimates seem reasonable!

25/28



Introduction Notation and EM algorithm Filtering Goodness of Fit Tests Simulation Analysis Credit risk example References

Observed and estimated credit quality for Medtronic

Medtronic − Observed ratings and filtered estimates
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