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Introduction

These notes are the written version of an introductory lecture on optimization that was

held in the master QFin at WU Vienna. The notes are based on selected parts of Bertsekas

(1999) and we refer to that source for further information. For additional material on linear

optimization we refer to Bertsimas & Tsitsiklis (1997) or to ?.

These notes are of a somewhat preliminary character and they are definitely not “error-

free”. In fact, I would be grateful to learn about misprints and other mistakes.

Optimization problems

In its most general for an optimization problem is

minimize f(x) subject to x ∈ X̃(0.1)

Here the set of admissible points X̃ is a subset of Rn, and the cost function f is a function

that maps X̃ to R. Note that maximization problems can be addressed by replacing f

with −f , as supx∈X̃ f(x) = − infx∈X̃{−f(x)}. Often the set of admissible points is further

restricted by explicit inequality constraints; see for instance Chapter 2 below.

Types of optimization problems. Optimization problems can be classified according

to a number of different criteria:

• Continuous problems. Here X̃ is of ’continuous nature’ such as X̃ = Rn or sets of

the form X̃ = {x ∈ Rn : g(x) ≤ 0 for some g : Rn → Rn}. These problems are

usually tackled using calculus or convex analysis.

• Discrete problems. Here X̃ is a (usually large) finite set. A typical example is

network optimization, where one considers connections between a large set of nodes

and where the optimizer has to decide which connections are open or closed.

• Nonlinear programming. Here f is nonlinear or the constrained set X̃ is specified

by nonlinear equations.

• Linear programming. Here f and g are linear, that is (0.1) takes the form

min c′x such that Ax ≤ b

for c, x ∈ Rn, a matrix A ∈ Rm×n, a vector b ∈ Rm and m ≤ n.

Optimization problems in finance, economics and statistics. a) A number of

interesting optimization problems stem from the field of portfolio optimization. We give

two examples.

• Maximization of expected utility. This problem is of the form

max
θ∈Rn

E (u(V0 + θ(ST − S0))) .

Here V0 is the initial wealth of an investor, S0 = (S1
0 , . . . S

n
0 is the initial asset price,

ST (ω) = (S1
T (ω), . . . SnT (ω)) is the terminal asset price and the optimization variable
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θ represents the portfolio strategy. The increasing function u : R→ R is the utility

function of the investor that is used to model the attitude of the investor towards

risk. Typically it is assumed that u is concave which corresponds to the case of a

risk-averse investor.

• Markowitz problem. Here one looks for the minimal-variance portfolio under all

portfolios with a given mean (see Example 2.6).

b) Calibration problems. Denote by g1(θ), . . . , gm(θ) model prices of m financial instru-

ments for a given value of a parameter vector θ ∈ X̃ ⊂ Rn and by g∗1, . . . , g
∗
m the prices

of these instruments observed on the market. Model calibration leads to the optimization

problem

min
θ∈X̃

1

2

m∑
i=1

(gi(θ)− g∗i )2.

If gi is linear in θ we have a standard regression problem; otherwise one speaks of a

generalized regression problem.

c) Maximum likelihood methods in statistics.

d) Duality results from convex analysis are crucial in financial mathematics (think of the

first fundamental theorem of asset pricing or the superhedging duality).

Overview

In Chapter 1 we treat unconstrained optimization problems where X̃ = Rn. The focus will

be on the characterization of local minima via conditions of first and second order. More-

over we discuss numerical approaches based on these criteria. Chapter 2 introduces the

theory of Lagrange multipliers where one uses arguments from calculus in order to derive

first and second order characterizations for optima of constrained optimization problems.

In Chapter 3 we introduce some key concepts from convex analysis. These concepts are

then applied to constrained optimization problems where the objective function f and the

constrained set X̃ are convex. A special case are linear optimization problems.
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Chapter 1

Unconstrained Optimization

Here we consider problems of the form

minimize f(x) for x ∈ X̃ = Rn(1.1)

Moreover, we assume that f is once or twice continuously differentiable. Most results hold

also in the case where X̃ is an open subset of Rn.

Notation. In the sequel we use the following notation:

• Suppose that f is once continuously differentiable (C1). Then∇f(x) =
(
∂f
∂x1

(x), . . . , ∂f∂xn (x)
)′

. is the gradient of f (a row vector);

• Suppose that f is twice continuously differentiable (C2). Then the matrix Hf with

Hfij(x) = ∂2f
∂xi∂xj

(x) is the Hessian matrix of f .

• For a C1 function g : Rn → Rm the gradient matrix is given by

∇g(x) = (∇g1(x), . . . ,∇gm(x)),

where g(x) = (g1(x), . . . , gm(x))′; ∇g is the transpose of the (more standard) Jaco-

bian matrix of g.

1.1 Optimality conditions

Definition 1.1. Consider the optimization problem (1.1).

i) x∗ is called (unconstrained) local minimum of f if there is some δ > 0 such that

f(x∗) ≤ f(x) ∀x ∈ Rn with ‖x− x∗‖ < δ.

ii) x∗ is called global minimum of f , if f(x∗) ≤ f(x) for all x ∈ Rn.

iii) x∗ is said to be a strict local/global minimum if the inequality f(x∗) ≤ f(x) is strict

for x 6= x∗.

iv) The value of the optimization problem is f∗ := inf{f(x) : x ∈ Rn}

Remark 1.2. Local and global maxima are defined analogously.
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Necessary optimality conditions. The most important tool for deriving necessary

conditions for a local minimum of a differentiable function is Taylor expansion. Consider

some x∗ ∈ Rn. If f is C1, we get for any y ∈ Rn

f(x∗ + y)− f(x∗) = ∇f(x∗)′y +R(x∗, y)(1.2)

where it holds that

lim
‖y‖→0

R(x∗, y)

‖y‖
= 0. (1.3)

Suppose now that x∗ is a local minimum of f . Fix some direction d ∈ Rn and assume

without loss of generality that ‖d‖ = 1. Since x∗ is a local minimum of f , f(x∗ + hd) −
f(x∗) ≥ 0 for all h > 0 sufficient small. Dividing by ‖hd‖ we hence get

0 ≤ 1

h
(f(x∗ + hd)− f(x∗)) = ∇f(x∗)′d+

R(x∗, hd)

‖hd‖

Using (1.3) we thus get for for h→ 0 that

∇f(x∗)′d ≥ 0 for all d ∈ Rn with ‖d‖ = 1 (1.4)

This is possible only for ∇f(x∗) = 0 so that we have shown that at a local minimum the

necessary condition ∇f(x∗) = 0 must hold.

If f is C2 the Taylor formula becomes

f(x∗ + y)− f(x∗) = ∇f(x∗)′y +
1

2
y′Hf(x∗)y +R2(x

∗, y)

where lim‖y‖→0
R2(x∗,y)

‖y‖2 = 0.Using the necessary condition∇f(x∗) = 0, a similar argument

as above shows that at a local minimum x∗ it must hold that

d′Hf(x∗)d ≥ 0 for all d ∈ Rn

i.e. the Hessian matrix Hf(x∗) should be positive semi-definite.

The following proposition summarizes our discussion.

Proposition 1.3. Let x∗ be an unconstrained local minimum of f : Rn → R and assume

that f is C1 in an open set S with x∗ ∈ S. Then ∇f(x∗) = 0. (First Order Necessary

Condition or FONC).

If moreover f is in C2 in S one has Hf(x∗) is positive semi-definite (Second Order

Necessary Condition or SONC).

Definition 1.4. A point x∗ ∈ Rn with ∇f(x∗) = 0 is called stationary point of f .

Remark 1.5. The necessary conditions do not guarantee local optimality; consider for

instance f(x) = x3 and x∗ = 0.

Sufficient conditions for a local minimum.

Proposition 1.6. Let f : Rn → R be twice continuously differentiable in an open set

S ⊂ Rn. Suppose that x∗ ∈ S satisfies the conditions

∇f(x∗) = 0, Hf(x∗) strictly positive definite(1.5)

Then x∗ is a strict local minimum. In particular, there exists γ > 0, ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2 for all x with ‖x− x∗‖ < ε.
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Proof. Since Hf(x∗) is positive definite, there exists some λ > 0 such that y′Hf(x∗)y >

λ ‖y‖ for all y ∈ Rn (λ is the smallest eigenvalue of Hf). Using ∇f(x∗) = 0, a second

order Taylor expansion of f around x∗ gives for y ∈ Rn with ‖y‖ sufficiently smalland

f(x∗ + y)− f(x∗) = ∇f(x∗)′y +
1

2
y′Hf(x∗)y +R2(x

∗, hy)

≥ 1

2
λ ‖y‖2 +R2(x

∗, y)

= ‖y‖2
(

1

2
λ+

R2(x
∗, y)

‖y‖2

)
.

Now the term in the bracket converges to 1
2λ as ‖y‖ → 0. Hence we may take γ = λ

2 and

ε small enough so that R2(x∗,y)

‖y‖2 < 1
4λ.

Remark 1.7. Of course, x∗ need not be a global minimum. (Picture)

The case of convex functions. We begin by defining certain fundamental notions

related to convexity.

Definition 1.8. i) A set X ⊂ Rn is convex if ∀x1, x2 ∈ X,λ ∈ [0, 1] the convex

combination λx1 + (1− λ)x2 belongs to X.

ii) A function f : X ⊂ Rn → R (X convex) is called convex if ∀x1, x2 ∈ X,λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2);(1.6)

f is strict convex if the inequality is strict for λ ∈ (0, 1).

iii) f : X ⊂ Rn → R is concave ⇔ −f is (strict) convex ⇔ ≥ holds in (1.6). Strict

concavity is defined in the same way.

The following lemma gives a characterization of convexity for C1 functions.

Lemma 1.9. Consider an open convex set X ⊂ Rn. A C1 function f : X → Rn is convex

on the if and only if it holds for all x, z ∈ X that

f(z) ≥ f(x) +∇f(x)′(z − x).

If f is C2 a necessary and sufficient condition for the convexity of f on X is the condition

that Hf(x) is positive semi-definite for all x ∈ X.

For the proof we refer to Appendix B of Bertsekas (1999).

Proposition 1.10. Let f : X → R be a convex function on some convex set X ⊂ Rn.

Then the following holds.

i) A local minimum of f over X is also a global minimum. If f is strictly convex, there

exists at most one global minimum.

ii) If X is open, the condition ∇f(x∗) = 0 is a necessary and sufficient condition for

x∗ ∈ X to be a global minimum of f .
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Proof. i) Suppose that x∗ is a local minimum and that there is some x̃ ∈ X with f(x̃) <

f(x∗). Then we have for 0 < λ ≤ 1

f(x∗ + λ(x̃− x∗)) ≤ (1− λ)f(x∗) + λf(x̃) < f(x∗).(1.7)

For λ → 0 we obtain a contradiction to the fact that x∗ is a local minimum (the second

part of i) is established in the same way).

ii) If ∇f(x∗) = 0 Lemma 1.9 gives f(z) ≥ f(x∗) for all z ∈ X and the result follows.

Example 1.11 (Quadratic cost functions). Let f(x) = 1
2x
′Qx − b′x, x ∈ Rn for a sym-

metric n× n matrix Q and some b ∈ Rn. Then we have

∇f(x) = Qx− b and Hf(x) = Q.

a) Local minima. According to Proposition 1.3 for x∗ to be a local minimum we must

have

∇f(x∗) = Qx∗ − b = 0, Hf(x∗) = Q positive semi-definite;

hence if Q is not positive semi-definite, f has no local minima.

b) If Q is positive semi-definite, f is convex. In that case we need not distinguish global

and local minima, and f has a global minimum if and only if there is some x∗ with

Qx∗ = b. c) If Q is positive definite, Q−1 exists and the unique global minimum is

attained at x∗ = Q−1b.

Existence results for a global minimum

Proposition 1.12 (Weierstrass’ Theorem). Let X ⊂ Rn be non-empty and suppose that

f : X → R is continuous in X. Suppose moreover, that one of the following three condi-

tions holds

(1) X is compact (closed and bounded).

(2) X is closed and f is coercive, that is

∀(xk)k∈N ∈ X with
∥∥∥xk∥∥∥→∞ one has lim

k→∞
f(xk) =∞

(3) There is some γ ∈ R such that the level set {x ∈ X : f(x) ≤ γ} is non-empty and

compact.

Then f has at least one global minimum and the set of all global minima is compact.

Remark 1.13. The result holds more generally for functions that are lower semicontinous,

where a function f is called lower semicontinuous if for all x ∈ X, all (xk)k∈N with xk → x

it holds that

lim inf
k→∞

f(xk) ≥ f(x).

Example 1.14. Picture where f is not lower semicontinous, and the minimum is not

obtained.

Remark 1.15. The FONC ∇f(x∗) = 0 can be solved explicitly only in exceptional cases.

The main practical use of this condition is in the design of algorithms that converge to a

local minimum as in Section 1.2 or in sensitivity analysis.
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1.2 Numerical Solution via Gradient methods

Next we explain the basic principles behind several numerical methods for finding a sta-

tionary point or more generally a local minimum.

Basic Idea. Most numerical algorithms for unconstrained minimization problems rely

on the idea of iterative descent : one starts from an initial guess x0 and generates vectors

x1, x2, . . . with f(xk+1) < f(xk), k = 0, 1, . . .. These points are typically chosen by a rule

of the form

xk+1 = xk + αkdk, α ≥ 0, d ∈ Rn;(1.8)

α is called step size, d is the descent direction. For differentiable f the choice of d is

motivated by following idea: ∇f(xk) points to the direction of the strongest increase of f ;

hence if d points to the opposite direction, f should be decreased by moving in direction

d. ’Pointing to opposite direction’ is formalized by the so-called descent condition

d′∇f(xk) < 0 (1.9)

The descent condition does indeed lead to a sequence x1, x2, . . . with f(xk+1) < f(xk), as

the following lemma shows.

Lemma 1.16. Suppose that f is C1 and that ∇f(x)′d < 0. Let xα = x+αd, α > 0. Then

f(xα) ≤ f(x) for α sufficiently small.

Proof. Taylor expansion gives

f(xα) = f(x) + α∇f(x)′d+R(x, αd).

Since limα→0
R(x,αd)

α = 0, the negative term α∇f(x)′d dominates the term R(x, αd) for α

sufficiently small so that f(xα) < f(x).

1.2.1 Choosing the descent direction

A rich set of vectors dk that satisfy the descent condition∇f(xk)′dk < 0 can be constructed

by taking dk of the form

dk = −Dk∇f(xk)(1.10)

for some symmetric, positive definite matrix Dk. In fact, as Dk is positive definite,

∇f(xk)′dk = −∇f(xk)′Dk∇f(xk) < 0.

Methods where dk is of the form (1.10) are known as gradient methods.

a) Steepest descent. Here D = I and hence dk = −∇f(xk). This is the simplest

choice for d, but the convergence to a stationary point can be slow (picture of a “long

valley”). The name ‘steepest descent method’ stems from the observation that among all
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descent directions d with ‖d‖ = 1 the choice d = −∇f(xk)/
∥∥∇f(xk)

∥∥ minimizes the slope

of the map α 7→ f(xk + αd) at α = 0 (locally steepest descent). In fact, one has

d

dα
f(xk + αd)|α=0 = ∇f(xk)′d .

Moreover, since ‖d‖ = 1 we get from the Cauchy-Schwarz inequality that∣∣∣∇f(xk)′d
∣∣∣ ≤ ∥∥∥∇f(xk)

∥∥∥ ‖d‖ =
∥∥∥∇f(xk)

∥∥∥ .
Hence we get for d with ‖d‖ = 1 and ∇f(xk)′d < 0 that

∇f(xk)′d = −
∣∣∣∇f(xk)′d

∣∣∣ ≥ −∥∥∥∇f(xk)
∥∥∥ ;

equality holds for for d = −∇f(xk)/
∥∥∇f(xk)

∥∥, so that this choice is in fact the direction

of the locally steepest descent.

b) Newton’s method. Here one takes Dk = (Hf(xk))−1, provided that this matrix

is positive definite. The idea underlying this choice is to minimize at each iteration the

quadratic approximation of f around xk given by

fk(x) = f(xk) +∇f(xk)′(x− xk) +
1

2
(x− xk)′Hf(xk)(x− xk).

If Hf(xk) is positive definite, the minimum of fk(x) is characterized by the FOC

∇f(xk) +Hf(xk)(x− xk) = 0,

which gives xk+1 = xk − (Hf(xk))−1∇f(xk) and hence the choice Dk = (Hf(xk))−1. If

it is applicable, the method usually converges very fast to a local minimum.

c) Gauss-Newton method. This method is designed for calibration problems of the

form

min
x∈Rn

f(x) :=
1

2
‖g(x)‖2 =

1

2

m∑
i=1

(gi(x))2,(1.11)

where g1, . . . , gm are functions from Rn to R. In the Gauss-Newton method one chooses

Dk = (∇g(xk)∇g(xk)′)−1, provided that the matrix ∇g(xk)∇g(xk)′ is invertible. This is

the case if ∇g(x) has rank n.1 Since ∇f(xk) = ∇g(xk)g(xk), the Gauss-Newton rule gives

xk+1 = xk − αk(∇g(xk)(∇g(xk))′)−1∇g(xk)g(xk).(1.12)

It can be shown that this is an approximation to the Newton rule.

1Loosely speaking, this is the case if there are more observations than parameters, that is for m ≥ n.
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1.2.2 Choosing the stepsize

Recall that in a gradient method one has xk+1 = xk − αkDk∇f(xk). In the literature

there are a number of rules for the choice of α:

• (Limited) minimization rule. Here one takes αk so that the function α 7→ f(xk+αdk)

is minimized over α ≥ 0 or α ∈ [0, s], i.e.

f(xk + αkdk) = min
α∈[0,s]

f(xk + αdk)

(often αk has to be found numerically).

• constant stepsize,

• many more methods.

1.2.3 Convergence Issues: an Overview

We begin with a brief overview of the asymptotic behavior of sequences of the form

xk+1 = xk − αkDk∇f(xk).

• If the sequence (xk)k∈N converges, the limit is usually a stationary point, but in

general not more.

• The sequence (xk)k∈N need not have a limit point; in fact, (xk)k∈N is typically

divergent, if f has no local minimum.

• Local minima that are isolated points tend to attract sequences (xk)k∈N that start

sufficiently close to the local minimum. (This is known as capture theorem, see for

instance Bertsekas (1999), Proposition 1.2.5 ).

Finally we quote a precise result concerning the convergence to a stationary point.

Proposition 1.17. Suppose that for all x ∈ Rn the eigenvalues of Dk are bounded away

from zero and infinity, that is ∃ 0 < C1 ≤ C2 <∞ such that

C1 < λmin(Dk(x)) ≤ λmax(Dk(x)) < C2 <∞, ∀k ∈ N, x ∈ Rn

Consider the sequence xk+1 = xk − αkDk∇f(xk). If (αk)k is constructed by the (limited)

minimization rule, every limit point of (xk)k∈N is a stationary point.
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Chapter 2

Lagrange Multipliers via Calculus

2.1 Constrained Optimization Problems: Overview

From now on we are interested in constrained optimization problems of the form

min
x∈X

f(x) subject to hi(x) = 0, 1 ≤ i ≤ m,(2.1)

gj(x) ≤ 0, 1 ≤ j ≤ r.

Here X ⊂ Rn and f , hi, 1 ≤ i ≤ m, and gj , 1 ≤ j ≤ r are functions from X to

R. To simplify the notation we put h(x) = (h1(x), . . . , hm(x))
′ ∈ Rm and g(x) =

(g1(x), . . . , gr(x))
′ ∈ Rr, so that (2.1) can be written more succinctly in the form

min
x∈X

f(x) subject to h(x) = 0, g(x) ≤ 0.(2.2)

In this formulation some of the constraints that define the set of admissible points X̃ =

{x ∈ X : h(x) = 0, g(x) ≤ 0} have been made explicit. This is often helpful to solve (2.1)

for the following reason: we will show in the sequel that under certain conditions of f , h

and g that there are constants λ∗ ∈ Rm, µ∗ ∈ Rr, µ∗ ≥ 0 such that a (local) optimum x∗

for problem 2.1 is also a (local) optimum for the unconstrained optimization problem

min
x∈X

L(x, λ∗, µ∗) := f(x) +
m∑
i=1

λ∗ihi(x) +
r∑
j=1

µ∗jgj(x).

The function L is called Lagrange function, λ∗ and µ∗ are known as (Lagrange) multipliers.

Results on the existence of Lagrange multipliers are useful, as they permit the use of

concepts and algorithms from unconstrained optimization for the solution of constrained

optimization problems; moreover, they frequently lead to interesting statements on the

structure of constrained optima.

Basically there are two approaches to establish the existence of Lagrange multipliers.

a) An approach based on calculus. Here it is assumed that the functions f ,g and h are

differentiable, and the focus lies on the derivation of necessary conditions for local

optima. This theory is the focus of Chapter 2.

b) Duality theory for convex problems. Here it is assumed that f ,g and h are convex,

the focus is on global optima, and the essential tools come from convex analysis. An

introduction to this approach is given in Chapter 3
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2.2 Lagrange multipliers with equality constraints

In this section we consider the problem

min
x∈Rn

f(x) subject to h(x) = 0(2.3)

where it is assumed that f and h = (h1, . . . , hm) are C1-functions on Rn. Note that all

subsequent results hold also for the case where domf ∩ domh is an open subset of Rn
that contains a local minimum x∗ of 2.3. 1

Proposition 2.1 (Existence of Lagrange multipliers). Let x∗ be a local minimum for Prob-

lem 2.3, and suppose that the gradients of the constraint functions ∇h1(x∗), . . . ,∇hm(x∗)

are linearly independent. Then there exists a unique vector λ∗ ∈ Rm such that

∇f(x∗) +
m∑
i=1

λ∗i∇hi(x∗) = 0.(2.4)

If f and h are twice continuously differentiable, one has

y′
(
Hf(x∗) +

m∑
i=1

λ∗iHhi(x
∗)
)
y ≥ 0 for all y ∈ V (x∗).(2.5)

Here V (x∗) is the subspace of first order feasible variations, i.e.

V (x∗) = {y ∈ Rn : ∇hi(x∗)′y = 0, for all 1 ≤ i ≤ m}(2.6)

In the sequel a point x∗ ∈ Rn such that ∇h1(x∗), . . . ,∇hm(x∗) are linearly independent

will be called regular (note that this is possible only for m ≤ n).

Remark 2.2. i) V (x∗) is the subspace of variations ∆x = (x−x∗) for which the constraint

h(x) = 0 holds ’up to first order’. Condition 2.4 states that the gradient ∇f(x∗) of the

cost function is orthogonal to all these ‘locally permissible’ variations: for y ∈ V (x∗) is

holds that:

∇f(x∗)′y = −
m∑
i=1

λ∗i∇hi(x∗)′y = 0.

This condition is analogous to the condition ∇f(x∗) = 0 in unconstrained optimization.

ii) Using the Lagrange function L(x, λ∗) = f(x) +
∑m

i=1 λ
∗
ihi(x) we may write (2.4) as

∂
∂xi
L(x∗, λ∗) = 0, 1 ≤ i ≤ n.

Example 2.3 (geometric interpretation of the condition 2.4). Consider the problem

min
x∈R2

x1 + x2 subject to x21 + x22 = 2.

Obviously, the minimum is attained in x∗ = (−1,−1). One has∇f(x∗) = (1, 1)′; ∇h(x∗) =

(2x∗1, 2x
∗
2)
′ = (−2,−2)′. These vectors are collinear, so that∇f(x∗) is orthogonal to V (x∗),

as V (x∗) is given by the orthogonal complement of (−2,−2).

1x∗ is a local minimum of 2.3 if there is some ε > 0 such that f(x∗) ≤ f(x∗) for all x ∈ Bε(x∗) such

that h(x) = 0.
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Example 2.4 (non-existence of multipliers at an irregular point.). Consider the problem

minx1 + x2 subject to the equality constraints

h1(x) = (x1 − 1)2 + x22 − 1 = 0 (sphere around the point (1, 0)′ with radius 1)

h2(x) = (x1 − 2)2 + x22 − 4 = 0 (sphere around the point (2, 0)′ with radius 2).

Then h(x) = 0⇔ x = x∗ = (0, 0), i.e. the constrained set consists of a single point which

is then automatically a (local) minimum. One has ∇h1(x∗) = (−2, 0); ∇h2(x∗) = (−4, 0).

These vectors are collinear, so x∗ is not regular; on the other hand ∇f(x∗) = (1, 1) is

not a linear combination of ∇h1(x∗) and ∇h2(x∗), i.e. x∗ is a local minimum where no

multipliers exist. The example shows that the assumption that x∗ is regular is really

needed for the existence of multipliers.

Proof of Proposition 2.1. We use a penalty function approach, that is we consider an

unconstrained problem where there is a large penalty for violating the constraint h(x) = 0.

As the penalty k gets larger, the local minimum xk of the unconstrained problem converges

to the local minimum x∗, and the Lagrange multipliers can be constructed from the FONCs

for the unconstrained problem. The idea carries over over to problems with inequality

constraints and it can be used for the design of numerical algorithms.

a) The penalty function. We let for k ∈ N, α > σ.

F k(x) = f(x) +
k

2
‖h(x)‖2 +

α

2
‖x− x∗‖2 ,(2.7)

where x∗ is the local minimum of the original problem. The term k/2 ‖h(x)‖2 is the

penalty term; the term α/2 ‖x− x∗‖2 is needed for technical reasons.

Choose now ε > 0 sufficiently small so that f(x) ≥ f(x∗) for all x with h(x) = 0 and

‖x− x∗‖ < ε and denote by S̄ the closed ball

S̄ = {x ∈ Rn : ‖x− x∗‖ ≤ ε}.

Denote by xk a global minimum of F k on S̄; xk exists according to the Weierstrass theorem

(Proposition 1.12). We now show that xk → x∗. It holds for k ∈ N:

F k(xk) = f(xk) +
k

2

∥∥∥h(xk)
∥∥∥2 +

α

2

∥∥∥xk − x∗∥∥∥2 ≤ F k(x∗) = f(x∗)(2.8)

Since f is bounded on S̄ we conclude that limk→∞
∥∥h(xk)

∥∥2 = 0. Hence every limit point

x̄ of (xk)k∈N satisfies h(x̄) = 0. Moreover, by (2.8) we get f(xk) + α
2

∥∥xk − x∗∥∥2 ≤ f(x∗)

and, by passing to the limit,

f(x̄) +
α

2
‖x̄− x∗‖2 ≤ f(x∗).

On the other hand, since x̄ ∈ S̄ and h(x̄) = 0, the local optimality of x∗ on S̄ implies that

f(x∗) ≤ f(x̄). Combining these estimates we get

f(x̄) ≤ f(x̄) +
α

2
‖x̄− x∗‖2 ≤ f(x∗) ≤ f(x̄),

which is possible only if ‖x̄− x∗‖2 = 0, i.e. for x̄ = x∗.

12



b) Construction of the multipliers. Since xk → x∗ we can assume that xk ∈ int(S) for k

sufficiently large. Since xk is moreover a local minimum of F k it satisfies the FONCs

0 = ∇F k(xk) = ∇f(xk) + k∇h(xk)h(xk) + α(xk − x∗).(2.9)

Since x∗ is regular, ∇h(x∗) has rank m, and it follows that ∇h(xk) has rank m for k

sufficiently large. For such k the m × m matrix ∇h(xk)′∇h(xk) is invertible, as it is

positive definite: one has

x′∇h(xk)′∇h(xk)x =
∥∥∥∇h(xk)x

∥∥∥2 > 0 for x ∈ Rm, x 6= 0.

Pre-multiplying the FONCs with the so-called generalized inverse (∇h′∇h)−1∇h(xk) we

get

kh(xk) = −(∇h′∇h)−1∇h′(xk){∇f(xk)− α(xk − x∗)}.(2.10)

Taking the limit k →∞ (and hence xk → x∗) we get

lim
k→∞

kh(xk) = −(∇h′∇h)−1∇h(x∗) ∇f(x∗) =: λ∗.(2.11)

Taking the limit k →∞ in the FONCs (2.9) we get

0 = ∇f(x∗) +∇h(xk)λ∗,

so that λ∗ is the desired Lagrange multiplier. The second claim (the second-order-

necessary conditions) are derived from the second-order conditions for unconstrained op-

timization problems applied to F k; we omit the details.

Example 2.5 (Arithmetic-geometric-mean inequality). We want to show that for x1, . . . , xn ≥
0 the following inequality holds.

(x1 · x2 · . . . · xn)
1
n ≤ 1

n
(x1 + . . .+ xn).(2.12)

The lhs is the geometric mean of x1, . . . , xn; the rhs is the arithmetic mean of x1, . . . , xn,

so that the inequality is known as arithmetic-geometric-mean inequality.

With the substitution yi := lnxi (2.12) translates to the inequality

exp

(
1

n

n∑
i=1

yi

)
≤ 1

n

n∑
i=1

eyi for all y1, . . . , yn ∈ Rn.(2.13)

In order to prove this inequality we minimize for arbitrary s ∈ R the function f(y) =

ey1 + . . . + eyn over all y ∈ Rn with
∑n

i=1 yi = s and show that the minimum is no less

than nes/n. We thus have to consider for s > 0 fixed the following optimization problem

with equality constraints

min
y∈Rn

ey1 + . . .+ eyn subject to
n∑
i=1

yi = s(2.14)

The Lagrange function is L(y, λ) =
∑m

i=1 e
yi + λ (s−

∑m
i=1 yi). The first order necessary

conditions are

0 = eyi − λ, 1 ≤ i ≤ m

13



It follows that yi = lnλ for all i, in particular the yi are all equal. Using the constraint∑n
i=1 yi = s we thus get that the only point that satisfies the FONCs is y∗i = s/n,

1 ≤ i ≤ n. It is easily seen that y∗ is in fact a global minimum for (2.14). Since s was

arbitrary this gives the inequality (2.13) and hence the claim.

Example 2.6 (Markowitz portfolio optimization). Consider a one-period financial market

model with n risky assets with price (St,i), 1 ≤ i ≤ n, t = 0, T . The return of asset i over

[0, T ] is

Ri =
ST,i − S0,i

S0,i
≈ lnST,i − lnS0,i(2.15)

Consider now an investor with initial wealth V0. Denote by θi the number of units of

asset i in his portfolio and by πi = θiS0,i/V0 the weight of asset i. Note that by definition∑n
i=1 πi = 1. The change in the portfolio value is

VT − V0 =
n∑
i=1

θi(ST,i − S0,i) = V0

n∑
i=1

πiRi ;(2.16)

the return on the portfolio is thus

(VT − V0)/V0 =
n∑
i=1

πiRi = π′R.

Assume now that the investor evaluates portfolios only according to mean and variance

of the return, preferring higher mean to lower mean and lower variance to higher variance

(all else equal). This can be justified for instance by assuming that the rvs (R1, . . . , Rm)

are multivariate normal, since mean and variance fully characterize the return distribution

in that case. In order to determine optimal portfolios we first solve the following problem.

Minimize the portfolio variance over all portfolios with a given mean m(2.17)

Denote by µ = (µ1, . . . , µn)′ the mean vector of R = (R1, . . . , Rm) and by Q with qij =

cov(Ri, Rj) the covariance matrix. Since the portfolio Xπ that corresponds to given

portfolio weights (π1, . . . , πn) has expected return E (Xπ) = π′µ and variance

var(Xπ) = var(
n∑
i=1

πiRi) = π′Qπ,

in mathematical terms the problem (2.17) can be written as

min
π∈Rn

π′Qπ subject to π′1 = 1, π′µ = m,(2.18)

where 1 = (1, . . . , 1)′ ∈ Rn. In order to solve this problem we make the following assump-

tions:

A1) The matrix Q is positive definite, i.e. the assets S1, . . . , Sn do not generate/contain

the riskless asset.

A2) The vectors 1 and µ are linearly independent, that is not all risky assets have the

same expected return.

14



Assumption A1) will be relaxed below, when we discuss the optimal investment with a

traded riskless asset. We want to use Lagrange multiplier theory to study how the solution

of (2.18) varies as we vary the target return m. Denote by λ1 and λ2 the multipliers

corresponding to the equality constraints in (2.18). The Lagrange function is

L(π;λ1, λ2) = π′Qπ + λ1(1
′π − 1) + λ2(µ

′π −m).(2.19)

A2) implies in particular that every point π is regular. Hence at a local optimum π∗ there

will be multipliers λ∗1, λ
∗
2 such that ∇πL(π;λ∗1, λ

∗
2) = 0. This gives by differentiating (2.19)

that 0 = 2Qπ + λ∗11 + λ∗2µ. Since Q is invertible by assumption, we get

π∗ = −1

2
λ∗1Q

−11− 1

2
λ∗2Q

−1µ.(2.20)

In order to determine λ∗1 and λ∗2 we use the equations 1′π∗ = 1, µ′π∗ = m; substituting

(2.20) gives the following linear 2× 2 equation system for λ∗1, λ
∗
2.

1 = 1′π∗ = −1

2
λ∗11

′Q−11− 1

2
λ∗21

′Q−1µ,

m = µ′π∗ = −1

2
λ∗1µ

′Q−11− 1

2
λ∗2µ

′Q−1µ.

(2.21)

Since Q−1 is positive definite (as Q is positive definite) the matrix of the coefficients in

(2.21) has full rank. Hence we get the representation

λ∗1 = a1 + b1m andλ∗2 = a2 + b2m, (2.22)

where the matrix

(
a1 b1
a2 b2

)
is the inverse of the coefficient matrix in the linear system

(2.21). Substituting back into (2.20) gives

π∗ = m

(
−1

2
b1Q

−11− 1

2
b2Q

−1µ

)
− 1

2
a1Q

−11− 1

2
a2Q

−1µ =: mv + w,

for v, w ∈ Rn\{0}, independent of m. Hence the variance of the optimal (variance mini-

mizing) portfolio is

var(Xπ∗) = (mv + w)′Q(mv + w) =: σ2(m),

i.e. σ2(m) is the minimal variance of a portfolio with expected return m. We may write

σ2(m) = m2 v′Qv︸ ︷︷ ︸
=:a

+2mv′Qw︸ ︷︷ ︸
=:b

+w′Qw︸ ︷︷ ︸
=:c

,

so that σ2(m) = am2 + bm+ c with a > 0 (a parabola in m). It is more common to plot

the relation between standard deviation and m, and we get

σ(m) =
√
am2 + bm+ c

In the following graph (only on the blackboard) we plot σ2(m) and σ(m) as a function

of m; the return m∗ and the value σ∗ correspond to the risky portfolio with the smallest

variance. It can be shown that σ(m) is convex with minimum at m∗. Of course, for an

investor only the portfolios with mean m ≥ m∗ (the right branch of the parabola) are of

interest.
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Finally we consider portfolios π̃ = (π0, π1, . . . , πn) ∈ Rn+1, consisting of a risk free asset

with return r and variance zero (asset 0) and the n risky assets considered previously.

Now π̃ has to satisfy the constraint
∑n

i=0 πi = 1. Put π = (1 − π0)−1(0, π1, . . . , πn)′, so

that π̃ consists of π0 units of the risk-free asset and (1− π0) units of the portfolio π. One

obviously has

E
(
X π̃
)

= π0r +

n∑
j=1

πjRj = π0r + (1− π0)E (Xπ)

var(X π̃) = var
(

(1− π0)
n∑
j=1

πj
(1− π0)

Rj

)
=
(

1− π0)2 var(Xπ
)

and the standard deviation satisfies

σ(X π̃) = |1− π0|σ(Xπ).

If we plot the set of all attainable µ, σ) pairs we get the following picture (only on the

blackboard). It is clear from the picture that optimal portfolios are on the red line (the

efficient frontier) that ’touches’ the upper boundary of the (m,σ) pairs. Therefore every

investor will choose a portfolio that is a combination of the risk-free asset and π̃∗. This

result is known as two-funds theorem; it is a central part of the derivation of the CAPM.

2.3 Necessary conditions for local optima with inequality

constraints

Next we consider optimization problems with equality and inequality constraints, which

are of the form

min f(x) subject to h(x) = 0, g(x) ≤ 0,(2.23)

for C1-functions f , h1, . . . , hm and g1, . . . , gr. We want to derive conditions for the ex-

istence of multipliers at a local minimum of (2.23) using our result for the case of pure

equality constraints. For this we use:

Definition 2.7. The constraint gj(x) ≤ 0 is called active or binding at a feasible point x

if gj(x) = 0; the set A(x) = {1 ≤ j ≤ r : gj(x) = 0} is the set of active constraints at the

point x.

Now if x∗ is a local minimum for (2.23), it is also a local minimum for the following

problem with equality constraints:

min f(x) subject to h(x) = 0, gj(x) = 0 for all j ∈ A(x∗).(2.24)

If x∗ is regular for (2.24), by Proposition 2.1 there exist multipliers λ∗1, . . . , λ
∗
m, µ∗j , for j ∈

A(x∗) such that

∇f(x∗) +
m∑
i=1

λ∗j∇hj(x∗) +
∑

j∈A(x∗)

µ∗jgj(x
∗) = 0.
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If we put in addition µj = 0 for j ∈ {1, . . . , r} \ A(x∗) we get the existence of multipliers

λ∗ ∈ Rn, µ∗ ∈ Rr such that

∇f(x∗) +
m∑
i=1

λ∗j∇hj(x∗) +
r∑
j=1

µ∗jgj(x
∗) = 0.

This can be be viewed as an analogue to Proposition 2.1.

In the case with inequality constraints there are additional restrictions on the sign of the

multipliers of the inequality constraints: it has to hold that µ∗j ≥ 0 for all j ∈ A(x). This

is illustrated in the following example.

Example 2.8 (sign restrictions for inequality constrains). Consider the problem

minx1 + x2 subject to x21 + x22 ≤ 2.

One has x∗ = (−1,−1)′, ∇f(x∗) = (1, 1)′, ∇g(x∗) = (−2,−2)′ and hence µ∗ = 1
2 > 0.

The fact that µ∗ > 0 implies that ∇f(x∗) and ∇g(x∗) point to opposite directions of the

hyperplane ∇g(x∗) = 0. Such a condition should hold, because if x∗ is locally optimal, if

one moves in the feasible direction −∇g(x∗) the value of the objective function f should

become larger and not smaller.

Summarizing we get with L(x, λ, µ) = f(x) +
∑m

i=1 λihi(x) +
∑r

j=1 µjgj(x):

Proposition 2.9 (Karush-Kuhn-Tucker condition, KKT-conditions). Let x∗ be a local

minimum of (2.23), and suppose that x∗ is regular for (2.24). Then there exist unique

Lagrange multiplier vectors λ∗ = (λ∗1, . . . , λ
∗
m), µ∗ = (µ∗1, . . . , µ

∗
r) such that

∇xL(x∗, λ∗, µ∗) = 0, µ∗j ≥ 0, 1 ≤ j ≤ r, µ∗j = 0 for j /∈ A(x∗).(2.25)

The result follows from the preceding discussion except for the fact that µ∗j ≥ 0 for j ∈
A(x∗). This statement can be established by a variant of the penalty function approach,

see Bertsekas (1999), page 317.

Note that the restrictions on µ∗ can be written in the form

µ∗ ≥ 0,

r∑
j=1

µ∗jgj(x
∗) = 0,(2.26)

Equation (2.26) is known as complementary slackness condition.

Remark 2.10. In the case with inequality constraints the assumption that x∗ is regular

is more restrictive than in the case with only equality constraints. In fact for many inter-

esting problems r is much larger than n and it can happen that more than n constraints

are active at x∗. For this reason weaker forms of the KKT-conditions have been devel-

oped; these conditions are known as so-called Fritz-John conditions. We refer to Bertsekas

(1999) for details.

The following example illustrates the use of the KKT conditions for the analytical solution

of constrained optimization problems.

Example 2.11. Consider the problem

min(x21 + x22 + x23) subject to x1 + x2 + x3 ≤ −3.
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For a local minimum the FOCs (2.25) give

2x∗1 + µ∗ = 0, 2x∗2 + µ∗ = 0, 2x∗3 + µ∗ = 0.(2.27)

Now there are two possibilities

a) The constraint is not binding. Then µ∗ = 0 and hence x∗ = (0, 0, 0)′ which contra-

dicts the inequality constraint.

b) The constraint is binding, x∗1 + x∗2 + x∗3 = −3. Then we get by summing over (2.27)

that µ∗ = 2 and hence x∗i = −1, i = 1, 2, 3. It is easily checked that x∗ is in fact the

unique global minimum of the problem.
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Chapter 3

Duality and Convex Programming

In this chapter we we study constrained optimization problems using some tools from

convex analysis. We begin by introducing certain basic notions of convex analysis, in

particular separation theorems; in Section 3.2 we consider the so-called dual problem

associated with the Lagrange function; duality results (existence results for multipliers)

are given in Section 3.3.

3.1 Convex sets and separating hyperplanes

Recall that a set C ⊂ Rn is convex if for all x1, x2 ∈ C, and all λ ∈ [0, 1] it holds that

λx1 + (1− λ)x2 ∈ C. Convex sets arise frequently in optimization.

Some special types of convex sets.

• A set C ⊂ Rn is a called finitely generated convex set or a polytope if there are

x1, . . . , xm in Rn such that every x ∈ C has a representation x =
∑n

i=1 γixi for

γi ≥ 0,
∑

i γi = 1.

• A set C ⊂ Rn is called a convex cone, if C is convex and if it holds that for x ∈ C λx ∈
C for all λ ≥ 0; equivalently, C is a convex cone if x1, . . . , xm ∈ C ⇒

∑n
i=1 λixi ∈ C

for all λi ∈ R, λi ≥ 0.

• C ⊂ Rn is called a polyhedron, if it is of the form C = {x ∈ Rn : Ax ≤ b for some A ∈
Rm×n, b ∈ Rm}.

In the next lemma we collect some simple properties of convex sets.

Lemma 3.1. 1) If C ⊂ Rn is convex, the closure C̄ is convex as-well.

2) Define for C1, C2 ⊂ Rn the sum C1 + C2 = {z ∈ Rn, z = x1 + x2 for some x1 ∈
C1, x2 ∈ C2}. Suppose that C1 and C2 are convex. Then the sum C1 +C2 is convex.

3) Suppose that the sets C1, C2, . . . ⊂ Rn are convex. Then the intersection
⋂
i=1,2,...Ci

is convex.

Theorem 3.2 (Projection on convex sets.). Let C ⊂ Rn be a closed convex set, and ‖·‖
be the Euclidean norm. Then the following holds
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a) For every x ∈ Rn there is a unique x∗ ∈ C that minimizes ‖z − x‖ over all z ∈ C,

that is ‖x∗ − x‖ = minz∈C ‖z − x‖. The point x∗ is known as projection of X on C.

b) Given x ∈ Rn, z ∈ C is equal to x∗ if and only if (y − z)′(x− z) ≤ 0 for all y ∈ C.

c) The mapping Rn → C, x 7→ x∗ is a contraction, that is ‖x∗ − y∗‖ ≤ ‖x− y‖ ∀x, y ∈
Rn.

Proof. (see also Bertsekas, page 705). a) Fix x ∈ Rn and consider w ∈ C. Minimizing

‖x− z‖ over C is equivalent to minimizing ‖x− z‖ over {z ∈ C : ‖x− z‖ ≤ ‖x− w‖}.
This is a compact set, and the mapping z 7→ ‖x− z‖2 is smooth. Hence existence of a

minimizer follows from the Weierstrass Theorem (Proposition 1.12). For uniqueness note

that if x∗1, x
∗
2 are two different solutions of the projection problem we have by the strict

convexity of x 7→ ‖x‖2 that for α ∈ (0, 1)

‖x− (αx∗1 + (1− α)x∗2)‖
2 = ‖α(x− x∗1) + (1− α)(x− x∗2)‖

2

< α ‖x− x∗1‖
2 + (1− α) ‖x− x∗2‖

2 = ‖x− x∗1‖
2 ,

which contradicts the optimality of x∗1.

b) For y and z in C one has, using that ‖y − x‖2 = (y − x)′(y − x),

‖y − x‖2 = ‖y − z‖2 + ‖z − x‖2 − 2(y − z)′(x− z) ≥ ‖z − x‖2 − 2(y − z)′(x− z).

Suppose now that for z ∈ C one has (x− z)′(y − z) ≤ 0 for all y ∈ C. Then we have that

for all y ∈ C −2(y − z)′(x − z) ≥ 0 and hence ‖y − x‖2 ≥ ‖z − x‖2, which implies that

z = x∗. Conversely, we want to show that for z = x∗ the inequality

(y − x∗)′(x− x∗) ≤ 0 for all y ∈ C

holds. Suppose to the contrary that there is some ỹ ∈ C with (ỹ−x∗)′(x−x∗) > 0. Define

for α > 0 yα = αỹ + (1− α)x∗ and note that yα ∈ C as C is convex. It follows that

∂

∂α

(
‖x− yα‖2

)
|α=0 = −2(x− x∗)′(ỹ − x∗) < 0.

Hence for α small ‖x− yα‖2 < ‖x− x∗‖2, contradicting the optimality of x∗.

c) For this part we refer to the book of Bertsekas.

Definition 3.3 (Hyperplanes). i) A hyperplane with normal vector a ∈ Rn\{0} at the

level b ∈ R is the set H = H(a, b) = {x ∈ Rn : a′x = b}.

ii) A hyperplane with normal vector a ∈ Rn through the point x0 ∈ Rn is the set

{x ∈ Rn : a′x = a′x0}.

iii) Consider the hyperplane H(a, b) = {x : a′x = b}. The two sets {x ∈ Rn : a′x ≥
b} and {x ∈ Rn : a′x ≤ b} are the positive respectively the negative half space

associated with H(a, b).

Fix x0 ∈ H. Then H consists of all points of the form {x = x0 + z : a′z = 0}, i.e. H is

the displaced orthogonal complement of the vector a.
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Proposition 3.4 (Supporting Hyperplane Theorem). Consider some convex set C ⊂ Rn
and suppose that x̄ is not an interior point of C. Then there exists a hyperplane H through

x̄ such that C is in the positive half-space of H, that is there is a ∈ Rn \{0} with a′x ≥ a′x̄
for all x ∈ C.

Proof. (Idea of the proof) Since x̄ is not an interior point of C and since C is convex,

there exists a sequence (xk)k∈N such that xk /∈ C̄ and such that xk → x (see Bertsekas,

Prop. B8). Denote by (xk)∗ ∈ C̄ the projection of these points on the convex set C̄,

see Theorem 3.2. Then it is easily seen from point b) of the theorem that C̄ lies within

the positive halfspace of the hyperplane through xk with normal vector ak = (xk)∗−xk
‖(xk)∗−xk‖ .

Since the sequence ak belongs to the compact set S1 = {z ∈ Rn : ‖z‖ = 1}, it contains a

convergent subsequence with limit vector a∞ ∈ S1. By continuity, C lies in the positive

halfspace of the hyperplane through x̄ with normal vector a∞.

Proposition 3.5 (Separating Hyperplane Theorem). Let C1 and C2 be two nonempty

convex subsets of Rn such that C1 ∩C2 = ∅. Then there exists a hyperplane that separates

the two sets, i.e. there is a vector a ∈ Rn\{0} with a′x1 ≤ a′x2 for all x1 ∈ C1, x2 ∈ C2.

Proof. Consider the convex set C = {x ∈ Rn : x = x2 − x1 for some x1 ∈ C1, x2 ∈ C2}.
Then 0 /∈ C, as C1 and C2 are disjoint. By the supporting hyperplane theorem there is

some a 6= 0 ∈ Rn with a′x ≥ a′0 = 0 for all x ∈ C. Since x = x2 − x1 it follows that

a′x2 ≥ a′x1 ∀ x1 ∈ C1, x2 ∈ C2 as claimed.

Proposition 3.6 (Strict Separation). If C1 and C2 are two nonempty and disjoint con-

vex sets such that C1 is closed and C2 is compact there exists a hyperplane that strictly

separates these sets, that is there is some a ∈ Rn, a 6= 0 and some b ∈ R such that

a′x1 < b < a′x2 ∀x1 ∈ C1, x2 ∈ C2.

For the proof we refer to Bertsekas, Prop. B14.

3.2 The Dual Problem for constrained optimization

Now we return to the analysis of constrained optimization problems. Consider the problem

min
x∈X

f(x) subject to h(x) = 0, g(x) ≤ 0,(3.1)

where f , h = (h1, . . . , hm) and g = (g1, . . . , gr) are defined on the set X ⊂ Rn. In the

sequel we are particularly concerned with the case where f , g and h are convex or even

linear. A point x ∈ X with h(x) = 0 and g(x) ≤ 0 is sometimes called feasible. The

optimal value of problem (3.1) is given by

f∗ = inf{f(x) : x ∈ X,h(x) = 0, g(x) ≤ 0}.

The next definition is motivated by the Lagrange multiplier theory of Chapter 3.

Definition 3.7. a) The Lagrange function associated with problem (3.1) is

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

µjgj(x), x ∈ X, λ ∈ Rm, µ ∈ Rr.(3.2)
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b) The dual function associated with problem (3.1) is

q(λ, µ) = inf
x∈X

L(x, λ, µ);(3.3)

the domain of q is dom q = {λ ∈ Rm, µ ∈ Rr, q(λ, µ) > −∞}.

Since q(λ, µ) is the infimum of linear functions, i.e.

q(λ, µ) = inf
x∈X

f(x) + λ′h(x) + µ′g(x),

it holds has that q(λ, µ) is concave in (λ, µ) and dom q is convex.

The next lemma gives a first link between the dual function and the problem (3.1).

Lemma 3.8. For λ ∈ Rm, µ ∈ Rr such that µ ≥ 0 it holds that q(λ, µ) ≤ f∗.

Proof. Consider some x ∈ X with h(x) = 0, g(x) ≤ 0. We get, as µ ≥ 0, that

f(x) + λ′h(x) + µ′g(x) ≤ f(x).

Hence we get by taking the infimum over x,

q(λ, µ) = inf
x∈X

L(x, λ, µ) ≤ inf{L(x, λ, µ) : x feasible in (3.1)}

≤ inf{f(x) : x feasible in (3.1)},

and the last infimum is obviously equal to f∗.

3.2.1 The dual problem

According to lemma 3.8, q(λ, µ) is a lower boundary to f∗ if µ ≥ 0. It is natural to look

for the largest lower bound to f∗. This leads to the so-called dual problem

max
(λ,µ)∈dom q

q(λ, µ) subject to µ ≥ 0.(3.4)

Note that the dual problem is a convex optimization problem as q is concave and dom q

is convex. Lemma 3.8 immediately gives

Corollary 3.9 (weal duality). One has the inequality

q∗ := sup{q(λ, µ) : (λ, µ) ∈ dom q, µ ≥ 0} ≤ f∗.

Example 3.10 (Dual problem for linear programming). Consider a linear optimization

problem of the form

min c′x subject to Ax ≤ b(3.5)

for c ∈ Rn, b ∈ Rr, A ∈ Rr×n. The Lagrangian is

L(x, µ) = c′x+ µ′(Ax− b) = (c+A′µ)′x− µ′b.

The dual function is

q(µ) = inf
x∈Rn

(c+A′µ)′x− µ′b =

{
−µ′b, ifA′µ+ c = 0

−∞, else

as minx∈Rn a
′x = −∞ for any a 6= 0. The dual problem is therefore

max
µ∈Rr

−µ′b subject to A′µ = −c, µ ≥ 0.(3.6)

22



3.2.2 Multipliers and optimality conditions.

One says that there is a duality gap for the optimization problem problem (3.1) if q∗ < f∗;

if, on the other hand, q∗ = f∗ there is no duality gap for the problem ( recall thatq∗ ≤ f∗
by Corollary 3.9). In the sequel we are interested in conditions that ensure that there is

no duality gap.

Definition 3.11. A pair λ∗ ∈ Rm, µ∗ ∈ Rr with µ∗ ≥ 0 is called a multiplier for problem

(3.1) if it holds that

f∗ = inf
x∈X

L(x, λ∗, µ∗).

Part of the interest in the existence of multipliers stems from the following observation:

if (λ∗, µ∗) is a multiplier for the problem (3.1), the optimal value f∗ for problem (3.1) can

be obtained as solution of the unconstrained problem minx∈X L(x, λ∗, µ∗). The following

lemma shows that multipliers are closely related to the solutions of the dual problem.

Lemma 3.12 (Multipliers and duality gap). a) If there is a multiplier pair (λ∗, µ∗) for

problem (3.1) then there is no duality gap and (λ∗, µ∗) are solutions of the dual

problem (3.4).

b) Suppose that (λ∗, µ∗) is a solution of the dual problem. If q∗ = f∗ (no duality gap),

then (λ∗, µ∗) is a multiplier pair.

Note in particular that optimization problems with a duality gap do not admit multipliers

in the sense of Definition ??.

Proof. Statement a) follows from the definitions in a straightforward way: if (λ∗, µ∗) is a

multiplier pair we have

q(λ∗, µ∗) = inf
x∈X

L(x, λ∗, µ∗) = f∗.

Since f∗ ≥ q∗ by weak duality, we get q(λ∗, µ∗) ≥ q∗, and (λ∗, µ∗) is optimal in the dual

problem.

For b) we argue as follows. If (λ∗, µ∗) is optimal in the dual problem and if f∗ = q∗, we

have q(λ∗, µ∗) = f∗, so that (λ∗, µ∗) is a multiplier.

Example 3.13 (Existence of Multipliers). Consider the linear problem

min
x∈X

f(x) = x1 − x2 subject to g(x) = x1 + x2 − 1 ≤ 0,

X = {x1, x2 : xi ≥ 0}.

In geometric terms the set of feasible points is just the unit simplex, and it is easily seen

that the optimal point is x∗ = (0, 1) and that f∗ = −1.

Next we consider the dual problem. We get for µ ∈ R

L(x, µ) = x1 − x2 + µ(x1 + x2 − 1),(3.7)

and hence for µ ≥ 0

q(µ) = inf
x1,x2≥0

L(x, µ) = inf
x1,x2≥0

x1(1 + µ) + x2(µ− 1)− µ =

{
−∞ , µ ≤ 1

−µ , µ ≥ 1.
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Hence the solution of the dual problem is q∗ = supµ≥1{−µ} = −1, and the dual optimum

is attained at µ∗ = 1. It follows that f∗ = q∗ (no duality gap), and that µ∗ = 1 is a

multiplier. It is well-known that for linear optimization problems multipliers always exist,

if the primal problem has a solution.

Proposition 3.14 (Optimality conditions). Consider x∗ ∈ X, λ∗ ∈ Rm, µ∗ ∈ Rr. Then

the following statements are equivalent:

a) x∗ is optimal in the primal problem (3.1) and (λ∗, µ∗) is a multiplier (this implies

µ∗ ≥ 0 by definition).

b) The following four optimality conditions hold

i) x∗ ∈ X, g(x∗) ≤ 0, h(x∗) = 0 (primal feasibility),

ii) µ∗ ≥ 0 (dual feasibility),

iii) x∗ ∈ argminx∈X L(x, λ∗, µ∗) (Lagrangian optimality),

iv)
∑r

j=1 µ
∗
jgj(x

∗) = 0 (complementary slackness).

Proof. a ⇒ b. Primal and dual feasibility ((i) and (ii)) hold by definition. Since x∗ is

optimal we have, as µ∗ ≥ 0,

f∗ = f(x∗) ≥ f(x∗) + (µ∗)′g(x∗) = L(x∗, λ∗, µ∗) ≥ inf
x
L(x, λ∗, µ∗) = f∗,

where the last equality holds as (λ∗, µ∗) is a pair of multipliers. Hence equality holds

everywhere in the above chain of equations, which gives Lagrangian optimality and com-

plementary slackness.

b⇒ a. Statement b) implies the following chain of inequalities:

f(x∗)
(iv)
= L(x∗, λ∗, µ∗)

(iii)
= q(λ∗, µ∗) ≤ q∗ ≤ f∗,(3.8)

where the last inequality follows from weak duality. Since x∗ feasible in the primal problem

the inequality f(x∗) ≤ f∗ implies that x∗ is optimal in the primal problem. Moreover, we

must have equality throughout in (3.8). In particular we get q(λ∗, µ∗) = f∗, which shows

that (λ∗, µ∗) are multipliers.

The proposition suggests the following strategy for finding solutions to constraint opti-

mization problems.

1. Find for given λ ∈ Rn, µ ∈ Rr, µ ≥ 0 a vector x̂ = x̂(λ, µ) with x̂ ∈ argminx∈X L(x, λ, µ).

2. Determine λ∗, µ∗ ≥ 0 so that x̂(λ∗, µ∗) is primally feasible and so that (µ∗)′g(x̂(λ∗, µ∗)) =

0.

If these steps can be carried out successfully, x∗ = x̂(λ∗, µ∗) is optimal in the primal

problem and (λ∗, µ∗) is a multiplier.

Note however, that this strategy will fail if the primal problem (3.1) does not admit

multipliers, e.g. because there is a duality gap. Hence it is important to have conditions

that guarantee the existence of multipliers (see Section 3.3).
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Example 3.15 (Portfolio optimization). Consider an arbitrage-free and complete security

market model on some finite state space Ω = {ω1, . . . , ωn}. Denote the historical measure

by pi = P ({ωi}), 1 ≤ i ≤ n (we assume pi > 0 for all i), the risk-free interest rate by

r ≥ 0 and the equivalent martingale measure by qi = Q({ωi}), 1 ≤ i ≤ n. Recall that the

price of any contingent claim X = (x1, . . . , xn) with xi = X(ωi) is

ΠX =
1

1 + r

∑
i

qixi.

Consider a utility function u, i.e. some C2-function u : R+ → R with u′ > 0, u′′ < 0,

where the concavity of u is used to model risk aversion. Popular examples are u(x) = lnx

or u(x) = 1
γx

γ for γ < 1, γ 6= 0. Consider an investor with initial wealth V0 > 0 who

wants to maximize the expected utility E (u(X)) =
∑

i piu(xi) of his terminal wealth

X = (x1, . . . , xn) with xi = X(ωi). Since the agent can create only wealth profiles X

whose current value is no larger than V0, we are led to the problem

max
x1,...,xn≥0

n∑
i=1

piu(xi) subject to
n∑
i=1

qixi ≤ (1 + r)V0

With v(x) := −u(x) we obtain the following equivalent minimization problem

min
x1,...,xn≥0

n∑
i=1

piv(xi) subject to
∑
i

qixi ≤ (1 + r)V0.

In the sequel we assume that

lim
x→0

u′(x) =∞, lim
x→∞

u′(x) = 0.;(3.9)

these conditions are known as Inada conditions.

In order to find an optimal terminal wealth we now carry out the strategy explained above.

Step 1. The Lagrange function is for µ ≥ 0 given by

L(x, µ) =
n∑
i=1

{piv(xi) + µqixi} − µ(1 + r)V0.

Minimization of x 7→ L(x, µ) gives the FOCs

piv
′(xi) + µqi = 0, 1 ≤ i ≤ n.(3.10)

Denote by I the inverse function of v′. I exists, as v′ is increasing because of the convexity

of v = −u. Moreover, because of the Inada conditions we obtain that

dom I = range v′ = (−∞, 0); range I = dom v′ = (0,∞).

Hence the FOC (3.10) gives

x̂i = x̂i(µ) = I

(
−µqi

pi

)
> 0, 1 ≤ i ≤ n.

Note that the point x̂(µ) = (x̂1(µ), . . . , x̂n(µ)) is in fact a global minimum of x 7→ L(x, µ)

as L is convex in x.
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Step 2. By Proposition 3.14 x̂(µ∗) is optimal if we can find a multiplier µ∗ > 0 such that

n∑
i=1

qix̂i(µ
∗) = (1 + r)V0. (3.11)

Such a multiplier exists as I is increasing with

lim
z→−∞

I(z) = 0 lim
z→0

I(z) =∞.

Hence if µ increases from 0 to ∞, x̂i(µ) decreases from ∞ to 0, and there is a unique

solutionµ∗ of (3.11). The optimal wealth is than x∗ = x̂(µ∗); the optimal trading strategy

can be found by means of a replication argument.

For a specific example take u(x) = lnx. In that case v′(x) = − 1
x and I(y) = − 1

y . Hence

we get x̂i(mu) = 1
µ
pi
qi

. To determine µ∗ we use the condition

n∑
i=1

qix̂i(µ
∗) =

n∑
i=1

qi
1

µ∗
pi
qi

= (1 + r)V0.

This gives µ∗ = ((1 + r)V0)
−1 and hence the optimal wealth

x∗i =
1

µ∗
pi
qi

= (1 + r)V0
pi
qi
, 1 ≤ i ≤ n.

The next result is a reformulation of the optimality conditions from Proposition 3.14.

Proposition 3.16. (Saddle Point Theorem) Given x∗ ∈ X ⊂ Rn, λ∗ ∈ Rm, µ ∈ Rn ≥ 0.

Then the following are equivalent:

a) x∗ is optimal in (3.1) and (λ∗, µ∗) is a multiplier.

b) (x∗, (λ∗, µ∗)) is a saddle point of the Lagrange-function, that is

L(x∗, (λ, µ)) ≤ L(x∗, (λ∗, µ∗)) ≤ L(x, (λ∗, µ∗))(3.12)

for all x ∈ X, λ ∈ Rm, µ ≥ 0 ∈ Rr.

Proof. a⇒ b. Lagrangian optimality implies the right inequality in (3.12). Since g(x∗) ≤ 0

we moreover have L(x∗, (λ, µ)) ≤ f(x∗) = L(x∗, (λ∗, µ∗)), which gives the left inequality.

b⇒ a. It holds that

sup
λ,µ≥0

L(x∗, λ, µ) = sup
λ,µ≥0

f(x∗) + λ′h(x∗) + µ′g(x∗) =

{
f(x∗), if h(x∗) = 0 and g(x∗) ≤ 0

∞, else

Now the left inequality in (3.12) implies that

sup
λ,µ

L(x∗, (λ, µ)) ≤ L(x∗, (λ∗, µ∗)) <∞,

so that we must have h(x∗) = 0, g(x∗) ≤ 0, and hence primal feasibility of x∗. The primal

feasiblity of x∗ implies that L(x∗, (λ∗, µ∗)) = f(x∗) and hence complementary slackness.

Lagrangian optimality finally follows from the right side of (3.12).
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3.3 Duality results

In section we discuss existence results for multipliers, so-called duality results.

3.3.1 Visualization of multipliers.

For simplicity we consider only problems with inequality constraints, i.e. we consider the

problem

min
x∈X

f(x) subject to g(x) ≤ 0.

We define the set S ⊂ Rn+1 by S = {(g(x), f(x)) : x ∈ X}, so that

f∗ = inf{ω ∈ R : ∃z ∈ Rr, z ≤ 0, with (z, ω) ∈ S}.

Recall that a hyperplane H through some (z̄, ω̄) ∈ Rr+1 with normal vector (µ, µ0) ∈ Rr+1

is

H = {(z, w) ∈ Rr × R : µ′z + µ0w = µ′z̄ + µ0w̄},

and recall the notion of the associated half-space H+.

Lemma 3.17. (Visualization of Lagrange multipliers)

a) The hyperplane with normal (µ, 1) through some vector (g(x), f(x)) ∈ S intercepts

the vertical axis {(0, w) : w ∈ R} at the level L(x, µ).

b) Among all hyperplanes with normal (µ, 1) that contain the set S in their positive

half-space the highest attained level of interception is infx∈X L(x, µ) = q(µ).

c) µ∗ is a multiplier if µ∗ ≥ 0 and if the highest attained level of interception of all

hyperplanes with normal (µ, 1) containing S in their positive half space is f∗.

Proof. a) The hyperplane is the set

H = {(z, w) : µ′z + w = µ′g(x) + f(x)}.

A point (0, w) is in H if and only if w = µ′g(x) + f(x) = L(x, µ).

b) Denote by (0, w) the level of interception of some hyperplane with normal (µ, 1). By

definition, S ∈ H+ if and only if for all x ∈ X.

µ′g(x) + f(x) ≥ µ′0 + w = w,

that is if w ≤ L(x, µ). Hence the highest possible point of interception is infx∈X L(x, µ) =

q(µ).

c) This follow immediately from the definiton of a multiplier.
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Example 3.18. a) Consider the problem

min
x∈R2

1

2
(x21 + x22) subject to g(x) = x1 − 1 ≤ 0.

Apparent by, the optimum is attainend at x∗ = (0, 0) and f∗ = 0. In order to draw the

set S we use its lower boundary is given by

inf{ω : ∃x ∈ R2 with g(x) = z, f(x) = w}

= inf{ω : ∃x2 ∈ R with
1

2
(z + 1)2 +

1

2
x22 ≤ w} =

1

2
(z + 1)2}.

Hence we get the following picture: (picture only on blackboard)

b) Consider the problem

min
x∈R

x subject to g(x) = x2 ≤ 0.

Since x = 0 is the only feasible point we have x∗ = 0 and f∗ = 0. The dual function is

given by

q(µ) = inf
x∈R

x+ µx2 = − 1

4µ
, µ ≥ 0.

Hence we get q∗ = supµ≥0 q(µ) = 0, so that there is no duality gap. However, there is no

multiplier as q∗ is not attained.

Now we turn to the geometric interpretation. The set S is given by S = {(z, w) : z ≥
0, w = ±

√
z}. From a geometric viewpoint, the non-existence of multipliers is due to the

fact that the supporting hyperplane H for the set S at the ‘optimal point’ (0, 0) is vertical,

so that the normal vector of H is collinear to (1, 0).

3.3.2 Duality results for problems with inequality constraints.

We consider the problem minx∈X f(x) subject to g(x) ≤ 0. We make the following as-

sumptions on the data of the problem.

Assumption 3.19 (Convexity and inner point). The admissible domain {x ∈ X : gj(x) ≤
0 for j = 1, . . . , r} is nonempty and the optimal value f∗ is finite. Moreover, f and

g1, . . . , gr are convex functions on the convex set X. Finally, the so-called Slater condition

holds, that is there is some x̄ ∈ X with gj(x̄) < 0 for all j.

Theorem 3.20 (Duality theorem for inequality constraints.). Under assumption (3.19)

there is no duality gap, and there is at least one multiplier µ∗.

Note that the Slater condition is not satisfied in example (3.18) b), but all other assump-

tions of the theorem are. Hence the example shows that the Slater condition or some

other constraint qualification is really needed to ensure the existence of multipliers.

Proof. We consider the set A = S + Rn+1
+ , that is

A = {(z, w) ∈ Rn+1 : ∃x ∈ X with gj(x) ≤ zj , 1 ≤ j ≤ r and f(x) ≤ w}
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Convexity of f, g1, . . . , gr and of X imply that A is a convex subset of Rr+1. Moreover,

(0, f∗) is not an inner point of A (otherwise (0, f∗ − ε) would be belong to A for ε > 0

sufficiently small, which contradicts the definition of f∗ as optimal value). The supporting

hyperplane theorem implies the existence of (µ, β) 6= (0, 0) ∈ Rr+1 such that

βf∗ = βf∗ + µ′0 ≤ βw + µ′z for all (z, w) ∈ Ā(3.13)

Since (0, f∗+ 1) ∈ A we get from (3.13) that β ≥ 0, and since (ej , f
∗) ∈ Ā for j = 1, . . . , r

we get that µj ≥ 0 for all j. Next we show that the Slater condition implies that β is

strictly bigger than zero. In fact, if β = 0, (3.13) implies that 0 ≤ µ′z for all (z, w) ∈ A.

Since (g1(x̄), . . . , gr(x̄), f(x̄)) ∈ A, we would get

0 ≤ µ′g(x̄) =
r∑
j=1

µjgj(x̄).

Since gj(x̄) < 0 for all j, we thus must have µj = 0 for all j. Hence we have (µ, β) = (0, 0)

which contradicts our previous assertion (µ, β) 6= (0, 0).

Hence we have β > 0, and by division through β we may assume that β = 1. Then (3.13)

gives, as (g(x), f(x)) ∈ A for x ∈ X,

f∗ ≤ f(x) + µ′g(x) for all x ∈ X.

Taking the infimum over x ∈ X we get, as µ ≥ 0,

f∗ ≤ inf
x∈X
{f(x) + µ′g(x)} = q(µ) ≤ q∗,

so that there is no duality gap. Since q(µ) ≤ f∗ by weak duality, we have that µ is a

solution of the dual problem and hence a multiplier.

Example 3.21 (Cost-minimizing production). Assume that at least A units of some good

(say, electricity) need to be produced by n different independent production units (say,

power plants). Denote by xi the quantity produced by unit i, and by fi(xi) the cost

function of that unit. Assume moreover, that one has capacity constraints of the form

αi ≤ xi ≤ βi for the output of unit i. Then the problem of finding a cost-minimizing

production plan (x1, . . . , xn) can be written in the form

min
αi≤xi≤βi

n∑
i=1

fi(x) subject to
n∑
i=1

xi ≥ A,

In order to proceed we assume that f1, . . . , fn are strictly convex and C1 on (ai, βi), and

that
∑

i βi > A. Hence Assumption 3.19 is satisfied for our problem and we can safely

apply the solution methodology from Proposition 3.14, since we know that multipliers

exist by Theorem 3.20.

Step 1. We consider the Lagrange function

L(x, µ) =
n∑
i=1

fi(xi) + µ(A−
n∑
i=1

xi) =
n∑
i=1

(fi(xi)− µxi) + µA

where x ∈ X = {x ∈ Rn : αi ≤ xi ≤ βi for all i}, that is we include the capacity con-

straints in the set X. Because of due the special form of L(x, µ), Lagrangian minimization
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amounts to solving the n one-dimensional problems minαi≤xi≤βi(f(xi) − µxi). For given

µ ≥ 0 the optimum is attained at

xi(µ) =


αi, if f ′(αi) ≥ µi
Ii(µ), if f ′(αi) < µ < f ′(βi)

βi, if f ′(βi) ≤ µ

here Ii(·) is the inverse of the strictly increasing function f ′i .

Step 2. Next we determine µ∗ ≥ 0 such that the complementary slackness condition

µ∗(A−
∑

i xi) = 0 is satisfied. For this we use that the mapping µ 7→ x∗i (µ) is continuous

and increasing. We distinguish two cases.

a)
∑n

i=1 x
∗
i (0) ≥ A. In that case we take µ∗ = 0 and x∗ = (x∗1(0), . . . , x∗n(0)).

b)
∑n

i=1 x
∗
i (0) < A. As limµ→∞ x

∗
i (µ) = βi for all i, we can find some µ∗ > 0

such that
∑n

i=1 x
∗
i (µ
∗) = A (using the assumption that

∑
i βi > A). In that case

(x∗1(µ
∗), . . . , x∗n(µ∗)) solves the problem.

Remark 3.22. The expression gi(xi, µ) = µxi − fi(xi) can be viewed as profit of pro-

duction unit i given that the good can be sold at a price µ on the market. Hence the

problem minαi≤xi≤βi −g(xi) can be viewed as problem of choosing a profit-maximizing

output amount for unit i. This implies that the problem of finding an optimal production

plan could be decentralized if a central unit announces a shadow price µ and lets the

subunits respond by choosing their optimal units xi(µ). In the second step the shadow

price µ has to be adapted so that the constraint µ∗(A−
∑n

i=1 xi(µ
∗)) = 0 is satisfied. The

existence of an shadow price µ∗ is ensured by Theorem 3.20.

3.3.3 Duality results for convex cost function and linear constraints

In the following we give results for the existence of multipliers for problems with linear

constraints of the form.

min
x∈X

f(x) subject to a′jx ≤ bj , 1 ≤ j ≤ n, e′ix = δi, 1 ≤ i ≤ m.(3.14)

Assumption 3.23. f is convex on Rm, and X is a polyhedral set, that is a set generated

by linear inequalities.

Proposition 3.24. Suppose that assumption 3.23 holds and that the optimal value f∗ of

problem (3.14) is finite. Then strong duality holds and there is at least one multiplier pair

(λ∗, µ∗).

Corollary 3.25. (Duality for linear programming) Suppose that f is linear, that is of

the form f(x) = c′x. If the optimal value is finite, the primal and the dual problem have

optimal solutions and there is no duality gap.
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