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PARAMETER ESTIMATION IN CREDIT MODELS UNDER

INCOMPLETE INFORMATION

ALEXANDER HERBERTSSON AND RÜDIGER FREY

Abstract. We consider the filtering model of Frey & Schmidt (2012) stated under the
real probability measure and develop a method for estimating the parameters in this frame-
work by using time-series data of CDS index spreads and classical maximum-likelihood
algorithms. The estimation-approach incorporates the Kushner-Stratonovich SDE for the
dynamics of the filtering probabilities. The convenient formula for the survival proba-
bility is a prerequisite for our estimation algorithm. We apply the developed maximum-
likelihood algorithms on market data for historical CDS index spreads (iTraxx Europe
Main Series) in order to estimate the parameters in the nonlinear filtering model for an
exchangeable credit portfolio. Several such estimations are performed as well as accom-
panying statistical and numerical computations.

1. Introduction

Dynamic modelling of portfolio credit risk is a big and important area in applied math-
ematical finance. Developing credit portfolio models that conveniently include stochastic
dynamics as well as default dependence is challenging. In Frey & Schmidt (2012) the au-
thors developed a full dynamic information-based approach to credit risk modelling where
the prices of traded credit derivatives are given by the solution of a nonlinear filtering
problem. Frey & Schmidt (2012) solve this problem using the innovations approach to
nonlinear filtering and derive in particular the Kushner-Stratonovich SDE describing the
dynamics of the filtering probabilities. Moreover, they give interesting theoretical results
on the dynamics of the credit spreads and on risk minimizing hedging strategies.

In this paper consider the filtering model of Frey & Schmidt (2012) stated under the real
probability measure and outline an algorithm for estimating the parameters in this frame-
work by using time-series data of index CDS spreads and classical maximum-likelihood
algorithms. In particular, the estimation approach incorporates the Kushner-Stratonovich
SDE for the dynamics of the filtering probabilities. The practical expression for the survival
probability is a prerequisite for our estimation algorithm since this formula will be used to
back out the filtering probabilities under the market filtration (i.e. the noisy information)
specified in the framework of Frey & Schmidt (2012). These filtering probabilities satisfy
the Kushner-Stratonovich SDE at each time point, which in turn makes it possible to state
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2 ALEXANDER HERBERTSSON AND RÜDIGER FREY

a likelhood function. We apply our developed maximum-likelihood algorithms on market
data for historical CDS index spreads in order to estimate the parameters in the nonlinear
filtering model for an exchangeable (i.e. homogeneous) credit portfolio.

Our paper makes several references to Herbertsson & Frey (2012) in which the authors de-
rive tractable formulas for the conditional survival distribution and the conditional number
of defaults under the market filtration (i.e. the noisy information) in terms of the filtering
probabilities specified in the framework of Frey & Schmidt (2012).

The idea of using maximum likelihood (MLE) techniques in credit risk modelling is
not new. For example, Hurd & Zhou (2011) develops a structural credit risk model with
noisy information. In order to estimate the parameters Hurd & Zhou (2011) utilities MLE
techniques together with CDS spread time series data.

The rest of the paper is organized as follows. In Section 2 we describe the model used
in this paper, originally presented in Frey & Schmidt (2012). Section 3 gives a short
recapitulation of the the Kushner-Stratonovich SDE describing the dynamics of the filter-
ing probabilities in the model where we in particular focus on a homogeneous portfolio.
Furthermore, in Section 3 we also restate explicit formulas for the conditional survival
distribution originally derived in Herbertsson & Frey (2012). Continuing, in Section 4
we present an algorithm for estimating the parameters in the filtering models by using
time-series data of index CDS spreads and classical maximum-likelihood algorithms. The
calibration-approach incorporates the Kushner-Stratonovich SDE for the dynamics of the
filtering probabilities. Our estimation-procedure heavily relies on the convenient expres-
sion for the conditional survival distribution since this formula will be used to back out
the conditional distribution of the state space given the noisy information each time point,
which also follows the Kushner-Stratonovich SDE. The transformation of the market index
CDS spread to a survival probability under the real measure is done by first considering
the market spread as a (transformed) proxy measure for the corresponding survival prob-
ability under the risk neutral measure given the noisy information. After this we use
another proxy approximation between the survival probabilities under the risk-neutral and
historical measure

Finally, in Section 5 we apply the maximum-likelihood algorithm on market data for
historical CDS index spreads in order to estimate the parameters in the nonlinear filtering
model for an homogeneous credit portfolio. Furthermore, other numerical studies are are
performed as well as accompanying statistical testes.

2. The model

In this section we shortly recapitulate the model of Frey & Schmidt (2012). Thus, we
will consider a reduced-form model driven by an unobservable background factor process
X modelling the ”true” state of the economy. For tractability reasons X is modelled as
finite-state Markov chain. The factor process X is not directly observable. Instead prices of
liquidly traded securities are given as conditional expectation with respect to the so called
market filtration FM = (FM

t )t≥0. The filtration FM is generated by the factor process
X plus noise, which will be specified in detail below. Intuitively speaking, this means
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PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 3

that market investors observe the securities given the ”noisy” history of the state of the
economy. Furthermore, in the model of Frey & Schmidt (2012) the default times of all
obligors are conditionally independent given the information of the factor process X. This
setup is close to the one found in e.g. Graziano & Rogers (2009).

Frey & Schmidt (2012) treat the case with stochastic recoveries in a general theoretical
setting. In this paper we will take a simplified approach and only consider deterministic
recoveries, which up to the recent credit crises has been considered as standard in the credit
literature.

2.1. The factor process. In this section we introduce the model that we will consider
under the full information.

Let Xt be a finite state continuous time Markov chain on the state space SX = {1, 2, . . . , K}
with generator Q. Let FX

t = σ(Xs; s ≤ t) be the filtration generated by the factor process
X. Consider m obligors with default times τ1, τ2 . . . , τm and let the mappings λ1, λ2 . . . , λm

be the corresponding FX
t default intensities, where λi : SX 7→ R+ for each obligor i. This

means that the default time τi are modelled as the first jump of a Cox-process, with inten-
sity λi(Xt). It is well known (see e.g. Lando (1998)) that given an i.i.d sequence {Ei} where
Ei is exponentially distributed with parameter one, such that all {Ei} are independent of
FX

∞, then

τi = inf

{
t > 0 :

∫ t

0

λi(Xs)ds ≥ Ei

}
. (2.1.1)

Hence, for any T ≥ t we have

P
[
τi > t | FX

T

]
= exp

(
−
∫ t

0

λi(Xs)ds

)
(2.1.2)

and thus

P [τi > t] = E

[
exp

(
−
∫ t

0

λi(Xs)ds

)]
. (2.1.3)

Note that the default times are conditionally independent, given FX
∞.

The states in SX = {1, 2, . . . , K} are ordered so that state 1 represents the best state
and K represents the worst state of the economy. Consequently, the mappings λi(·) are
chosen to be strictly increasing in k ∈ {1, 2, . . . , K}, that is λi(k) < λi(k + 1) for all
k ∈ {1, 2, . . . , K − 1} and for every obligor in the portfolio.

2.2. The market filtration and full information. In this subsection we formally intro-
duce the market filtration, that is the information observed by the market participation.
Recall that the prices of all securities are given as conditional expectations with respect
to this filtration. We also shortly discuss the full information F = (Ft)t≥0, which is the
biggest filtration containing all other filtrations, where (Ω,G, Q) with G = F∞ will be the
underlying probability space assumed in the rest of this paper.

Let Yt,i denote the random variable Yt,i = 1{τi≤t} and Yt be the vector Yt = (Yt,1, . . . , Yt,m).
The filtration FY

t = σ(Ys; s ≤ t) represents the default portfolio information at time t,
generated by the process (Ys)s≥0. Furthermore, let Bt be a one-dimensional Brownian
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4 ALEXANDER HERBERTSSON AND RÜDIGER FREY

motion independent of (Xt)t≥0 and (Yt)t≥0 and let a(·) be a function from {1, 2, . . . , K} to
R. Next, define the process Zt as

Zt =

∫ t

0

a(Xs)ds + Bt. (2.2.1)

We here remark that Frey & Schmidt (2012) allows for multivariate Brownian motion Bt

in (2.2.1) as well as a vector valued mapping a(·) with same dimension as Bt. In this paper
however, we restrict ourselves to only one source of randomness in the noise representation
(2.2.1). Intuitively Zt represents the noisy history of Xt and the functional form of Zt given
by (2.2.1) is a representation that are standard in the nonlinear filtering theory, see e.g.
Davis & Marcus (1981). Following Frey & Schmidt (2012), we define the market filtration
FM = (FM

t )t≥0 as

FM
t = FY

t ∨ FZ
t . (2.2.2)

We set the full information F = (Ft)t≥0 to be the biggest filtration containing all other
filtrations with G = F∞. We can for example let Ft be given by

Ft = FX
t ∨ FY

t ∨ FZ
t ∨ FB

t (2.2.3)

where (FB
t )t≥0 is the filtration generated by the Brownian motion Bt. Note that FX

t is not
a subfiltration of FZ

t , and similarly, FB
t is not contained in FZ

t .

3. The Kushner-Stratonovic SDE in the modell

In this section we study the Kushner-Stratonovic SDE in our filtering model. We use the
same notation as in Frey & Schmidt (2012). First, define πk

t as the conditional probability
of the event {Xt = k} given the market information FM

t at time t, that is

πk
t = P

[
Xt = k | FM

t

]
(3.1)

and let πt ∈ RK be a row-vector such that πt =
(
π1

t , . . . , π
K
t

)
. In the sequel, for any

Ft-adapted process Ut we let Ût denote the optional projection of Ût onto the filtration

FM
t , that is Ût = E

[
Ut | FM

t

]
. To this end, we have for example

λ̂i(Xt) = E
[
λ(Xt) | FM

t

]
=

K∑

k=1

λi(k)πk
t

â(Xt) = E
[
a(Xt) | FM

t

]
=

K∑

k=1

a(k)πk
t .

Next, define Mt,i and µt as

Mt,i = Yt,i −
∫ t∧τi

0

̂λi(Xs−)ds for i = 1, . . . , m

µt = Zt −
∫ t

0

â(Xs) ds
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PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 5

In Frey & Schmidt (2012) it is shown that Mt,i is an FM
t -martingale, for i = 1, 2, . . . , m

and that µt is a Brownian motion with respect to the filtration FM
t . Thus, the vector

Mt = (Mt,1, . . . , Mt,m) is an FM
t -martingale.

Furthermore, Frey & Schmidt (2012) also proof the following proposition, which is a
version of the Kushner- Stratonovic equations, adopted to the filtering models presented
in this paper (originally developed in Frey & Schmidt (2012)).

Proposition 3.1. With notation as above, the processes πk
t satisfies the following K-

dimensional system of SDE-s,

dπk
t =

K∑

ℓ=1

Qℓ,kπ
ℓ
tdt + (γk(πt−))⊤ dMt + αk(πt) dµt , (3.2)

where (γk)⊤ =
(
γk

1 (πt), . . . , γ
k
1 (πt)

)
and the coefficients are given by

γk
i (πt) = πk

t

( λi(k)
∑K

n=1 λi(n)πn
t

− 1
)
, 1 ≤ i ≤ m (3.3)

and

αk(πt) = πk
t

(
a(k) −

K∑

n=1

πn
t a(n)

)
, 1 ≤ k ≤ K. (3.4)

The K-dimensional SDE-system partly uses the vector notation for the Mt vector. How-
ever, as will be seen below, it will be beneficial to rewrite this SDE on component form,
especially when we consider homogeneous credit portfolios. Thus, let us rewrite (3.2) on
component form, so that

dπk
t =

K∑

ℓ=1

Qℓ,kπ
ℓ
tdt +

m∑

i=1

γk
i (πt)dMt,i + αk(πt)dµt. (3.5)

Next, let us consider a homogeneous credit portfolio, that is, all obligors are exchangeable
so that λi(Xt) = λ(Xt) and γk

i (πt) = γk(πt) for each obligor i and define Nt as

Nt =

m∑

i=1

Yt,i =

m∑

i=1

1{τi≤t}. (3.6)

Furthermore, define λ as λ = (λ(1), . . . , λ(K)) and let ek ∈ Rm be a row vector where the
entry at position k is 1 and the other entries are zero. For a homogeneous portfolio the
results of Proposition 3.1 can be simplified to the following corollary, proved in Herbertsson
& Frey (2012).

Corollary 3.2. Consider a homogeneous credit portfolio with m obligors. Then, with

notation as above, the processes πk
t satisfies the following K-dimensional system of SDE-s,

dπk
t = γk(πt)dNt + πt

(
Qe⊤

k − γk(πt)λ
⊤ (m − Nt)

)
dt + αk(πt)dµt (3.7)
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6 ALEXANDER HERBERTSSON AND RÜDIGER FREY

where γk(πt) and αk(πt) are given by

γk(πt) = πk
t

(
λ(k)

πtλ
⊤
− 1

)
and αk(πt) = πk

t

(
a(k) −

K∑

n=1

πn
t a(n)

)
. (3.8)

From the SDE (3.7) in Corollary 3.2 we clearly see that the dynamics of the conditional
probabilities πk

t contains a drift part, a diffusion part and a jump part. The diffusion part
is due to the dµt,j components and the jump part is due to the defaults in the portfolio,
given by the differential dNt.

0 0.5 1 1.5 2 2.5 3
1
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time t
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e 
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s 

X
t

A realization of the process X
t
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A trajectory of  π
t
1 simulated with the Kushner−Strataonovich SDE

 

 

π
t
1

Figure 1. A simulated trajectory of Xt, Nt and π1
t where K = 2, l = 1 and m = 125.

Figure 1 visualizes a simulated path of π1
t given by (3.7) in Corollary 3.2 in an example

where K = 2 and m = 125, using fictive parameters for Q and λ assuming a(k) = c· lnλ(k)
for a constant c. From the third Figure 1 we clearly see that π1

t has jump, drift and diffusion
parts. The first and second subfigures in Figure 1 shows the corresponding trajectories for
Xt and Nt. Note how the defaults presented by Nt clusters as Xt switches to state 2,
representing the more worse economic state among {1, 2}.

Next, we briefly describe the conditional survival distribution given the noisy market
information, that is, we state expressions for the quantities P

[
τi > T | FM

t

]
where T > t
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PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 7

and FM
t described in Equation (2.2.2). First, we need to introduce some notation. If Xt

is a finite state Markov jump process on SX = {1, 2, . . . , K} with generator Q, then, for a
function λ(x) : SX 7→ R we denote the matrix Qλ = Q− Iλ where Iλ is a diagonal-matrix
such that (Iλ)k,k = λ(k). Furthermore, we let 1 be a column vector in RK where all
entries are 1. The following theorem is a perquisite for all other results in this paper and
is therefore a core result. A detailed proof is given in Herbertsson & Frey (2012).

Theorem 3.3. Consider a homogeneous credit portfolio and let λ(Xt) be the FX
t -intensity

for obligor i. If T ≥ t then, with notation as above

P
[
τi > T | FM

t

]
= 1{τi>t}πte

Qλ(T−t)1 (3.9)

where the matrix Qλ = Q − Iλ is defined as above.

The convenient expressions for the conditional survival distribution stated in (3.9) will
be used in our estimation algorithm, as will be seen in the next section.

4. Parameter estimation in the filtering model

In this section we outline an algorithm for estimating the parameters in the filtering
model by using time-series data of index CDS spreads and classical maximum-likelihood
algorithms. The estimation-approach incorporates the Kushner-Stratonovich SDE for the
dynamics of the filtering probabilities. Our estimation-procedure heavily relies on the
convenient expression for the survival probability formula in Theorem 3.3 since this formula
will be used to back out the distribution of the state space under the noisy information. We
then use that these conditional probabilities must follow the Kushner-Stratonovich SDE
at each time point.

The main ideas of our estimation-approach are first given in Subsection 4.1, and then
the details of the algorithm is described in three steps presented through Subsection 4.2
to Subsection 4.4.

Finally, in Subsection 4.5 we give a brief discussion of related maximum-likelihood esti-
mations both in filtering credit models as well as other intensity based frameworks described
in recent academic papers

4.1. The main ideas and assumptions. In this subsection we outline the main ideas in
the algorithm for calibrating the parameters in our model using time-series data on CDS
index spreads, the survival probability formula under the physical probability measure P
and the Kushner-Stratonovic SDE.

Our task is to estimate the parameters θ = (Q, λ) from market data. Let {SM(t, t +
5)}t∈t(s) be a historical time-series trajectory of the 5-year market CDS index spreads

observed at N (s) sample time points t(s) = {t(s)1 , . . . , t
(s)

N(s)}. Recall that CDS spreads are
priced under the risk neutral measure Q while we study a model under the real probability
measure P. We will use the time series data of the iTraxx Europe index CDS market
spread as follows. At each time point t we consider the market spread SM(t, t + 5) as
a (transformed) proxy measure for the 5-year survival probability under the risk neutral
measure Q given the noisy information. In order to relate SM(t, t+5) with a number under
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8 ALEXANDER HERBERTSSON AND RÜDIGER FREY

the physical probability measure P we make some crude assumptions (typically done in

financial engineering) as follows. By letting q
(5)
t be the noisy 5-year survival probability

under Q and p
(5)
t be the corresponding noisy 5-year survival probability under P we assume

that
q
(5)
t = e−γ

Q
t 5 + noiset and p

(5)
t = e−γP

t 5 + noiset (4.1.1)

where γQ
t and γP

t are stochastic non-negative functions. Inspired by the results in e.g.

Berndt, Douglas, Duffie, Ferguson & Schranz (2008) we assume that γQ
t and γP

t are related
as follows

γQ
t

γP
t

≈ β (4.1.2)

where β is a constant which can be fixed before the estimation alternatively be included
with the other parameters in the estimation procedure. In Berndt et al. (2008) the authors
determine the parameter β in (4.1.2) by regression over KMV Moody data and market
CDS spreads, see also in Subsection 9.3 in McNeil, Frey & Embrechts (2005).

In view of (4.1.1) we will for a fixed outcome ω ∈ Ω consider {SM(t, t + 5)}t∈t(s) as a
observed trajectory of the 5-year market CDS index spreads sampled at the time points

t(s) = {t(s)1 , . . . , t
(s)

N(s)} where {SM(t, t + 5)}t∈t(s) relates to the trajectory {γQ
t (ω)}t∈t(s) as

follows. For each time point t ∈ t(s) we assume that the observed outcome SM(t, t + 5) is

related to the outcome of γQ
t (ω) by letting

γQ
t (ω) + noiset ≈

SM(t, t + 5)

(1 − φ)
(4.1.3)

where φ is a constant recovery retrieved at default by a obligor in the homogeneous port-
folio representing the CDS index. Note that the right hand side in (4.1.3) is ”noisy” via
the observed market CDS index spread SM(t, t+5) which fluctuates on a daily basis. Fur-
thermore, the relation (4.1.3) is simply the standard credit triangle frequently used among

market practitioners assuming a ”flat” CDS term structure, i.e., assuming that γQ
t will

be constant for all time points after t, see also Equation (9.11) on p.404 in McNeil et al.
(2005). So in view of (4.1.2) and (4.1.3) we can for a fixed a outcome ω ∈ Ω relate γP

t (ω)
to SM(t, t + 5) as

γP
t (ω) + noiset ≈

SM(t, t + 5)

(1 − φ)β
(4.1.4)

and using the formula for p
(5)
t in (4.1.1) then renders that

p
(5)
t ≈ e

−SM (t,t+5)

(1−φ)β
5
+ noiset. (4.1.5)

Finally, recalling that the quantity p
(5)
t is the 5-year survival probability under the real

probability measure P for an obligor under the noise information we have that

p
(5)
t = P

[
τi > t + 5 | FM

t

]
. (4.1.6)

Thus, using (4.1.5) and (4.1.6) together with the explicit expression of P
[
τi > t + 5 | FM

t

]

given by (3.9) in Theorem 3.3 and dropping the noise term in the right hand side of (4.1.5)
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we can for a fixed outcome ω ∈ Ω, relate the vector πt(ω) to the ”observation” SM(t, t+5)
as follows

e−
SM (t,t+5)

(1−φ)β
5 = πt(ω)eQλ51 (4.1.7)

where we used that 1{τi>t} = 1, i.e. the average obligor is still alive at time t, that is, not
all 125 obligors have defaulted up to time t. Also recall that the probability vector πt(ω) is
”noisy by construction” which motivates the dropping of the noise term in the right hand
side of (4.1.5) when using Equation (4.1.7)

We here remark that the formula (4.1.7) is a somewhat rough ”back of the envelope”
relation between the market 5-year CDS spread and the ”noisy” 5-year survival probability
under the physical probability measure P in the framework of Section 2. The main point
in this section is not to develop a full-fledged theory for the relationship between the
risk neutral and physical probability measures in the model by Frey & Schmidt (2012)
but rather to give one example of how to estimate the parameters in this model via the
Kushner-Stratonovic SDE given by Equation (3.7) in Corollary 3.2. The latter method is
independent of how we extract the filtering probabilities πt(ω) from e.g. observed market
CDS index spreads. Thus, going back to the the formula (4.1.7), we acknowledge that
other methods describing the relationships between SM(t, t+5) and the probability vector
πt(ω) (stated under the real measure P) can be used, in particular when considering several
maturities simultaneously. For example, if one wants to simultaneously use market CDS
index spreads for e.g. four maturities, that is SM(t, t+3), SM(t, t+5), SM(t, t+7), SM(t, t+
10), when establishing a relationship between these spreads and the survival probability
(expressed in terms of the filtering probabilities πt(ω)) under the physical probability
measure, then the ”flat CDS term structure” formula (4.1.3) have to be replaced with
another relationship. One such example is to let β = β(t) be piecewise constant and
replacing the proxy (4.1.3) with a more sophisticated relation such as a CDS pricer with

piecewise constant intensity, allowing γQ
t to be bootstrapped from these spreads. After this,

a similar version of (4.1.2) can be utilized with piecewise constant β(t), in order to extract
the corresponding γP

t on each time intervall. Finally, extending (4.1.7) is then trivial with
the left hand side giving the formula for the survival probability in the piecewise constant
framework, while the right hand side is the same but with different maturities 3, 5, 7 and
10. Let us formalize the above ideas a bit more. Let J be an integer denoting how many
market CDS spreads we want to include in our transformation, and let {T1, . . . , TJ} be a
subset of {3, 5, 7, 10}. If e.g. J = 4 then T1 = 3, . . . , T4 = 10 and if J = 1 there are several
options for T1, but typically T1 = 5. Thus, for a fixed outcome ω ∈ Ω, letting xt denote
the observed vector xt = (SM(t, t + T1), . . . , SM(t, t + Tj)) we will for each j = 1, . . . , J
be able to find a mapping FM,j (xt, β) which relates the J CDS market spreads xt to the
filtering probability vector πt(ω) under the historical measure P as follows

FM,j (xt, β) = πt(ω)eQλTj1 for j = 1, . . . , J (4.1.8)

where β is a vector of parameters describing the relations FM,j. Although the mappings
FM,j (xt, β) may not be explicit in terms of analytical functions as in (4.1.7), we will always
be able to numerically evaluate FM,j (xt, β, T ) given the arguments xt, β and {T1, . . . , TJ}.
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In the case J = 1 where we only use one market spread, say SM(t, t + 5) so that xt =
SM(t, t + 5), β = (β, φ), T1 = 5 we can inspired by for example Equation (4.1.7) let
FM,1 = FM be given by

FM (xt, β) = e−
SM (t,t+5)

(1−φ)β
5. (4.1.9)

This relation together with (4.1.8) for T = 5 is (4.1.7) restated.
Next, going back to the general case with J ≥ 1, and for a fixed outcome ω ∈ Ω, we note

that using πt(ω)1 = 1 together with (4.1.7) will yield a linear equation system for πt(ω)
as follows

Aπ⊤
t (ω) = bt (4.1.10)

where the matrix A = A (θ) ∈ R2×K is given by

A (θ) =





e1e
QλT11 , . . . . . . , eKeQλT11
...

e1e
QλTJ1 , . . . . . . , eKeQλTJ1

1 , . . . . . . , 1



 . (4.1.11)

Furthermore, the column vector bt = b (xt, β) ∈ RJ in (4.1.10) is given by

b (xt, β) =





FM,1 (xt, β)
...

FM,J (xt, β)
1



 . (4.1.12)

Hence, given market spread vector xt = (SM(t, t + T1), . . . , SM(t, t + TJ )) and vector β,
we can for a fixed θ = (Q, λ) compute the matrix A. Furthermore, if we assume that A−1

exists then πt(ω) =
(
π1

t (ω), π2
t (ω), . . . , πK

t (ω)
)

is obtained by solving (4.1.10). Of course,

we also have to make sure that the entries in πt(ω) are probabilities, that is πk
t (ω) ∈ [0, 1]

for every state k.
Our main idea is to estimate θ = (Q, λ) with maximum likelihood techniques by using

observed market time-series data {xt}t∈t(s), the equation system for πt(ω) in (4.1.10) and
the Kushner-Stratonovic SDE given by Equation (3.7) in Corollary 3.2. This will be done
assuming that the vector β is exogenously given.

A necessary (but not sufficient) condition for A−1 to exists is to choose the number of
states for X to be as many as the rows in A, that is letting K = J + 1. As already
mentioned, in this article we will for tractability reasons only consider the CDS index for
one maturity (i.e. J = 1) where T1 = T = 5 in the calibration of θ which implies that
that we set K = 2 for the Markov chain X. Note however that all ideas presented in
this section can easily be carried over to an arbitrary number of states K, combined with
J = K − 1 relations each given by (4.1.8). Since we in this paper only consider the case
J = 1 with T = 5 then the vector β is reduced to a scalar β and the first row in bt is given
by Equation (4.1.9).
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In the rest of this paper we define the function a(Xt) used in construction (2.2.1) for the
noisy observation Zt, as

a(Xt) = c lnλ(Xt) that is ak = c lnλk for each state k (4.1.13)

where c is a constant. The parametrization (4.1.13) have previously also been used in
Frey & Schmidt (2012) and Frey & Schmidt (2011), see e.g. Subsection 5.3 in Frey &
Schmidt (2012) and Example 7.6.1 in Frey & Schmidt (2011). Given (4.1.13) the unknown
parameters to be estimated are then θ = (Q, λ, c). Furthermore, we assume that the scalar
β is exogenously given as well as the recovery rate φ.

In the following subsections we will describe the maximum likelihood algorithm for the
parameters θ in three steps. The first step (Subsection 4.2) is to extract πt(ω) by solving
the linear system Aπ⊤

t (ω) = bt and to find conditions guarantying that all entries in πt(ω)
are probabilities. The second step (Subsection 4.3) is to simplify and study the discrete
version of the Kushner-Stratonovic SDE in (3.7). Finally, in the third step (Subsection
4.4) we use the previous two steps to derive a computationally tractable expression for
the likelihood function of the parameters θ = (Q, λ, c), as well as an analytical first-order
condition for the variable c. We remark that the functional relationship (4.1.13) is only
used in the final step when deriving the expression for the likelihood function, while the
first two steps holds for any function a(Xt) used in (2.2.1) for the noisy observation Zt.

4.2. Step 1: Extracting and constraining the filtering probabilities. In this sub-
section we derive necessary and sufficient conditions so that the filtering probabilities sat-
isfies πk

t (ω) ∈ [0, 1] for k = 1, 2, when πt(ω) = (π1
t (ω), π2

t (ω)) is obtained by solving
Aπ⊤

t (ω) = bt in (4.1.10). We also shortly discuss an extended method that can be used
when the linear equation system method in fails (4.1.10), for example when A no longer
is quadratic. The extended method will hold for arbitrary number states K.

For K = 2 we can easily solve πt(ω) = (π1
t (ω), π2

t (ω)) in (4.1.10). From (4.1.11) with
J = 1 and K = 2 we conclude that the second constraint in (4.1.10) trivially implies that
π2

t (ω) = 1−π1
t (ω) for all t ≥ 0 so for K = 2 it is enough to study π1

t (ω). This fact inserted
in the first constraint of (4.1.10) in the case J = 1, K = 2 and using (4.1.9) in bt then
immediately renders the probability π1

t (ω) = π1
t (ω; θ, SM(t, T )) as

π1
t (ω) =

e
−

SM (t,t+5)

(1−φ)β
5 − e2e

Qλ51

e1eQλ51 − e2eQλ51
. (4.2.1)

We write π1
t (ω) = π1

t (ω; θ, SM(t, t + 5)) or alternatively π1
t (ω) = π1

t (ω; θ, β, φ, SM(t, t + 5))
to emphasize that π1

t (ω) is extracted from the market spread SM(t, t + 5), given the fixed
parameters θ, β and recovery φ. However, from now on we will for notational convenience
just write π1

t (ω) suppressing the dependence of SM(t, t + 5), θ, β and φ.
Before we state conditions implying that 0 ≤ π1

t (ω) ≤ 1, we need the following assump-
tion. Given λ(1) < λ(2) we assume that Q and λ(1) < λ(2) are chosen so that

E
[
e−

∫ t

0 λ(Xs)ds
∣∣∣X0 = 1

]
> E

[
e−

∫ t

0 λ(Xs)ds
∣∣∣X0 = 2

]
(4.2.2)
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for all 0 ≤ t ≤ 5. The condition (4.2.2) is intuitively clear for ”small” t and also independent
of the matrix Q and the size K of the state space as long as λ(1) < λ(2) < . . . , λ(K). To
see this, note that in view of Theorem A.1, Appendix A in Herbertsson & Frey (2012) we
have

E
[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = k
]

= eke
Qλt1 (4.2.3)

and recall that a first order approximation of the matrix eQλt is given by I + Qλt. Hence,
for ”small” t this implies

eke
Qλt1 ≈ ek (I + Qλt) 1 = 1 − λ(k)t (4.2.4)

because ek1 = 1 for every k and

ekQλ1 =
K∑

j=1

(Qλ)k,j =
K∑

j=1

Qk,j − (Iλ)k,k = −λ(k) since
K∑

j=1

Qk,j = 0

and Qλ = Q − Iλ where Iλ is a diagonal-matrix with (Iλ)k,k = λ(k). Hence, assuming

that t is ”small” enough and inserting (4.2.4) into (4.2.3) yields

E
[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = k
]
≈ 1 − λ(k)t. (4.2.5)

Thus, if λ(1) < λ(2) < . . . , λ(K) then (4.2.5) will for ”small” t imply that

E
[
e−

∫ t

0 λ(Xs)ds
∣∣∣X0 = 1

]
> . . . > E

[
e−

∫ t

0 λ(Xs)ds
∣∣∣X0 = 1

]
(4.2.6)

which motivates assumption (4.2.2) for any matrix Q and any size K of the state space,
as long as λ(1) < λ(2) < . . . , λ(K). However, as t becomes larger the relationship (4.2.6)
is no longer obvious since the first order approximation I + Qλt is not accurate enough.
Clearly, the region [0, 5] where (4.2.6) holds for 0 ≤ t ≤ 5 obviously depends on the matrix
Q. Hence, rather than stating explicit conditions for Q implying (4.2.2) for 0 ≤ t ≤ 5, we
therefore simply state that Q is chosen so that assumption (4.2.2) is true for all 0 ≤ t ≤ 5.
In the case K = 2 one can in fact prove that assumption (4.2.2) is true all t > 0 by using
so called coupling arguments, see e.g in Lindvall (2002). In Subsection 5.2 we graphically
display the difference ∆E1,2

t given by

∆E1,2
t = E

[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = 1
]
− E

[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = 2
]

(4.2.7)

for 0 ≤ t ≤ 10 with different parameters Q and λ obtained in different calibrations.
Note that condition (4.2.2) is equivalent with the condition that the quantity in (4.2.7) is
positive.

We can now give conditions implying that 0 ≤ π1
t (ω) ≤ 1 when K = 2 as stated in the

following lemma.

Lemma 4.1. Under assumption (4.2.2) and with notation as above, we have that

0 ≤ π1
t (ω) ≤ 1 if and only if − ln

(
e1e

Qλ51
)
≤ SM(t, t + 5)5

(1 − φ)β
≤ − ln

(
e2e

Qλ51
)
. (4.2.8)
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Furthermore, (4.2.8) will hold for all t ∈ t(s) if

− ln
(
e1e

Qλ51
)
≤ min

t∈t(s)

SM(t, t + 5)5

(1 − φ)β
and max

t∈t(s)

SM(t, t + 5)5

(1 − φ)β
≤ − ln

(
e2e

Qλ51
)
.

(4.2.9)

Proof. First, recall from (4.2.1) that

π1
t (ω) =

e−
SM (t,t+5)

(1−φ)β
5 − e2e

Qλ51

e1eQλ51 − e2eQλ51
. (4.2.10)

Since λ(1) < λ(2) by construction of the filtering model, then assumption (4.2.2) implies
that the denominator in (4.2.10) is positive. Hence, π1

t (ω) ≥ 0 if and only if the nominator
in (4.2.10) is positive, that is if

e−
SM (t,t+5)

(1−φ)β
5 ≥ e2e

Qλ51 or − ln
(
e2e

Qλ51
)
(1 − φ)β ≥ SM(t, t + 5)5 (4.2.11)

and this proves the upper equality in (4.2.8) since β > 0 and 0 < φ < 1 Next, from (4.2.10)
we see that π1

t (ω) ≤ 1 if and only if

e−
SM (t,t+5)

(1−φ)β
5 − e2e

Qλ51 ≤ e1e
Qλ51 − e2e

Qλ51

that is,

e−
SM (t,t+5)

(1−φ)β
5 ≤ e1e

Qλ51 or − ln
(
e1e

Qλt1
)
(1 − φ)β ≤ SM(t, t + 5)5 (4.2.12)

and this proves the lower equality in (4.2.8). Finally, since the equalities in (4.2.11) and
(4.2.12) holds for all time points, they will also hold for max and min over the sample time
point set t(s) , which proves that (4.2.9) implies (4.2.8). �

It is interesting to note that for fixed parameters θ = (Q, λ), φ and given a historical
time-series trajectory {SM(t, t+5)}t∈t(s) of the 5-year market CDS index spreads observed

at N (s) sample time points t(s) = {t(s)1 , . . . , t
(s)

N(s)}, then (4.2.9) implies upper and lower
bounds for the parameter β given by

max
t∈t(s)

SM(t, t + 5)5

(φ − 1) ln (e2eQλ51)
≤ β ≤ min

t∈t(s)

SM(t, t + 5)5

(φ − 1) ln (e1eQλ51)
(4.2.13)

where we remind the reader that ln
(
e2e

Qλ51
)

< 0 and 0 < φ < 1.
In Subsection 5.2 we present some numerical examples with real market data that il-

lustrates the use of Lemma 4.1 and condition (4.2.2) via (4.2.7) as well as other related
issues.

The constraints for the filtering probabilities in Lemma 4.1 was presented for the case
with two states. When there are more than two states we can still find constraints guar-
anteing that πk

t (ω) ∈ [0, 1] for every state k = 1, . . . , K where K > 2. In particular, when
K > 2 we need to use K−1 other market CDS index observations (i.e. more maturities on
the CDS index) so that A is quadratic making the linear system Aπ⊤

t (ω) = bt in (4.1.10)
solvable. However, it is likely that the conditions for πk

t (ω) ∈ [0, 1] will be much more in-
volved compared with the case K = 2. Furthermore, for larger K we may not find enough
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market instruments and thus A may no longer be quadratic. An alternative approach to
find πt(ω) which simultaneously makes πk

t (ω) ∈ [0, 1] for all k and which works for any
size K of the state space, is to solve the following quadratic programming problem

min
πt

∥∥Aπ⊤
t − bt

∥∥2

subject to

πt1 = 1

0 ≤ πk
t ≤ 1 for k = 1, . . . , K

(4.2.14)

where ‖·‖ is the standard Euclidian norm in RK . Thus, (4.2.14) can then be reformulated
on the equivalently form

min
πt

(
πtA

⊤Aπ⊤
t − 2b⊤

t Aπ⊤
t

)

subject to

πt1 = 1

0 ≤ πk
t ≤ 1 for k = 1, . . . , K.

(4.2.15)

Solvers for quadratic programming problems (QP-problems) such as (4.2.15) are imple-
mented in most standard math-software packages. Furthermore, the QP-problem (4.2.15)
have a unique solution for πt and the probabilistic constraints are automatically fulfilled.

4.3. Step 2: Discretizing the Kushner-Stratonovic SDE. In this subsection we con-
sider the discrete version of the Kushner-Stratonovic SDE. Our outline is done for a general
formula of the noise mapping a(·) and is thus not restricted to the form in Equation (4.1.13).

From (4.2.1) in Subsection 4.2 we conclude that for a fixed t, the quantity π1
t can be

seen as a function of SM(t, t + 5), β, φ and θ = (λ, Q). However, π1
t (ω) must also satisfy

the Kushner-Stratonovic equation stated in (3.7), that is, the following SDE

dπ1
t = γ1(πt)dNt + πt

(
Qe⊤

1 − γ1(πt)λ
⊤ (m − Nt)

)
dt + α1(πt)dµt (4.3.1)

where µt is a Brownian motion with respect to the filtration FM
t and where we have

assumed only one source of randomness in the noise that creates the noisy signal Zt, given
by (2.2.1). Furthermore, γ1(πt) and α1(πt) are given in (3.8), that is

γ1(πt) = π1
t

(
λ1

π1
t λ1 + (1 − π1

t )λ2

− 1

)
=

π1
t (π

1
t − 1) (λ1 − λ2)

π1
t λ1 + (1 − π1

t )λ2

(4.3.2)

and

α1(πt) = π1
t

(
a1 − π1

t a1 − (1 − π1
t )a2

)
= π1

t

(
1 − π1

t

)
(a1 − a2) (4.3.3)

where we have used the fact that π2
t = 1 − π1

t . Further, we let ak = a(k) and λk = λ(k)
for k = 1, 2.
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We now consider a discrete version of the Kushner-Stratonovic SDE (4.3.1) on the mesh

t
(s)
1 , t

(s)
2 , . . . , t

(s)

N(s) where, t
(s)
n = n∆t which give raise to the following discrete SDE

∆π̃1

t
(s)
n

= γ1(π̃
t
(s)
n

)∆N
t
(s)
n

+π̃
t
(s)
n

(
Qe⊤

1 − γ1(π̃
t
(s)
n

)λ⊤ (m − Nt)
)

∆t+α1(π̃
t
(s)
n

)∆µ
t
(s)
n

(4.3.4)

where π̃1
t is the solution to (4.3.4) and ∆π̃1

t
(s)
n

, ∆N
t
(s)
n

, ∆µ
t
(s)
n

are given by

∆π̃1

t
(s)
n

= π̃1

t
(s)
n+1

− π̃1

t
(s)
n

, ∆N
t
(s)
n

= N
t
(s)
n+1

− N
t
(s)
n

, and ∆µ
t
(s)
n

= µ
t
(s)
n+1

− µ
t
(s)
n

and π̃t = (π̃1
t , π̃

2
t ). Next we use ”financial engineering” and approximate the solution π̃1

t

in (4.3.4) with the solution π1
t to the SDE (4.3.1). Thus, replacing π̃1

t with π1
t in (4.3.4)

yields

∆π1

t
(s)
n

= γ1(π
t
(s)
n

)∆N
t
(s)
n

+π
t
(s)
n

(
Qe⊤

1 − γ1(π
t
(s)
n

)λ⊤ (m − Nt)
)

∆t+α1(π
t
(s)
n

)∆µ
t
(s)
n

(4.3.5)

where ∆π1

t
(s)
n

= π1

t
(s)
n+1

− π1

t
(s)
n

.

If there has been no defaults in the portfolio that constitute the market times series data

during the sampling period [t
(s)
1 , t

(s)

N(s)] then Nt = 0 for all t ∈ [t
(s)
1 , t

(s)

N(s)] and consequently

∆Nt = 0 for all t ∈ [t
(s)
1 , t

(s)

N(s)] where we start our counting-process Nt at t
(s)
1 . Up to the

writing moment there has been no defaults of a entity in a on-the-run series of iTraxx
Europe, which is the series that we consider in this paper. Hence, we will therefore set

∆N
t
(s)
n

= 0 and N
t
(s)
n

= 0 for all t
(s)
n in Equation (4.3.5). Thus, instead of (4.3.5), we will

from now on consider the following discrete SDE

∆π1

t
(s)
n

= π
t
(s)
n

(
Qe⊤

1 − γ1(π
t
(s)
n

)λ⊤m
)

∆t + α1(π
t
(s)
n

)∆µ
t
(s)
n

. (4.3.6)

Before deriving the likelihood function for the parameters θ, we will for notational con-

venience introduce some further notation. First, the CDS index spreads SM(t
(s)
n , t

(s)
n + 5)

sampled at t
(s)
n will be denoted by xn, that is,

xn = SM(t(s)n , t(s)n + 5). (4.3.7)

Further, since π1

t
(s)
n

is extracted from the market spread xn via (4.2.1) using the fixed

parameters θ = (Q, λ), the quantities π1

t
(s)
n

, π
t
(s)
n

and ∆π1

t
(s)
n

can be seen as functions of

the ”pair” (θ, xn) and will therefore for notational be denoted by π1 (θ, xn) , π (θ, xn) and
∆πn,1 (θ, xn), that is

π1 (θ, xn) = π1

t
(s)
n

, π (θ, xn) = π
t
(s)
n

and ∆πn,1 (θ, xn) = ∆π1

t
(s)
n

(4.3.8)

where ∆πn,1 (θ, xn) = π1 (θ, xn+1) − π1 (θ, xn). In the same spirit we let g (θ, xn) and
α (θ, xn) denote

g (θ, xn) = π
t
(s)
n

(
Qe⊤

1 − γ1(π
t
(s)
n

)λ⊤m
)

and α (θ, xn) = α1(π
t
(s)
n

) (4.3.9)
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16 ALEXANDER HERBERTSSON AND RÜDIGER FREY

where α1(πt) is given by (4.3.3), that is α1(πt) = π1
t (1 − π1

t ) (a1 − a2). Hence, (4.3.7),
(4.3.8) and (4.3.9) allows us to rewrite the discrete SDE (4.3.6) as

∆πn,1 (θ, xn) = g (θ, xn)∆t + α (θ, xn) ∆µ
t
(s)
n

(4.3.10)

where for a fixed θ the sequence {π1 (θ, xn)}N(s)

n=1 is extracted via (4.2.1) using the ob-

served trajectory of market spreads {xn}N(s)

n=1 of the CDS index, sampled at the time points

{t(s)n }N(s)

n=1 .

4.4. Step 3: Deriving the likelihood function and first order conditions. In this
subsection we use the results from Subsection 4.2 and 4.3 to derive a computationally
tractable expression for the likelihood function L of the parameters θ = (Q, λ, c), as well
as an analytical first-order condition for the variable c.

First, by construction recall that for a small time interval [t, t+∆t] the incremental noise
∆µt defined as ∆µt = µt+∆t −µt will be normally distributed with zero mean and variance

∆t, that is ∆µt ∼ N (0, ∆t). Inspired by this, and the fact that the mesh points {t(s)n }N(s)

n=1

are given by t
(s)
n = n∆t where ∆t is chosen to be small enough (one trading day), we then

conclude that the right hand side in (4.3.10) is approximately normally distributed with
mean g (θ, xn) ∆t and variance α (θ, xn)2 ∆t, that is

g (θ, xn)∆t + α (θ, xn) ∆µ
t
(s)
n

∼ N
(
g (θ, xn) ∆t, α (θ, xn)2 ∆t

)
. (4.4.1)

Furthermore, the random increments {g (θ, xn)∆t + α (θ, xn)∆µ
t
(s)
n
}N(s)

n=1 are independent

since µt is a Brownian motion. Given the extracted sequences {∆πn,1 (θ, xn)}N(s)

n=1 which
thus is a realization of the random variables defined in (4.4.1), we can then write our
likelihood function L (θ|x1, x2, . . . , xN(s)) as

L (θ|x1, . . . , xN(s)) =

N(s)∏

n=1

1√
2πα (θ, xn)2 ∆t

exp

(
−(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

2α (θ, xn)2 ∆t

)
.

(4.4.2)

The optimal estimation θ̂ obtained from (4.4.2) is preserved when considering the log-
likelihood function ℓ (θ|x1, . . . , xN(s)) defined as ℓ (θ|x1, . . . , xN(s)) = lnL (θ|x1, . . . , xN(s)).
By taking the logarithm of (4.4.2) we get

ℓ (θ|x1, . . . , xN(s)) = −N (s) ln(2π∆t)

2
−

N(s)∑

n=1

(

ln |α (θ, xn)| + (∆πn,1 (θ, xn) − g (θ, xn)∆t)2

2α (θ, xn)2 ∆t

)

.

(4.4.3)
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PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 17

Furthermore, recalling the notation of α (θ, xn) in (4.3.9) together with (4.3.3) then implies
that α1(πt) = π1 (θ, xn) (1 − π1 (θ, xn)) (a1 − a2) which in (4.4.3) renders

ℓ (θ|x1, . . . , xN(s)) = − N (s) ln(2π∆t)

2
−

N(s)∑

n=1

ln
∣∣π1 (θ, xn)

(
1 − π1 (θ, xn)

)∣∣− N (s) ln |a1 − a2|

− 1

(a1 − a2)
2

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

2 [π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t
.

(4.4.4)

So our maximum likelihood estimator θ̂MLE will then be given by argmaxθ ℓ (θ|x1, . . . , xN(s))
where ℓ (θ|x1, . . . , xN(s)) is defined by (4.4.4). Observe that this is a maximization problem,
but we can without loss of generally instead consider the minimization problem

θ̂MLE = argmin
θ

ℓ̂ (θ|x1, . . . , xN(s)) (4.4.5)

where ℓ̂ (θ|x1, . . . , xN(s)) is given by

ℓ̂ (θ|x1, . . . , xN(s)) = N (s) ln |a1 − a2| +
N(s)∑

n=1

ln
∣∣π1 (θ, xn)

(
1 − π1 (θ, xn)

)∣∣

+
1

(a1 − a2)
2

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

2 [π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t
.

(4.4.6)

Note that the term N (s) ln(2π∆t)
2

have been ignored in (4.4.6) since it do not affect the

optimization routine when finding the parameters θ̂MLE. Before we continue, we remind
the reader that in view of (4.1.13) we use the parameterizations ak = c lnλk for k = 1, 2.

This parametrization implies that we can rewrite ℓ̂ (θ|x1, . . . , xN(s)) as

ℓ̂ (θ|x1, . . . , xN(s)) = N (s)

(
ln c + ln

∣∣∣∣ln
λ1

λ2

∣∣∣∣

)
+

N(s)∑

n=1

ln
∣∣π1 (θ, xn)

(
1 − π1 (θ, xn)

)∣∣

+
1

c2
(
ln λ1

λ2

)2

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn)∆t)2

2 [π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t

(4.4.7)

The MLE-estimation in (4.4.5) is a minimization problem, and to this setup we can

therefore impose the necessary first order conditions that must hold for θ = θ̂MLE, viz.

∂ℓ̂ (θ|x)

∂θi

= 0 for all θi ∈ θ (4.4.8)

where we for notational convenience let x denote x = (x1, . . . , xN(s)). We want to find
these first order conditions explicitly for some of our parameters θ = (Q, λ, c). Let us
consider the MLE-estimation ĉ of c. First note that for fixed Q and λ the parameter
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18 ALEXANDER HERBERTSSON AND RÜDIGER FREY

c does not enter in the expression (4.2.1) which (with the notation in (4.3.7)- (4.3.8)) is

used to extract the the sequence {π1 (θ, xn)}N(s)

n=1 from the observed trajectory of market

spreads {xn}N(s)

n=1 of the CDS index sampled at the time points {t(s)n }N(s)

n=1 . Neither does c
emerge in the expression of g (θ, xn) in (4.3.9). Hence, using these observations in (4.4.7)
we immediately get

∂ℓ̂ (θ|x)

∂c
= N (s) 1

c
− 2

c3
(
ln λ1

λ2

)2

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

2 [π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t
(4.4.9)

which together with condition (4.4.8), some rearranging and replacing c with ĉ implies that
the MLE-estimation ĉ in our method must satisfy

ĉ = ± 1∣∣∣ln λ1

λ2

∣∣∣

√√√√ 1

N (s)

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

[π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t
. (4.4.10)

Since we only consider positive values of ĉ, the negative version in (4.4.10) can be disre-
garded. Note that the ĉ in (4.4.10) can be seen as a function of the parameters Q and λ,
that is ĉ = ĉ (Q, λ) where the mapping ĉ (Q, λ) thus is positive version of the right hand
side of (4.4.10). The expression in (4.4.10) is useful if we would like to estimate c in our
model for fixed values of Q and λ since no numerical optimization routines is needed. To
see this, note that ℓ̂ (c|x) is strictly convex in c if and only if

∂2ℓ̂ (c|x)

∂2c
> 0 (4.4.11)

so differentiation the right hand side in (4.4.9) with respect to c and inserting into (4.4.11)

renders that ℓ̂ (c|x) is strictly convex in c if and only if

c <

√
3∣∣∣ln λ1

λ2

∣∣∣

√√√√ 1

N (s)

N(s)∑

n=1

(∆πn,1 (θ, xn) − g (θ, xn) ∆t)2

[π1 (θ, xn) (1 − π1 (θ, xn))]2 ∆t
(4.4.12)

where we have assumed a positive c. Hence, since
√

3 > 1, we see that choosing a positive ĉ
in (4.4.10) will always yield the optimal maximum likelihood estimation ĉ of the parameter
c. Above all, no numerical optimization routine is needed to find the MLE-calibrated ĉ
in the case when Q and λ are given. In Section 5 we will perform an MLE estimation
of the parameters θ = (Q, λ, c) when K = 2 by numerically solving the minimization

routine in (4.4.5) with ℓ̂ (θ|x1, . . . , xN(s)) given by (4.4.7). In this approach we thus obtain
the MLE-estimation ĉ of c without using the explicit formula (4.4.10) but rather with a

numerical minimization method jointly with the parameters of Q̂ and λ̂. However, after
inserting the MLE estimators Q̂ and λ̂ into the formula in the right hand side of (4.4.10)
we observe that the obtained estimate ĉfc (with the subscript ”fc” denoting the first order
condition) of c coincides with the corresponding MLE-estimate ĉ of c obtained via the
numerical minimization method of (4.4.7). For more on this see in Subsection 5.1.
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PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 19

The likelihood expression ℓ̂ (θ|x) in (4.4.7) is a highly nonlinear function of the parame-
ters λ = (λ1, λ2) and q12, q21 (recall that q12, q21 describes the generator Q). Thus, it seems
difficult to use the first order conditions in order to find analytical closed-form solutions for
MLE-estimators of the parameters λ = (λ1, λ2) and q12, q21. Instead we resort to numerical
optimization routines when solving the minimization problem (4.4.5) for MLE-estimators
of these parameters. For more on this see in Subsection 5.1.

4.5. Other estimation methods. In this subsection we give a brief discussion of related
maximum-likelihood estimations for nonlinear filtering credit models and other credit mod-
els described in some recent academic papers.

One can estimate the parameters θ = (Q, λ, c) in several different ways. In Frey &
Schmidt (2012) the authors calibrate the parameter c by using the quadratic variation of
the diffusion part of the index spread dynamics. Just as in our method, Frey & Schmidt
(2012) observe that there were no defaults within the iTraxx Europe in their observation
period for the time series, so the empirical quadratic variation of the index spreads is an
estimate of the continuous part of the quadratic variation on the same index spread. They
find a value of c = 0.42 for the 2009 data and c = 0.71 for 2006 data, see p.127 in Frey
& Schmidt (2012). As will be seen in in Section 5, our MLE-estimation ĉ obtained with
the algorithm in Section 4 is in the same order as the corresponding estimation of c in the
2009 data case computed in Frey & Schmidt (2012).

The idea of using maximum likelihood (MLE) techniques under the risk neutral measure
in credit risk modelling is not new. For example, in Hurd & Zhou (2011) the authors
utilities MLE techniques together with CDS market time series data but in a structural
credit risk model with noisy information. Furthermore, in Azizpour, Giesecke & Kim
(2011) the authors uses MLE techniques with CDS index market data to find parameters
in a self-exciting intensity based model under the risk neutral measure.

5. Numerical studies

In this section we perform the estimation and other numerical studies. First, in Subsec-
tion 5.1 we estimate the parameters for a homogeneous credit portfolio representing a CDS
index by using real market data from the iTraxx Europe series sampled in the period No-
vember 2007 to June 2012. In this process we utilize the calibration algorithm presented in
Section 4. Then, in Subsection 5.2 we perform some statistical and numerical observations
in our estimated model.

5.1. Parameter estimation. In this subsection we estimate the parameters for a homo-
geneous credit portfolio representing an index CDS by using real market data from the
iTraxx Europe series. This is done with the method presented in Section 4.

Our data set consist of the iTraxx Europe on-the-run series sampled in the period No-
vember 2007 to June 2012 (1169 sample points), collected from Reuters CreditViews. In
the data set the observations are sampled daily so ∆t = 1/250. The number of obligors
representing the portfolio are m = 125 and we set the individual recovery rate to φ = 40%.
Furthermore, we also assume that the parameter β is exogenously given by β = 3.
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20 ALEXANDER HERBERTSSON AND RÜDIGER FREY

Our time series did not contain any defaults. With this time series we perform three
different estimations of the parameters, using three different periods; these are November
2007 to February 2010 (596 sample points), March 2010 to June 2012 (573 sample points),
and finally for the whole period November 2007 to June 2012 (1169 sample points). The
period November 2007 to February 2010 (see upper plot in Figure 2) contains the turbulent
credit crises emerged from the US subprime crises, then propagating through the Bear
Sterns bailout in March 2008, the default of Lehman Brother in September 2008 as well as
the following period of turmoil on the financial markets late 2008 and spring 2009 in US,
Europe and the rest of the world. In late 2009/early 2010 this financial crises started to
spill-over into a sovereign debt crises for several European countries (the PIIGS countries)
belonging to the EURO-area. This motivates the separate estimation for the period March
2010 to June 2012 (see lower plot in Figure 2). Finally, we also perform an estimation of
the parameters on the whole period November 2007 to June 2012.
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Figure 2. The five-year iTraxx Europe on the run series for November 2007 to
February 2010 (top) and March 2010 to June 2012 (bottom).

Recall that we estimate the parameters θ = (Q, λ, c) assuming the underlying factor
process has two states, i.e. K = 2. Thus, we have λ = (λ1, λ2) and q12, q21 are the
two transition intensities describing the generator Q for K = 2, so we can rewrite θ as
θ = (q12, q21, λ1, λ2, c). The minimization problem (4.4.5) with ℓ̂ (θ|x1, . . . , xN(s)) given by

Page 20 of 28

URL: http://mc.manuscriptcentral.com/lsta E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics ? Theory and Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

PARAMETER ESTIMATION IN CREDIT MODELS UNDER INCOMPLETE INFORMATION 21

(4.4.7) is accompanied with constraints for the parameters θ = (q12, q21, λ1, λ2, c). Obvi-
ously all parameters in θ should be nonnegative. Furthermore, in order to make sure that
assumption (4.2.2) holds so Lemma 4.1 can be invoked guaranteing that 0 ≤ π1

t (ω) ≤ 1
for all time points t in our sample set, we have to find both upper and lower bounds for
the parameters θ = (q12, q21, λ1, λ2, c) given the fixed parameter β = 3. This is something
which have to be checked ”manually” for the given data set at hand and in our case we use
the following upper bounds for λ1, λ2; λ1 < 0.004 and λ2 < 0.09. Similarly, we put lower
bounds for q12, q21 given by q12 > 0.002 and q21 > 0.004. Equipped with these constraints
we solve (4.4.5) using the matlab-routine fmincon and the results are displayed in Table
1.

Table 1. MLE estimators θMLE, that is q̂12, q̂21, λ̂1, λ̂2, ĉ for three different data
sets. The last column is the estimate of c using (4.4.10) with input

parameters q̂12, q̂21, λ̂1, λ̂2.

Time period q̂12 q̂21 λ̂1 λ̂2 ĉ ĉfc

Nov 2007 - Feb 2010 0.002 0.004 0.001 0.09 0.3095 0.3095
Mar 2010 - Jun 2012 0.0118 0.004 0.001 0.09 0.32 0.32
Nov 2007 - Jun 2012 0.002 0.004 0.001 0.09 0.2753 0.2753

As can bee seen in Table 1, the two MLE-estimates q̂12, q̂21 hit their lower bounds except
in one case, and by increasing these bounds the same thing happens again. It is interesting
to note that when we solving (4.4.5) with e.g. λ1 fixed, the obtained q̂12, q̂21 will no
longer hit their lower bounds. We have not been able to find a good explanation of this
phenomena. Furthermore, λ2 reaches the upper bound for all three data sets.

After the calibration we use the estimated parameters q̂12, q̂21, λ̂1, λ̂2 to compute an
alternative estimate of c via Equation (4.4.10) and this value ĉfc coincide with the MLE
estimate ĉ for all three data sets, see in the last column in Table 1. The fact that ĉ = ĉfc

lends some confidence to the correctness of our implementation of the algorithm presented
in Section 4 and Equation (4.4.5). However this observation is of course not a proof that
our numerical implementation is correct.

5.2. Some statistical and numerical observations. In this subsection we perform
some statistical observations on the data used in the previous subsection.

After finding the MLE-estimation θ̂MLE of the parameters θ = (q12, q21, λ1, λ2, c) we can
check the ”quality” of our calibration, as follows. Let Gn be the right hand side in the
discretized KS-SDE given by (4.4.1), i.e.

Gn = g (θ, xn) ∆t + α1 (θ, xn)∆µ
t
(s)
n

and define Hn as

Hn =
Gn − g (θ, xn)∆t

α1 (θ, xn)
√

∆t
. (5.2.1)
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Hence, given the observed trajectory of market spreads {xn}N(s)

n=1 of the CDS index, sampled

at the time points {t(s)n }N(s)

n=1 , then if our model is describing the market dynamics realisti-

cally and if the parameters θ are properly estimated, the random vector {Hn}N(s)

n=1 should
be an i.i.d sequence where Hn are standard normal random variables, that is Hn ∼ N (0, 1).

Thus, replacing θ with θMLE in (5.2.1) as well as changing Gn to the corresponding
observation ∆πn,1 (θMLE, xn) in (5.2.1), we can then define the ”calibrated implied noise”
as hn(θMLE, xn)

hn(θMLE, xn) =
∆πn,1 (θMLE, xn) − g (θMLE, xn) ∆t

α1 (θMLE, xn)
√

∆t
. (5.2.2)

Figure 3 displays the ”estimated implied noise” hn(θMLE, xn) for the two periods November
2007 to February 2010 (top) and March 2010 to June 2012 (bottom) using the correspond-
ing θMLE parameters in Table 1. If our model is describing the market dynamics realistically
the sequence {hn(θMLE, xn)}N(s)

n=1 should be a realization of the i.i.d sequence {Hn}N(s)

n=1 that
is, an i.i.d sequence of standard normal random variables with mean η̂ = 0 and standard
deviation σ̂ = 0.
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Figure 3. The calibrated implied noise computed with (5.2.2) for November 2007
to February 2010 (top) and March 2010 to June 2012 (bottom).
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Table 2. Point estimators η̂ and σ̂ for the sample {hn(θMLE, xn)}N(s)

n=1 as well as
the corresponding 95% confidence intervals.

Time period η̂ σ̂
Nov 2007 - Feb 2010 0.5822 [0.5167,0.6477] 0.8137 [0.77,0.8628]
Mar 2010 - Jun 2012 0.5298 [0.4601,0.5996] 0.8488 [0.8023,0.9011]
Nov 2007 - Jun 2012 0.6271 [0.5824,0.6719] 0.7792 [0.7489,0.8122]

In view of this observation we can now compute both a point estimate and a confidence
interval estimate of the sample mean η̂MLE and sample standard deviation σ̂MLE for the

sample {hn(θMLE, xn)}N(s)

n=1 . Recall that this data set is obtained via (5.2.2) after we have
performed our MLE-estimation of θMLE. We use the matlab function normfit to compute

the sample mean η̂ and sample standard deviation σ̂ the data set {hn(θMLE, xn)}N(s)

n=1 as
well as the accompanying 95% confidence intervals. If our model assumptions are correct,
the estimate η̂ should be approximately zero and σ̂ should be around one, but as seen in
Table 2 there is a deviation from these values.
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Figure 4. Q-Q plots for the ”calibrated implied” noise computed with (5.2.2) for
November 2007 to February 2010 (left) and March 2010 to June 2012
(right).

The Q-Q plots in Figure 4 for the two data set in Figure 3 shows that the lines formed
by the empirical quantiles do not cross through origo (0, 0) and do not have a slope of
rate 1. Furthermore, as seen in Figure 5, a plot of the empirical cumulative distribution
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function (CDF) displays a deviation from the CDF of a standard normal random variable
for both data sets. It is difficult to point out the exact reasons for the deviations in Table
2, Figure 4 and Figure 5, and this will be an issue for future research.
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Figure 5. Empirical CDF plots for the ”calibrated implied” for data set of No-
vember 2007 to February 2010 (left) and March 2010 to June 2012
(right). The dashed curve is the CDF of a standard normal.

Finally, before we end this sections we present some numerical examples with real market
data that illustrates the correctness of assumption (4.2.2) and validity of Lemma 4.1 for
our estimated model.

Recall from Equation (4.2.13) following Lemma 4.1 that under assumption (4.2.2) then
0 ≤ π1

t (ω) ≤ 1 if and only if

max
t∈t(s)

SM(t, t + 5)5

(φ − 1) ln (e2eQλ51)
≤ β ≤ min

t∈t(s)

SM(t, t + 5)5

(φ − 1) ln (e1eQλ51)
(5.2.3)

Table 3 displays the upper and lower bounds for β in (5.2.3) using the three data sets
November 2007 to February 2010, March 2010 to June 2012 and November 2007 to June
2012. From Table 3 we clearly see that β = 3 lies in the corresponding intervals for all
three data sets.
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Table 3. The upper and lower bounds for the parameter β computed with (5.2.3)
using the parameters θMLE in Table 1

Time period lower bound upper bound
Nov 2007 - Feb 2010 0.4024 3.488
Mar 2010 - Jun 2012 0.3891 3.698
Nov 2007 - Jun 2012 0.4024 3.488

Furthermore, Figure 6 and 7 demonstrate that 0 ≤ π1
t (ω) ≤ 1 is true with the calibrated

parameters θMLE in Table 1 for the two data sets November 2007 to February 2010 and
March 2010 to June 2012. Figure 6 and 7 also displays the calibrated 5-year default
probability computed with Equation (3.9) in Theorem 3.3.
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Figure 6. The five-year iTraxx Europe on the run series in November 2007 to Feb-
ruary 2010 (top) and the corresponding filtering probability π1

t (mid-
dle) and the five-year default probability P

[
τi < t + 5 | FM

t

]
(bottom)

both computed with the parameters θMLE in Table 1

Page 25 of 28

URL: http://mc.manuscriptcentral.com/lsta E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics ? Theory and Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

26 ALEXANDER HERBERTSSON AND RÜDIGER FREY
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Figure 7. The five-year iTraxx Europe on the run series in March 2010 to June
2012 (top) and the corresponding filtering probability π1

t (middle)
and the five-year default probability P

[
τi < t + 5 | FM

t

]
(bottom) both

computed with the parameters θMLE in Table 1

Finally, using the same parameters θMLE, in Figure 8 we also plot the quantity (4.2.7),
that is

∆E1,2
t = E

[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = 1
]
− E

[
e−

∫ t

0
λ(Xs)ds

∣∣∣X0 = 2
]

for 0 ≤ t ≤ 10 and see that this quantity positive in the period 0 ≤ t ≤ 10. Consequently,
assumption (4.2.2) will therefore also be true in the period 0 ≤ t ≤ 10 which was necessary
condition for Lemma 4.1 to be true. In fact, since our index CDS data had maturity 5
year it is enough for (4.2.7) to hold in the interval 0 ≤ t ≤ 5
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Figure 8. The quantity (4.2.7), computed in the period 0 ≤ t ≤ 10 with the
parameters θMLE in Table 1 for the two data sets November 2007 to
February 2010 and March 2010 to June 2012.
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