Some properties of the Gaussian Scale mixtures prior for Sparse models

Brown Bag Seminar WU

May 2017

J-B. Salomond

Université Paris-Est Créteil

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

Contents

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

Consider the well known Gaussian sequence model

$$X_i = \theta_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, 1), \ i = 1, \dots, n$$

and assume that the parameter $\theta = (\theta_1, \dots, \theta_n)$ is nearly black

$$p_n = \#\{i, \theta_i \neq 0\} = o(n)$$

Consider the well known Gaussian sequence model

$$X_i = \theta_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, 1), \ i = 1, \dots, n$$

and assume that the parameter $\theta = (\theta_1, \ldots, \theta_n)$ is nearly black

$$p_n = \#\{i, \theta_i \neq 0\} = o(n)$$

Applications

Applications for this models are numerous

Function estimation using wavelets

Consider the well known Gaussian sequence model

$$X_i = \theta_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, 1), \ i = 1, \dots, n$$

and assume that the parameter $\theta = (\theta_1, \ldots, \theta_n)$ is nearly black

$$p_n = \#\{i, \theta_i \neq 0\} = o(n)$$

Applications

Applications for this models are numerous

- Function estimation using wavelets
- It is also a good way to study the behaviour of more complex sparse models

A wide variety of both frequentist and Bayesian estimator have been proposed in the literature.

A wide variety of both frequentist and Bayesian estimator have been proposed in the literature.

Bayesian framework

In a Bayesian framework, the sparsity is induced through the prior (equivalent of the penalty term).

A wide variety of both frequentist and Bayesian estimator have been proposed in the literature.

Bayesian framework

In a Bayesian framework, the sparsity is induced through the prior (equivalent of the penalty term).

A first approach proposed in the literature is the two components model Spike and Slab

$$heta_i \sim \lambda_i \delta_0 + (1-\lambda_i) \pi_1$$

where π_1 has some heavy tails properties.

Prior - Normal scale mixture

Normal scale mixture

Consider a product prior on $\theta = (\theta_1, \ldots, \theta_n)$

 $\sigma_i^2 \sim \pi$ $heta_i \sim \mathcal{N}(0, \sigma_i^2)$

Prior - Normal scale mixture

Normal scale mixture

Consider a product prior on $\theta = (\theta_1, \ldots, \theta_n)$

$$egin{aligned} &\sigma_i^2 \sim \pi \ & heta_i \sim \mathcal{N}(0,\sigma_i^2) \end{aligned}$$

Examples of such priors :

- Horseshoe (Carvalho et al., 2010; van der Pas et al., 2014)
- Normal-Gamma (Caron and Doucet, 2008)
- Global-local scale mixtures (Ghosh and Chakrabarti, 2015)
- Spike and Slab Lasso (Ročková, 2015)

► ...

We are interested in the asymptotic properties of the posterior distribution and simultaneous testing procedures.

Questions

For the Normal scale mixture class of priors

$$p(\theta_i) = \int_{\mathbb{R}^+} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\theta_i^2}{2\sigma^2}} \pi(\sigma^2) d\sigma^2$$

what are the conditions on π such that our procedures have optimal asymptotic properties ?

We are interested in the asymptotic properties of the posterior distribution and simultaneous testing procedures.

Questions

For the Normal scale mixture class of priors

$$p(\theta_i) = \int_{\mathbb{R}^+} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\theta_i^2}{2\sigma^2}} \pi(\sigma^2) d\sigma^2$$

what are the conditions on π such that our procedures have optimal asymptotic properties ?

Qualitative answer :

- A lot of mass in a neighbourhood of 0 shrinkage effect
- Heavy tails counteract the shrinkage for large θ_i

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

Regular varying functions at infinity

We say that *L* is uniformly regular varying at infinity if there exist R, $u_0 > 1$ such that

$$\frac{1}{R} \leq \frac{L(au)}{L(u)} \leq R, \quad \forall a \in [1, 2], \quad u > u_0$$

- Some examples : u^b , $\log^b(u)$
- Not uniformly varying : e^{au}

Non-zeros coefficients II

Condition 1

For some $b \ge 0$, $\pi(u) = L_n(u)e^{-bu}$ where L_n is uniformly regularly varying at 0, and

$$\pi(u)\gtrsim \left(rac{p_n}{n}
ight)^K e^{-b'u}, \quad \forall u>u_*$$

This condition assure the recovery of non-zeros coefficients

- The tails of π can decay exponentially fast
- The dependence on *n* of the prior should behave roughly as a power of p_n/n

Non-zeros coefficients III

Often practitioners are considering the following prior model

$$egin{split} artheta & |\sigma^2, au^2 \sim \mathcal{N}(0, au^2 \sigma^2) \ & \sigma^2 \sim \pi' \end{split}$$

and τ is an hyper-parameter. In this case the following condition implies condition 1

Condition 1'

 π' is an uniformly regularly varying function and $au = (p_n/n)^K$

A first condition to recover the 0 coefficients is

Condition 2

For some constant
$$c > 0$$
 we have $\int_0^1 \pi(u) du \ge c$

We need sufficient mass around 0

- This condition will induce a shrinkage of the posterior
- Form a modelling point of view, it makes sense since we assume that most of the coefficients are 0

A more surprising condition is the following

Condition 3

Let $s_n = \frac{p_n}{n} \sqrt{\log(n/p_n)}$ and let $b_n = \sqrt{\log(n/p_n)}$ then there exists C > 0 such that

$$\int_{s_n}^\infty \left(u \wedge rac{b_n^3}{\sqrt{u}}
ight) \pi(u) du + b_n \int_1^{b_n^2} rac{\pi(u)}{\sqrt{u}} du \leq C s_n$$

Details

▶ A fair part of the mass is in [0, *s_n*]

A more surprising condition is the following

Condition 3

Let $s_n = \frac{p_n}{n} \sqrt{\log(n/p_n)}$ and let $b_n = \sqrt{\log(n/p_n)}$ then there exists C > 0 such that

$$\int_{s_n}^{\infty} \left(u \wedge rac{b_n^3}{\sqrt{u}}
ight) \pi(u) du + b_n \int_1^{b_n^2} rac{\pi(u)}{\sqrt{u}} du \leq C s_n$$

Details

- A fair part of the mass is in $[0, s_n]$
- π decays sufficiently fast outside $[0, s_n]$

Under the assumption that $p_n = o(n)$ the following two conditions implies conditions 2 and 3

Condition A

There exists C such that

$$\pi(u) \leq rac{C}{u^{3/2}} rac{p_n}{n} \sqrt{\log(p_n/n)}, \quad \forall u > s_n$$

$Condition \ B$

There exists C such that

$$\int_{s_n}^{\infty} \pi(u) \leq \frac{Cp_n}{n}$$

Non-Zero Coefficients

Under condition 1

$$\sup_{\theta_0 \in I_0(p_n)} \Pi\left(\sum_{i,\theta_{0,i} \neq 0} (\theta_i - \theta_{0,i})^2 > M_n p_n \log(n/p_n) | \mathbf{X}^n\right) \to 0$$

and

$$\sup_{\theta_0 \in I_0(p_n)} \sum_{i,\theta_{0,i} \neq 0} \mathbb{E}_0^n (\hat{\theta}_i - \theta_{0,i})^2 \lesssim p_n \log(n/p_n)$$

Zero Coefficients

Under condition 2 and 3 $\,$

$$\sup_{\theta_0 \in I_0(p_n)} \Pi\left(\sum_{i,\theta_{0,i}=0} (\theta_i - \theta_{0,i})^2 > M_n p_n \log(n/p_n) | \mathbf{X}^n\right) \to 0$$

and

$$\sup_{\theta_0 \in I_0(p_n)} \sum_{i,\theta_{0,i}=0} \mathbb{E}_0^n (\hat{\theta}_i - \theta_{0,i})^2 \lesssim p_n \log(n/p_n)$$

Sketch of the proof I

Using the hierarchical form of the prior we have that

$$\begin{split} \theta_i | X_i, \sigma_i^2 &\sim \mathcal{N}\left(X_i \frac{\sigma_i^2}{1 + \sigma_i^2}, \frac{\sigma_i^2}{1 + \sigma_i^2}\right) \\ \pi(\sigma_i^2 | X_i) &\propto (1 + \sigma_i)^{-1/2} e^{X_i^2 \frac{\sigma_i}{1 + \sigma_i}} \pi(\sigma_i) \end{split}$$

To control the posterior mass of a set $B_n = \{||\theta - \theta_0||^2 \ge M_n p_n \log(n/p_n)\}$ we will simply use a Markov inequality

$$\Pi(B_n|X^n) \leq \frac{\mathbb{E}(||\theta - \theta_0||^2)}{M_n p_n \log(n/p_n)} = \frac{\sum_{i=1}^n \left(X_i \mathbb{E}(\frac{\sigma_i^2}{1 + \sigma_i^2}|X_i) - \theta_{0,i}\right)^2 + \mathbb{V}(\theta_i|X_i)}{M_n p_n \log(n/p_n)}$$

Sketch of the proof II

We see that

- 1. We can separate the case $\theta_i = 0$ and $\theta_i \neq 0$
- 2. We only have to control $\mathbb{E}(\frac{\sigma_i^2}{1+\sigma_i^2}|X_i) := m_{X_i}$

We first consider the case $\theta_i = 0$. We show that under Conditions 1 and 2, we have the following bound for m_x

$$m_{x} \leq s_{n}\left(1+\frac{\sqrt{2}C}{c}e^{\frac{x^{2}}{4}}\right)+q_{n}\frac{2\sqrt{2}C}{c}e^{\frac{x^{2}}{2}}$$

where $s_n = \frac{p_n}{n} \log(n/p_n)$ and $q_n = s_n (\log(n/p_n)^{-1/2})$. With this we can show that

$$\mathbb{E}(Xm_X)^2 \leq \frac{p_n}{n}\log(n/p_n)$$

We now consider $\theta_i \neq 0$. Note that because we only have p_n of them, we simply need to bound the bias and the variance by something of the order of $\log(n/p_n)$. We show that under condition 3 we have for $|x| > c_0 + \sqrt{2K(u_0 \vee 1)\log(n/p_n)}$

$$1-m_x\leq \frac{C}{|x|}$$

Now note that

$$\mathbb{E}_{\theta_{0,i}}\left(X_im_{X_i}-\theta_{0,i}\right)=\mathbb{E}_{\theta_{0,i}}\left(X_i(m_{X_i}-1)\right).$$

This is enough to control the bias and the variance.

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

We consider now the problem of selecting which components θ_i are non zero.

Questions

- 1. How to select the non-zero coefficient
- 2. How to assess the quality of the decision rule?

An answer to 1 has been proposed in Carvalho et al. (2010). Recall that our prior is defined as

 $\sigma^2 \sim \pi$ $\theta | \sigma^2 \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

Define $\kappa_i = \sigma_i^2/(1 + \sigma_i^2)$ the shrinkage coefficient.

Shrinkage Coefficient

Recall that

$$\theta_i | \sigma_i^2, X_i \stackrel{ind}{\sim} \mathcal{N}(X_i \kappa_i, \kappa_i).$$

 $\kappa_i = \frac{\sigma_i^2}{1+\sigma_i^2}$ is thus the coefficient that shrinks the MLE X_i . Carvalho et al. (2010) proposed the following selection rule : Chose θ_i to be non zero if

 $\mathbb{E}_i^{\pi}(\kappa_i|X_i) > 1/2$

Multiple testing risk

We thus have the following decision rule $\delta_i = \mathbb{I}_{\mathbb{E}_i^{\pi}(\kappa_i | X_i) > \tau}$.

We thus have the following decision rule $\delta_i = \mathbb{I}_{\mathbb{E}_i^{\pi}(\kappa_i|X_i) > \tau}$. We will consider a Bayesian classification risk to assess the quality of the multiple testing rule $\delta = (\delta_1, \ldots, \delta_n)$ Bayesian Risk associated with a 2 group prior $\mu : \theta_i \sim (1 - \frac{p_n}{n})\delta_0 + \frac{p_n}{n}\mathcal{N}(0, \psi^2)$ Thus

$$R_n^{\psi}(\delta) = \sum_{i=1}^n \left\{ (1 - \frac{p_n}{n}) \mathcal{P}^{\mathcal{N}(0,1)}(\delta_i = 1) + \frac{p_n}{n} \mathcal{P}^{\mathcal{N}(0,1+\psi^2)}(\delta_i = 0) \right\}$$

We thus have the following decision rule $\delta_i = \mathbb{I}_{\mathbb{E}_i^{\pi}(\kappa_i|X_i) > \tau}$. We will consider a Bayesian classification risk to assess the quality of the multiple testing rule $\delta = (\delta_1, \ldots, \delta_n)$ Bayesian Risk associated with a 2 group prior $\mu : \theta_i \sim (1 - \frac{p_n}{n})\delta_0 + \frac{p_n}{n}\mathcal{N}(0, \psi^2)$ Thus

$$R_n^{\psi}(\delta) = \sum_{i=1}^n \left\{ (1 - rac{p_n}{n}) \mathcal{P}^{\mathcal{N}(0,1)}(\delta_i = 1) + rac{p_n}{n} \mathcal{P}^{\mathcal{N}(0,1+\psi^2)}(\delta_i = 0)
ight\}$$

How does the decision rule behave for this risk under the previous conditions?

Upper bound on the risk

Results

Under Conditions 1-3' we have for the decision rule $\delta_i = \mathbb{I}_{\mathbb{E}^{\pi}(\kappa_i | X_i) > \tau}$

$$\begin{split} & \mathcal{R}_n^{\psi_n}(\delta) \leq p_n \left(\frac{8\sqrt{\pi}C}{c\tau} + 2\Phi\left(\sqrt{2\mathcal{K}(u_0 \vee 1)C_{\psi}}\right) - 1 \right) (1 + o(1)) \\ & \text{if } \psi_n^2 = C_{\psi} \log(n/p_n)(1 + o(1)) \end{split}$$

Upper bound on the risk

Results

Under Conditions 1-3' we have for the decision rule $\delta_i = \mathbb{I}_{\mathbb{E}^{\pi}(\kappa_i | X_i) > \tau}$

$$\mathsf{R}_n^{\psi_n}(\delta) \leq \mathsf{p}_n\left(\frac{8\sqrt{\pi}C}{c\tau} + 2\Phi\left(\sqrt{2\mathsf{K}(u_0\vee 1)C_\psi}\right) - 1\right)(1+o(1))$$

 $\text{if }\psi_n^2=\mathit{C}_\psi\log(n/p_n)(1+o(1))$

Where K and u_0 are the constants from condition 1 and c and C are the constants in condition 2 and 3

The constants for the Bayesian risk is almost sharp!

Bogdan et al. (2011) derived an Oracle and computed the optimal Bayes Risk

$$p_n\left(2\Phi(\sqrt{C_\psi})-1\right)(1+o(1)),$$

here the best possible constant is $p_n (2\Phi(2\sqrt{C_{\psi}}) - 1) (1 + o(1))$ (but for a large class of priors !)

Sketch of the proof

Because the observations are independent, we simply have to control the Types I $t_1 = \mathcal{P}^{\mathcal{N}(0,1)}(\delta_i = 1)$ and Type II $t_2^{\psi} = \mathcal{P}^{\mathcal{N}(0,1+\psi^2)}(\delta_i = 0)$ error for each test. Using the same notations as before we have

$$egin{aligned} t_1 &= \mathcal{P}^{\mathcal{N}(0,1)}(m_X \geq au) \ t_2^\psi &= \mathcal{P}^{\mathcal{N}(0,1+\psi^2)}((1-m_X) \geq 1- au) \end{aligned}$$

The proofs uses the same bounds presented before.

Contents

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

In many cases, we have additional information on the structure of the parameter $(\theta_1, \ldots, \theta_n)$.

Extension - Known structure

In many cases, we have additional information on the structure of the parameter $(\theta_1, \ldots, \theta_n)$.

There is some way of taking advantage of this structure (e.g. fused lasso)

Example of a grid structure

Extension - Known structure

In many cases, we have additional information on the structure of the parameter $(\theta_1, \ldots, \theta_n)$.

There is some way of taking advantage of this structure (e.g. fused lasso)

Example of a grid structure If θ_5 is non zero, then there is high chances that $(\theta_1, \ldots, \theta_9)$ are also non-zero.

Extension - Known structure

In many cases, we have additional information on the structure of the parameter $(\theta_1, \ldots, \theta_n)$.

There is some way of taking advantage of this structure (e.g. fused lasso)

Example of a grid structure If θ_5 is non zero, then there is high chances that $(\theta_1, \ldots, \theta_9)$ are also non-zero.

This additional information can be easily introduced through the prior π on $(\sigma_1, \ldots, \sigma_n)$

A dependent prior

We consider the following depend prior

$$egin{aligned} & s_i \sim \pi(s_i) \ & \sigma = As \ & heta \sim \mathcal{N}_n(0, \operatorname{diag}(\sigma)) \end{aligned}$$

where A is the adjacency matrix of the underlying graph.

A dependent prior

We consider the following depend prior

$$egin{aligned} & s_i \sim \pi(s_i) \ & \sigma = As \ & heta \sim \mathcal{N}_n(0, \operatorname{diag}(\sigma)) \end{aligned}$$

where A is the adjacency matrix of the underlying graph. We thus get the posterior

$$\pi(s_i | \mathbf{X}^n, s_{-i}) \propto \frac{1}{\prod_{i=1}^n \left(1 + \sum_{j=1}^n a_{i,j} s_j\right)^{1/2}} \exp\left(\frac{1}{2} \sum_{i=1}^n X_i^2 \frac{\sum_{j=1}^n a_{i,j} s_j}{1 + \sum_{j=1}^n a_{i,j} s_j}\right) \pi(s)$$

Numerical results - estimation

-2

-3

3

-2

-3

dependent prior

row

Fused Lasso

independet prior

31 / 38

Numerical results - testing

dependent prior

FL thresholding

Real data example

Salomond (UPEC)

Guassian Scale Mixtures

Contents

Introduction

Conditions on the prior

Multiple Testing

Structured Models

Extensions and perspectives

When considering multiple testing, one could also want to consider False Discovery rates.

False Discovery Rate

Recall that FDR is given by

$$FDR_n = \mathbb{E}\left(\frac{FD_n}{TD_n + FD_n}\right)$$

Similarly one could consider the False Non-discovery rate

$$FND_n = \mathbb{E}\left(\frac{FN_n}{p_n}\right)$$

Extensions and Perspectives II

Recently Rabinovich et al. (2017) studied a new risk defined as

$$R_n = FDR_n + FNR_n$$

Question

- Can we get an upper bound for this risk for the considered testing procedure?
- Can we ensure that the Risk will tend to 0 uniformly over a certain set?

One can also want to consider Gaussian linear model

$$X = Z\theta + \epsilon$$

where Z is a $m \times n$ matrix with $m \gg n$. In this case the proofs techniques developed so far cannot be used. Can we get contraction rates under similar conditions such as

Conditions for sparse linear model

$$\pi([s_p,\infty[) \leq s_p, \ \forall u > u_0, \pi(u) \geq \left(\frac{s}{p}\right)^K e^{-bu}$$

It seems that we can get the minimax contraction rate in this case $_{\rm work\ in}$ $_{\rm progress...}$

Thank you for your attention !

References I

- Bogdan, M., Chakrabarti, A., Frommlet, F., and Ghosh, J. K. (2011). Asymptotic bayes-optimality under sparsity of some multiple testing procedures. *Ann. Statist.*, 39(3) :1551–1579.
- Caron, F. and Doucet, A. (2008). Sparse Bayesian nonparametric regression. In Proceedings of the 25th International Conference on Machine Learning, ICML '08, pages 88–95, New York, NY, USA. ACM.
- Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse signals. *Biometrika*, 97(2):465–480.
- Ghosh, P. and Chakrabarti, A. (2015). Posterior concentration properties of a general class of shrinkage estimators around nearly black vectors. arXiv :1412.8161v2.
- Rabinovich, M., Ramdas, A., Jordan, M. I., and Wainwright, M. J. (2017). Optimal rates and tradeoffs in multiple testing. *arXiv preprint arXiv* :1705.05391.
- Ročková, V. (2015). Bayesian estimation of sparse signals with a continuous spike-and-slab prior. submitted manuscript, available at http://stat.wharton.upenn.edu/~vrockova/rockova2015.pdf.
- van der Pas, S., Kleijn, B., and van der Vaart, A. (2014). The horseshoe estimator : Posterior concentration around nearly black vectors. *Electron. J. Stat.*, 8 :2585–2618.

Condition 3 can be re-written as

$$\int_{s_n}^1 u\pi(u)du + \int_1^{b_n^2} \left(u + \frac{b_n}{\sqrt{u}}\right)\pi(u)du + b_n^3 \int_{b_n^2}^\infty \frac{\pi(u)}{\sqrt{u}}du \le Cs_n$$

Back