mvord: An R Package for Fitting Multivariate Ordinal Regression Models

Rainer Hirk, Kurt Hornik and Laura Vana BBS SS18, Vienna
April 25, 2018

Outline

- Introduction and Motivation
- Overview R packages
- Model Class
- Implementation
- Examples
－Introduction and Motivation
－Overview R packages
－Model Class
－Implementation
－Examples
\square
- Ordinal measurements typically occur in
- Preference modeling
- Psychology (e.g., aptitude and personality testing)
- Marketing (e.g., consumer preferences research, customer satisfaction surveys)
- Finance (e.g., credit risk assessment for sovereigns or firms)
- Information retrieval (where documents are ranked by the user according to their relevance)
- Medical sciences (e.g., pain severity studies, cancer stages)
- Multirater agreement studies.
- These ordinal responses are often correlated among multiple or repeated measurements.
- \Rightarrow There is need for multivariate ordinal models.
- Goal: Make multivariate ordinal models available by an R package.
- The motivation of this package lies in a credit risk application, where multiple credit ratings are assigned by various credit rating agencies (CRAs) to firms over several years.
- Correlated ordinal data
- Multiple correlated ratings assigned by different raters to one firm at the same point in time.
- For each rater, there is serial dependence over the years.
- The need of a flexible model class that can handle correlated ordinal data:

1. Heterogeneity in the rating methodology
2. Heterogeneity in the covariates
3. Unbalanced panel of firms

- Introduction and Motivation
- Overview R packages
- Model Class
- Implementation
- Examples
- Several packages to model ordinal data are available in R (R Core Team, 2018).
- Univariate ordinal regression models:
- polr() of the MASS package (Venables and Ripley, 2002)
- $\operatorname{clm}()$ of the ordinal package (Christensen, 2015)
- oglmx() of the oglmx package (Carroll, 2016)
- functions lms() and orm() in package rms (Harrell Jr, 2017)
- MCMCoprobit () function in package MCMCpack (Martin et al., 2011).
- Variable selection:
- Package ordinalNet (Wurm et al., 2017) uses elastic net penalty.
- Package ordinalgmifs (Archer et al., 2014) uses the generalized monotone incremental forward stagewise (GMIFS) method.
- Only a few packages are able to deal with multivariate ordinal data.
- Ordinal regression with one-dimensional normally distributed random effects:
- function clmm() of package ordinal (Christensen, 2015).
- Multiple possibly correlated random effects:
- package mixor (Hedeker et al., 2015).
- Non-proportional odds models with multiple independent responses:
- function $\operatorname{vglm}()$ of the VGAM package (Yee, 2010).
- Bayesian multilevel models for ordinal data:
- package brms (Bürkner, 2017).
- Multivariate ordered probit models:
- package PLordprob (Kenne Pagui et al., 2014).
－Introduction and Motivation
－Overview R packages
－Model Class
－Implementation
－Examples

Multivariate ordinal regression I

- $i=1, \ldots, n$ is the subject index.
- $j \in J_{i}$ denotes the outcome, where $J_{i} \subseteq J$ (set all available outcomes).
- $q=|J|$ and $q_{i}=\left|J_{i}\right|$ denote the number of elements in the sets J and J_{i}.
- $Y_{i j}$ is an ordinal response.
- $r_{i j}$ is a category out of K_{j} ordered categories.
- The observable categorical outcome $Y_{i j}$ and the unobservable latent variable $\widetilde{Y}_{i j}$ are connected by:

$$
Y_{i j}=r_{i j} \quad \Leftrightarrow \quad \theta_{j, r_{i j}-1}<\widetilde{Y}_{i j} \leq \theta_{j, r_{i j}}, \quad r_{i j} \in\left\{1, \ldots, K_{j}\right\},
$$

where $\boldsymbol{\theta}_{j}$ is a vector of suitable threshold parameters for outcome j with the following restriction: $-\infty \equiv \theta_{j, 0}<\theta_{j, 1}<\cdots<\theta_{j, K_{j}-1}<\theta_{j, K_{j}} \equiv \infty$.

Multivariate ordinal regression II

- The following linear model is assumed for the relationship between the latent variable $\widetilde{Y}_{i j}$ and the vector of covariates $\mathbf{x}_{i j}$:

$$
\begin{equation*}
\widetilde{Y}_{i j}=\beta_{j 0}+\mathbf{x}_{i j}^{\top} \boldsymbol{\beta}_{j}+\epsilon_{i j}, \quad\left[\epsilon_{i j}\right]_{j \in J_{i}}=\boldsymbol{\epsilon}_{\mathbf{i}} \sim F_{i, q_{i}}\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right), \tag{1}
\end{equation*}
$$

where

- $\beta_{j 0}$ is an intercept term,
- $\mathbf{x}_{i j}$ is a vector of covariates,
- $\boldsymbol{\beta}_{j}=\left(\beta_{j 1}, \ldots, \beta_{j p}\right)^{\top}$ is a vector of regression coefficients,
- $\epsilon_{i j}$ are mean zero error terms, which are assumed to be independent across subjects and uncorrelated to the covariates,
- $F_{i, q_{i}}$ is a multivariate distribution function with covariance matrix $\boldsymbol{\Sigma}_{i}$.

Choices for the multivariate distribution function

- Multivariate normal distribution \Rightarrow multivariate ordinal probit regression model:

$$
\boldsymbol{\epsilon}_{i} \sim \mathcal{N}_{q_{i}}\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)
$$

- Multivariate logistic distribution \Rightarrow multivariate ordinal logit regression model:

$$
\boldsymbol{\epsilon}_{i} \sim \mathcal{L}_{\nu, q_{i}}\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)
$$

where the multivariate logistic distribution family is constructed from a t copula with ν degrees of freedom and univariate logistic margins (O'Brien and Dunson, 2004). details

- Absolute scale and the absolute location are not identifiable in ordinal models
- Assuming $\boldsymbol{\Sigma}_{i}$ to be a covariance matrix with diagonal elements $\left[\sigma_{i j}^{2}\right]_{j \in J_{i}}$, only the quantities

$$
\frac{\boldsymbol{\beta}_{j}}{\sigma_{i j}} \text { and } \frac{\theta_{j, r_{i j}}-\beta_{j 0}}{\sigma_{i j}} \text { are identifiable. }
$$

Identifiability issues II

- Assuming $\boldsymbol{\Sigma}_{i}$ to be a covariance matrix with diagonal elements $\left[\sigma_{i j}^{2}\right]_{j \in J_{i}}$, only the quantities

$$
\frac{\boldsymbol{\beta}_{j}}{\sigma_{i j}} \text { and } \frac{\theta_{j, r_{i j}}-\beta_{j 0}}{\sigma_{i j}} \text { are identifiable. }
$$

- Identifiable model parameterizations:

1. Fixing the intercept $\beta_{j 0}$, flexible thresholds $\boldsymbol{\theta}_{j}$ and fixing $\sigma_{i j} \forall j \in J_{i}$,
2. Leaving the intercept $\beta_{j 0}$ unrestricted, fixing one threshold parameter and fixing $\sigma_{i j}$,
3. Fixing the intercept $\beta_{j 0}$, fixing one threshold parameter and leaving $\sigma_{i j}$ unrestricted,
4. Leaving the intercept $\beta_{j 0}$ unrestricted, fixing two threshold parameters and leaving $\sigma_{i j}$ unrestricted.

Error structures - Basic model

- A general correlation structure:

$$
\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho_{k l}
$$

- An equicorrelation structure:

$$
\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho
$$

- An $\mathbf{A R (1)}$ error structure: $\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho^{|k-l|}$, for k and $/$ time points when $Y_{i k}$ and $Y_{i l}$ are observed.
- A general covariance structure:

If a parameterization which supports the estimation of the variance of the latent processes is used, it is assumed that $\operatorname{var}\left(\epsilon_{i j}\right)=\sigma_{j}^{2}$.

- We extend the basic model by allowing the use of covariates in the correlation (and variance) specifications.
- The hyperbolic tangent transformation allows to reparameterize the linear term $\alpha_{0 k l}+\mathbf{s}_{i}^{\top} \boldsymbol{\alpha}_{k l}$ in terms of a correlation parameter:

$$
\frac{1}{2} \log \left(\frac{1+\rho_{i k l}}{1-\rho_{i k l}}\right)=\alpha_{0 k l}+\mathbf{s}_{i}^{\top} \boldsymbol{\alpha}_{k l}, \quad \rho_{i k l}=\frac{e^{2\left(\alpha_{0 k l}+\mathbf{s}_{i}^{\top} \boldsymbol{\alpha}_{k l}\right)}-1}{e^{2\left(\alpha_{0 k l}+\mathbf{s}_{i}^{\top} \boldsymbol{\alpha}_{k l}\right)}+1}
$$

- At the moment only applicable for equicorrelation and AR(1).
- In general, other transformations can be applied as well.
- positive semi-definiteness can be ensured by Higham's algorithm (Higham, 1988)

Pairwise likelihood estimation

- The full likelihood is approximated by a pseudo-likelihood which is constructed from lower dimensional marginal distributions.
- Let $\boldsymbol{\delta}=(\boldsymbol{\theta}, \boldsymbol{\beta}, \mathbf{P})$ denote the vector of all parameters, the pairwise log-likelihood function is then given by:

$$
\begin{gather*}
p \ell(\boldsymbol{\delta})=\sum_{i=1}^{n} w_{i}\left[\mathbb{1}_{\left\{q_{i} \geq 2\right\}} \sum_{\substack{k<1 \\
k, l \in J_{i}}} \log \left(\mathbb{P}\left(Y_{i k}=r_{i k}, Y_{i l}=r_{i l}\right)\right)+\right. \\
\left.\mathbb{1}_{\left\{q_{i}=1\right\}} \mathbb{1}_{\left\{k \in J_{i}\right\}} \log \left(\mathbb{P}\left(Y_{i k}=r_{i k}\right)\right)\right] . \tag{2}
\end{gather*}
$$

Godambe information matrix

- Under certain regularity conditions, the maximum composite likelihood estimator is consistent as $n \rightarrow \infty$ and q fixed and asymptotically normal with asymptotic mean $\boldsymbol{\delta}$ and covariance matrix (Varin, 2008)

$$
G(\boldsymbol{\delta})^{-1}=H(\boldsymbol{\delta})^{-1} V(\boldsymbol{\delta}) H(\boldsymbol{\delta})^{-1}
$$

where

- $G(\boldsymbol{\delta})$ denotes the Godambe information matrix,
- $H(\delta)$ is the Hessian (sensitivity matrix) and
- $V(\delta)$ is the variability matrix.
- Standard errors are computed using the Godambe information matrix.
- For model comparison the composite likelihood information criterion $\operatorname{CLIC}(\boldsymbol{\delta})=-2 p \ell\left(\hat{\boldsymbol{\delta}}_{\ell \ell}\right)+k \operatorname{tr}\left(\widehat{V}(\boldsymbol{\delta}) \widehat{H}(\boldsymbol{\delta})^{-1}\right)$ can be used (Varin and Vidoni, 2005).

Category-specific regression coefficients

- In simple cumulative link models the proportional odds assumption is implicitly assumed (McCullagh, 1980).
- Can be relaxed for one or more covariates by allowing the corresponding regression coefficients to be category-specific (see e.g., Peterson and Harrell, 1990).
- Relaxing the proportional odds assumption by allowing category-specific regression coefficients gives for the r-th linear predictor:

$$
\eta_{i j, r}=\theta_{j, r}-\mathbf{x}_{i j}^{\top} \boldsymbol{\beta}_{j, r} \quad r \in\left\{1, \ldots, K_{j}-1\right\} .
$$

- Introduction and Motivation
- Overview R packages
- Model Class
- Implementation
- Examples
- Multivariate ordinal regression models in the R package mvord can be fitted using the function mvord().
- We offer two different data structures:
- Long data format (passed by MMO) details
- Wide data format (passed by MMO2)
- Multivariate link functions:
- S3 class 'mvlink'
- Multivariate probit and multivariate logit link
- User is able to implement additional link functions.
- Several identifiability constraints are supported.
- Pairwise log-likelihood is maximized by means of general purpose optimizers.

Long data format

```
Data set "data_mvord" from package mvord:
> str(data_mvord, vec.len = 3)
'data.frame': }3000\mathrm{ obs. of 9 variables:
    $ firm_id : int 1 2 3 4 5 6 7 8 ...
    $ rater_id: Factor w/ 3 levels "rater1","rater2",..: 1 1 1 1 1 1 1 1 ...
    $ rating : chr "F" "E" "F"
    $ X1 : num -1.725 0.691 -1.488 -2.111 ...
    $ X2 : num 0.237 0.244 0.247 0.317
    $ X3 : num 0.684-0.0347 -0.3151 -0.0876 ...
    $ X4 : num -0.854 -1.139 0.453 -0.469 ...
    $ X5
        : num -0.445 1.643 1.486 -1.356 ...
    $ X6 : Factor w/ 3 levels "X","Y","Z": 1 2 2 3 1 1 3 2 ...
```

- A model fitted by mvord() requires two compulsory input arguments, a formula argument and a data argument:

MMO

> formula <- MMO (rating, firm_id, rater_id) ~ $0+X 1+X 2+X 3+X 4+X 5$
> data <- data_mvord
> res <- mvord(formula, data)

- Each row contains:
- an ordinal observation Y (rating),
- a subject index i (firm_id),
- a multiple measurement index j (rater_id) and
- all the covariates (X1 to X5).

Wide data format

```
Data set "data_mvord2" from package mvord:
> str(data_mvord2, vec.len = 3)
'data.frame': }1000\mathrm{ obs. of 10 variables:
$ firm_id: int 1 2 3 4 5 6 7 8 ...
$ rater1 : Ord.factor w/ 7 levels "G"<"F"<"E"<"D"<..: 2 3 2 4 2 4 6 2 ...
$ rater2 : Ord.factor w/ 7 levels "G"<"F"<"E"<"D"<..: 2 3 2 4 2 4 5 2 ...
$ rater3 : Ord.factor w/ 8 levels "O"<"N"<"M"<"L"<..: 3 3 3 6 3 5 7 3 ...
$ X1 : num -1.725 0.691 -1.488 -2.111 ...
$ X2 : num 0.237 0.244 0.247 0.317 ...
$ X3 : num 0.684-0.0347 -0.3151 -0.0876 ...
$ X4 : num -0.854 -1.139 0.453 -0.469 ...
$ X5 : num -0.445 1.643 1.486 -1.356
$ X6 : Factor w/ 3 levels "X","Y","Z": 1 2 2 3 1 1 3 2 ...
```

- MMO2 combines the different response columns on the left-hand side of the formula:

MMO2

> formula <- MMO2 (rater1, rater2, rater3) ~ $0+X 1+X 2+X 3+X 4+X 5$
> data <- data_mvord2
> res <- mvord(formula, data)

- Multiple ordinal observations and covariates are stored as columns in a data.frame.
- Each subject i corresponds to one row of the data frame, where all outcomes (rater1, rater2 and rater3) and all the covariates (X1 to X5) are stored in different columns.
- MMO2 is only applicable for settings where the covariates do not vary among the multiple measurements.

Link functions

- The multivariate link functions are specified as objects of class 'mvlink'.
- We offer two different multivariate link functions
- Multivariate probit link (default)
- Bivariate normal probabilities which enter the pairwise log-likelihood are computed with package pbivnorm (Genz and Kenkel, 2015).
- link = mvprobit()
- Multivariate logit link
- We use the Fortran code from Alan Genz (Genz and Bretz, 2009) to compute the bivariate t probabilities.
- link = mvlogit(df = 8L)
- Optional integer valued argument df which specifies the degrees of freedom to be used for the t copula.

Error structures

- cor_general (formula $=\sim$ f)
- A general error structure, where the correlation matrix of the error terms is unrestricted: $\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho_{i k l}$
- cor_equi (formula $=\sim \mathrm{S} 1+\ldots+\mathrm{Sm}$)
- An equicorrelation structure with $\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho_{i}$ is used.
- cor_ar1 (formula $=\sim$ S1 + ... + Sm)
- An autoregressive error structure of order one with $\operatorname{corr}\left(\epsilon_{i k}, \epsilon_{i l}\right)=\rho_{i}^{|k-I|}$ is used.
- cov_general (formula $=\sim$ f)
- A general covariance structure with variance parameters $\operatorname{var}\left(\epsilon_{i j}\right)=\sigma_{i j}^{2}$
- Imposed by a vector of positive integers threshold.constraints:
- where dimensions with equal threshold parameters get the same integer.
- number of categories in the two outcome dimensions must be the same.
- Restricting the threshold parameters of the two outcomes rater1 and rater2 to be equal $\left(\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{2}\right)$ can be specified by:

threshold.constraints

$>$ threshold.constraints $=c(1,1,2)$

- Values for specific threshold parameters can be specified by threshold.values \Rightarrow important for ensuring identifiablity.
- Passed by a list with q elements, where each element is a vector of length $K_{j}-1$.
- A numeric value fixes the corresponding threshold parameter to the specified value.
- NA leaves the parameter flexible and indicates it should be estimated.

threshold.values

```
> threshold.values = list(rater1 =c(-4,NA,NA,NA,NA,4.5),
+
rater2 =c (-4,NA,NA,NA,NA,4.5),
    rater3 = c(-5,NA,NA,NA,NA,NA,4.5))
```

Error structure	Intercept	Threshold parameters				
		all flexible	one fixed $\theta_{j, 1}=a_{j}$	two fixed $\begin{aligned} & \theta_{j, 1}=a_{j} \\ & \theta_{j, 2}=b_{j} \end{aligned}$	$\begin{gathered} \text { two fixed } \\ \theta_{j, 1}=a_{j} \\ \theta_{j, K_{j}-1}=b_{j} \end{gathered}$	all fixed
cor	no	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
cor	yes		\checkmark	\checkmark	\checkmark	\checkmark
cov	no		\checkmark	\checkmark	\checkmark	\checkmark
cov	yes			\checkmark	\checkmark	\checkmark

- The option chosen needs to be consistent across the different outcomes
- The default threshold values are always $a_{j}=0$ and $b_{j}=1$.

Constraints on coefficients

- The package supports constraints on the regression coefficients.

1. The user can specify whether the regression coefficients should be equal across some or all response dimensions.
2. The values of some of the regression coefficients can be fixed.

- We offer two options:

1. A flexible design similar to constraints on the thresholds
2. Design employed by the VGAM package

Constraints on coefficients - mvord design

- Coefficients getting same integer value are set equal.
- We offer two options:

1. vector constraints of the type $\boldsymbol{\beta}_{k}=\boldsymbol{\beta}_{l}$:

Vector of constraints

```
> coef.constraints = c(1, 1, 2)
```

2. matrix constraints of dimension $q \times p$, where each column specifies constraints for one covariate:

Matrix of constraints

```
> coef.constraints = cbind(X1 = c(1,2,2), X2 = c(1,1,2), X3 = c(NA,1,2),
+
                                X4 = c(NA,NA,NA), X5 = c(1,1,2))
```

- Specific values on the regression coefficients can be set in the $q \times p$ matrix coef. values.
- Each column corresponds to the regression coefficients of one covariate.
- Coefficients can be fixed to known slopes.
- Excluding covariates from the model.

Matrix with fixed values

```
> coef.values = cbind(X1 = c (NA,NA,NA),
+ X2 = c(NA,NA,NA),
+ X3 = c(0,NA,NA),
+ X4 = c(1,1,1),
+ X5 = c(NA,NA,NA))
```

- Constraints are set through a named list, where each element of the list contains a matrix of full-column rank.
- Supports outcome-specific as well as category-specific constraints.
- Number of rows is equal to the total number of linear predictors $\sum_{j}\left(K_{j}-1\right)$.
- For two ordinal responses with each 3 categories and underlying latent processes:

$$
\widetilde{Y}_{i 1}=\beta_{11} x_{i 1}+\beta_{3} \mathbb{1}_{\left\{f_{i 2}=c 2\right\}}+\epsilon_{i 1}, \quad \widetilde{Y}_{i 2}=\beta_{21} x_{i 1}+\beta_{22} x_{i 2}+\beta_{3} \mathbb{1}_{\left\{f_{i 2}=c 2\right\}}+\epsilon_{i 2},
$$

we impose the following restrictions $\beta_{11,1} \neq \beta_{11,2}$ and $\beta_{22,1} \neq \beta_{22,2}$ by:

VGAM constraints

```
> coef.constraints = list(
+ X1 = cbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 1)),
+ X2 = cbind(c(0, 0, 1, 0), c(0, 0, 0, 1)), f2c2 = cbind(rep(1, 4)))
```

- All general purpose optimizers of package optimx can be applied.
- In principle, not all solvers converge for every problem.
- User can apply own solvers by:

How to apply a solver of package ROI?

```
> solver = function(starting.values, objFun, control){
+ n <- length(starting.values)
+ op <- OP(objective = F_objective(objFun, n = n),
+ bounds = V_bound(li = seq_len(n), lb = rep.int(-Inf, n)))
+ optRes <- ROI_solve(op, solver = "nlminb",
+ start = starting.values, control = control)
+ list(optpar = optRes$solution, objective = optRes$objval)
+ }
```


Additional arguments

- Argument weights.name specifies subject-specific weights.
- offset and contrasts can be used.
- PL.lag sets the number of time lags used in the pairwise likelihood.
- Control arguments are passed by a function control = mvord. control() with following arguments:
- solver
- solver.optimx.control
- se
- start.values

Methods

- Several methods are implemented for the class 'mvord'.
- These methods include summary(), print(), coef(), error_structure(), logLik(), vcov(), nobs(), terms(), model.matrix(), AIC(), BIC(), ...
- Joint probabilities can be extracted by the predict() or fitted() function:
- type prob,
- type cum.prob,
- type class.
- The function marginal_predict() provides marginal predictions for the types prob, cum.prob and class.
- joint_probabilities() extracts fitted joint (cumulative) probabilities for given response categories from a fitted model.

A simple example I

```
general correlation model
res_cor <- mvord(formula = MMO(rating) ~ 0 + X1 + X2 + X3 + X4 + X5,
data = data_mvord,
coef.constraints = cbind(c(1,2,2),
                                    c(1, 1, 2),
                                    c(NA,1, 2),
                                    c (NA,NA,NA),
                                    c(1,1,2)),
    coef.values = cbind(c(NA,NA,NA),
                                    c (NA,NA,NA),
                                    c(0,NA,NA),
                                    c(1,1,1),
                                    c(NA,NA,NA)),
    threshold.constraints = c(1,1,2))
```

```
> summary(res_cor, call = FALSE)
```

Formula: MMO(rating) ~ 0 + X1 + X2 + X3 + X4 + X5
link threshold nsubjects ndim logPL CLAIC CLBIC fevals
mvprobit flexible $\quad 1000 \quad 3-9489 \quad 19074.919312 .69 \quad 4937$

Thresholds：
Estimate Std．Error z value $\operatorname{Pr}(>|z|)$

	A｜B	－2．183998	7	－23．5377		$2.2 \mathrm{e}-16$	
	B｜C	－1．238654	0.039922	－31．0270	＜	$2.2 \mathrm{e}-16$	
	C	－0．475416	0.027883	－17．0505		6	
	D	0.540082	0.028834	18.7306	＜	$2.2 \mathrm{e}-16$	
	E｜F	1.253230	0.040015	31.3193	＜	$2.2 \mathrm{e}-16$	
	F｜G	2.021816	0.069429	29.1205	＜	$2.2 e-16$	
	H｜I	－2．404784	0.087655	－27．4347	＜	$2.2 \mathrm{e}-16$	
	I	－1．343154	0.043866	－30．6196	＜	$2.2 \mathrm{e}-16$	
	J｜K	－0．608650	0.034319	－17．7348	＜	$2.2 \mathrm{e}-16$	
	KIL	0.25499	0.029809	8.5544	＜	$2.2 \mathrm{e}-16$	
	L｜M	0.998702	0.036106	27.6602	＜	$2.2 \mathrm{e}-16$	
	M｜N	1.826488	0.056239	32.4775	＜	$2.2 \mathrm{e}-16$	
er3	NIO	2.467676	0.089782	27.485		2.2	

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
X1 1 -0.375785 0.020522 -18.3109< 2.2e-16 ***
X1 2 -0.303995 0.021635-14.0511<2.2e-16 ***
X2 1 0.238324 0.022075 10.7960<2.2e-16 ***
X2 2 0.529021 0.025024 21.1402 < 2.2e-16 ***
X3 1 -0.090760 0.012422 -7.3062 2.749e-13 ***
X3 2 0.113947 0.013363 8.5271 < 2.2e-16 ***
X5 1 0.278590 0.020196 13.7942< < 2.2e-16 ***
X5 2 0.401386 0.021627 18.5599 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' }
Error Structure:
            Estimate Std. Error z value Pr(>|z|)
corr rater1 rater2 0.9713542 0.0031560 307.78 < 2.2e-16 ***
corr rater1 rater3 0.9539472 0.0041924 227.54 < 2.2e-16 ***
corr rater2 rater3 0.9278330 0.0056608 163.91 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

－Introduction and Motivation
－Overview R packages
－Model Class
－Implementation
－Examples

Joint model of credit ratings and defaults

- We assume that S\&P (S), Moody's (M) and Fitch (F) provide ratings on an ordinal scale based on a latent process:

$$
\begin{aligned}
\widetilde{S}_{i} & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}_{S}+\epsilon_{i, S}, \\
\widetilde{M}_{i} & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}_{M}+\epsilon_{i, M}, \\
\widetilde{F}_{i} & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}_{F}+\epsilon_{i, F},
\end{aligned}
$$

where $\boldsymbol{\beta}_{S}, \boldsymbol{\beta}_{M}$ and $\boldsymbol{\beta}_{F}$ are vectors of coefficients and ϵ_{i}, are error terms.

- For a binary default or failure indicator (labeled by D) we assume:

$$
\widetilde{D}_{i}=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}_{D}+\epsilon_{i, D}
$$

where $\epsilon_{i, D}$ is a failure indicator specific error term.

- For the errors we assume $\left[\epsilon_{i j}\right]_{j \in\{S, M, F, D\}} \sim F_{i, q_{i}}\left(0, \mathbf{R}_{i}\right)$.

Model formula

$>$ formula <- MMO2 $(S P R$, Moodys, Fitch, failInd $) \sim 0+R 20+R 23+R 34+$
$+\quad S I G M A+B E T A+R 1+R 13+R 18+1 A T+M B+R 1 d+R 5+R 17 M+R 22 M+$
$+\quad R 27 a+R 29+R 35 a$

Constraints on coefficients

```
> coef.constraints <- cbind(c(1,2,3,NA), c(1,2,3,NA), c(1,2,3,NA),
+ c(1,2,3,4),c(1,2,3,NA), c(1,2,3,NA), c(1,2,3,NA), c(1,2,3,NA),
    c(1,2,3,4), c(1,2,3,NA), c(NA,NA,NA,1), c(NA,NA,NA,1), c(NA,NA,NA,1),
    c(NA,NA,NA,1), c(NA,NA,NA,1), c(NA,NA,NA,1), c(NA,NA,NA,1))
```


Function call

> res_joint <- mvord(formula, data = data_ordinal, link = mvlogit(), weights = "weights3raters", coef.constraints = coef.constraints, error.structure $=$ cor_general(${ }^{\sim} 1$))

S\&P			
$\begin{gathered} 0.87 \\ (0.019) \end{gathered}$	Moody's		
$\begin{gathered} 0.87 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.027) \end{gathered}$	Fitch	
$\begin{gathered} 0.34 \\ (0.132) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.119) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.316) \end{gathered}$	Failure

Fail indicator

Fail indicator (increased weights)

Evaluate predictive performance

The proposed model allows to predict PDs conditional on the observed ratings from the CRAs:

$$
\mathbb{P}\left(D_{i}=1 \mid S_{i}=r_{i S}, M_{i}=r_{i M}, F_{i}=r_{i F}\right)=\frac{\mathbb{P}\left(D_{i}=1, S_{i}=r_{i S}, M_{i}=r_{i M}, F_{i}=r_{i F}\right)}{\mathbb{P}\left(S_{i}=r_{i S}, M_{i}=r_{i M}, F_{i}=r_{i F}\right)}
$$

where S_{i}, M_{i} and F_{i} denote the rating observations and D_{i} is the default indicator.

CAP Joint Model

CAP Logit Model

- Knowledge of the joint distribution of the latent variables can provide several insights.
- E.g., if S\&P and Moody's rate on opposite sides of the IG/SG frontier, what is the probability of Fitch rating IG (Bongaerts et al., 2012)?
- If SPR rates IG and Moodys rates SG: 0.6682 (0.14)
- If SPR rates SG and Moodys rates IG: 0.4375 (0.14)
- E.g., what are the conditional probabilities of agreement between pairs of raters?

	S\&P			Moody's		Fitch	
Conditional on		IG	SG	IG	SG	IG	SG
S\&P	IG			0.74	0.26	0.83	0.17
	SG			0.13	0.87	0.18	0.82
Moody's	IG	0.83	0.17			0.81	0.19
	SG	0.22	0.78			0.26	0.74
Fitch	IG	0.76	0.24	0.67	0.33		
	SG	0.19	0.81	0.17	0.83		

- The underlying latent process of the proposed model is assumed to have the following form:

$$
\widetilde{Y}_{i t}=\mathbf{x}_{i t}^{\top} \boldsymbol{\beta}_{t}+\epsilon_{i t}
$$

where

- $\boldsymbol{\beta}_{t}$ is a time-specific regression coefficient,
- $\epsilon_{i t}$ is an error term with with autocorrelation structure of order one $(A R(1))$:

$$
\begin{aligned}
\epsilon_{i t} & =\rho \epsilon_{i(t-1)}+\sqrt{1-\rho^{2}} \eta_{i t} \\
\eta_{i t} & \sim \mathcal{N}(0,1) .
\end{aligned}
$$

Model formula

$>$ formula <- MMO (SPR, gvkey, fyear) $\sim 0+R 20+R 23+R 34+S I G M A+B E T A+$ $+R 4+R 9+R 12+R 18+R 31+R 35 a+1 A T+M B$

Threshold constraints

> threshold.constraints <- rep(1, nlevels(data_ordinal\$fyear))

Function call

> res_ar1 <- mvord(formula = formula, data = data_ordinal, link= mvprobit(), + weights $=$ "weights_SPR", threshold.constraints = threshold.constraints, + error.structure $=$ cor_ar1(~1))

net PPE/assets

retained earnings/assets

debt/assets

return on capital

R\&D/assets

capital expenditures/assets

RSIZE

BETA

SIGMA

Conclusion

- Package mvord is available on CRAN.
- Flexible modeling framework for multivariate ordinal regression models with:
- outcome-specific threshold coefficients,
- outcome-specific regression coefficients,
- constraints on threshold and regression parameters,
- different error structures and
- two multivariate link functions.
- Further research
- Evaluate out-of-sample predictive performance.
- Gain more detailed insights into the rating behaviour of the CRAs.

Kellie J. Archer, Jiayi Hou, Qing Zhou, Kyle Ferber, John G. Layne, and Amanda Elswick Gentry. ordinalgmifs: An R package for ordinal regression in high-dimensional data settings. Cancer Informatics, 13:187-195, 2014. doi: 10.4137/CIN.S20806.
Dion Bongaerts, K. J. Martin Cremers, and William N. Goetzmann. Tiebreaker: Certification and multiple credit ratings. The Journal of Finance, 67(1):113-152, 2012. doi: 10.1111/j.1540-6261.2011.01709.x.
Paul-Christian Bürkner. brms: An R package for bayesian multilevel models using Stan. Journal of Statistical Software, 80(1):1-28, 2017. doi: 10.18637/jss.v080.i01.
Nathan Carroll. ogImx: Estimation of Ordered Generalized Linear Models, 2016. URL https://CRAN.R-project.org/package=oglmx. R package version 2.0.0.1.
Rune H. B. Christensen. ordinal - regression models for ordinal data, 2015. URL https://CRAN.R-project.org/package=ordinal. R package version 2015.6-28.
Alan Genz and Frank Bretz. Computation of Multivariate Normal and t Probabilities. Springer-Verlag, 2009.
Alan Genz and Brenton Kenkel. pbivnorm: Vectorized Bivariate Normal CDF, 2015. URL https://CRAN.R-project.org/package=pbivnorm. R package version 0.6.0.

[^0]
References III

Peter McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society. Series B (Methodological), pages 109-142, 1980. URL http://www.jstor.org/stable/2984952.
Sean M. O'Brien and David B. Dunson. Bayesian multivariate logistic regression. Biometrics, 60(3):739-746, 2004. doi: 10.1111/j.0006-341X.2004.00224.x.

Bercedis Peterson and Frank E. Harrell. Partial proportional odds models for ordinal response variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 39(2):205-217, 1990. doi: 10.2307/2347760.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.

Cristiano Varin. On composite marginal likelihoods. AStA Advances in Statistical Analysis, 92(1):1, Feb 2008. ISSN 1863-818X. doi: 10.1007/s10182-008-0060-7.
Cristiano Varin and Paolo Vidoni. A note on composite likelihood inference and model selection. Biometrika, 92 (3):519-528, 2005. doi: 10.1093/biomet/92.3.519.
W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4.

References IV

Michael Wurm, Paul Rathouz, and Bret Hanlon. ordinalNet: Penalized Ordinal Regression, 2017. URL https://CRAN.R-project.org/package=ordinalNet. R package version 2.1.
Thomas W. Yee. The VGAM package for categorical data analysis. Journal of Statistical Software, 32(10): 1-34, 2010. doi: 10.18637/jss.v032.i10.

Thank you for your attention!

Rainer Hirk
rhirk@wu.ac.at
Institute for Statistics and Mathematics
WU Vienna University of Economics and Business
Welthandelsplatz 1
1020 Vienna

- We apply a multivariate logistic distribution proposed by O'Brien and Dunson (2004)
- For a vector $\mathbf{z}=\left(z_{1}, \ldots, z_{q}\right)^{\top}$, the multivariate logistic distribution function with ν degrees of freedom, mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ is defined as:

$$
F_{\nu, \boldsymbol{\mu}, \boldsymbol{\Sigma}}(\mathbf{z})=t_{\nu, \mathbf{R}}\left(\left\{g_{\nu}\left(\left(z_{1}-\mu_{1}\right) / \sigma_{1}\right), \ldots, g_{\nu}\left(\left(z_{q}-\mu_{q}\right) / \sigma_{q}\right)\right\}^{\top}\right)
$$

where

- $t_{\nu, \mathbf{R}}$ is a q dimensional multivariate t distribution with ν degrees of freedom and correlation matrix \mathbf{R} corresponding to $\boldsymbol{\Sigma}$
- $g_{\nu}(x)=t_{\nu}^{-1}(\exp (x) /(\exp (x)+1)), t_{\nu}^{-1}$ is the quantile function of the univariate t distribution with ν degrees of freedom and $\sigma_{1}^{2}, \ldots, \sigma_{q}^{2}$ are the diagonal elements of $\boldsymbol{\Sigma}$.
- The employed distribution family differs from the conventional multivariate logistic distributions of Gumbel (1961) or Malik and Abraham (1973) in that it offers a more flexible dependence structure through the correlation matrix of the t copula.
- Long Data Format back

i	j	Y	X 1	X 2
1	rater1	A	1	100
1	rater2	A	1	100
1	rater3	B	1	100
2	rater1	B	2	200
2	rater2	B	2	200
2	rater3	C	2	200

- Wide Data Format

i	rater1	rater2	rater3	X1	X2
1	A	A	B	1	100
2	B	B	C	2	200

[^0]: E. J. Gumbel. Bivariate logistic distributions. Journal of the American Statistical Association, 56(294):335-349, 1961. doi: 10.1080/01621459.1961.10482117.

 Frank E Harrell Jr. rms: Regression Modeling Strategies, 2017. URL https://CRAN.R-project.org/package=rms. R package version 5.1-1.

 Donald Hedeker, Kellie J. Archer, Rachel Nordgren, and Robert D. Gibbons. mixor: Mixed-Effects Ordinal Regression Analysis, 2015. URL https://CRAN.R-project.org/package=mixor. R package version 1.0.3.
 Nicholas J Higham. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103:103-118, 1988. doi: 10.1016/0024-3795(88)90223-6.
 Euloge Clovis Kenne Pagui, Antonio Canale, Alan Genz, and Adelchi Azzalini. PLordprob: Multivariate Ordered Probit Model via Pairwise Likelihood, 2014. URL https://CRAN.R-project.org/package=PLordprob. R package version 1.0.
 Henrick J. Malik and Bovas Abraham. Multivariate logistic distributions. The Annals of Statistics, 1(3): 588-590, 1973. doi: 10.1214/aos/1176342430.
 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. MCMCpack: Markov chain monte carlo in R. Journal of Statistical Software, 42(9):22, 2011. doi: 10.18637/jss.v042.i09.

